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Abstract

We give a modern historical and philosophical discussion of diagonalization as a tool to prove
lower bounds in computational complexity. We will give several examples and discuss four pos-
sible approaches to use diagonalization for separating logarithmic-space from nondeterministic
polynomial-time.

1 Introduction

The greatest embarrassment in computational complexity theory comes from our inability to achieve
significant complexity class separations. In recent years we have seen many interesting results
come from an old technique—diagonalization. Deceptively simple, diagonalization, combined with
techniques for collapsing classes, can yield quite interesting lower bounds on computation.

In 1874, Cantor [CanT4] first used diagonalization for showing the set of reals is not countable.
The proof worked by assuming an enumeration of the reals and designing a set that one-by-one is
different from every set in the enumeration. Drawn as a table this process considers the diagonal
set and reverses it. Thus the term diagonalization.

Diagonalization was first used in computability theory in the 1930’s by Turing [Tur36] to show
that there existed computably enumerable problems that were not computable. The seminal paper
in computational complexity [HS65] used diagonalization to give time and space hierarchies.

Diagonalization works! In Section 2.1 we describe Allender’s diagonalization proof [A1199] that
the permanent is not computable by uniform constant depth threshold circuits. Without diagonal-
ization, can we even show that the halting problem does not have such circuits?

Razborov and Rudich [RR97] has developed the concept of “natural proofs” that capture the
known techniques for proving lower bounds in nonuniform circuit classes. They show that under
reasonable assumptions, these proofs cannot give us strong lower bounds for various interesting
circuit problems. Since diagonalization works against uniform models of computation, these issues
do not apply.

The techniques for diagonalization remain relatively simple. To prove a separation result, one
assumes a collapse and derives enough consequences until we violate a well-known time-hierarchy
theorem. Most of the interesting diagonalization proofs do not rely on hard combinatorics.
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Diagonalization does have its limitations. Most of the results we have by diagonalization are still
far weaker than we would hope. Diagonalization also gives even weaker results against probabilistic
and nonuniform computation.

Baker, Gill and Solovay [BGS75] develop the notion of “relativization”. They created a rel-
ativized world A where P4 = NP4, Since all of the known diagonalization proofs of the time
relativize, this gave a good argument that diagonalization alone would not separate P from NP.
One can get some nonrelativizing separation results. We give one such example in Section 2.6.
However these results require nonrelativizing collapses of which there are few.

We will give several results showing how diagonalization has and continues to play an important
role in computational complexity theory. We also argue that diagonalization may even help us
separate classes like NP from L—we give four approaches towards this goal.

2 Diagonalization Proofs

In this section we give several examples about diagonalization results to give a taste and history of
the technique.

2.1 Permanent is not in uniform TC,

A wonderful example of the diagonalization technique is the result showing that the permanent
cannot be computed by uniform constant depth threshold circuits. This result was proven by
Allender [Al199] building on work of Caussinus, McKenzie, Thérien and Vollmer [CMTV98] and
Allender and Gore [AG94]. We sketch the proof in this section.

Consider threshold machines: These are like alternating machines except that instead of asking
existential and universal questions they ask “Do a majority of my computation paths accept?” A
k-threshold machine can have k threshold questions on any path. Polynomial-time unbounded-
threshold machines give us PSPACE. Polynomial-time constant-threshold machines characterize
the counting hierarchy. Logarithmic-time constant-threshold machines with random-access to the
input characterize uniform TCy.

Suppose the permanent is in uniform TCy and therefore in P. Thus we can count computation
paths in polynomial-time [Val79] so the entire counting hierarchy collapses to P. The proofs that
the permanent is #P-complete [Val79, Zan92] show that the permanent is in fact complete under
reductions computable by constant depth circuits. Since the permanent is in TCy the counting
hierarchy now collapses to TCj.

By straightforward diagonalization one can get that for any fixed k there exists a language ac-
cepted by a polynomial-time k-threshold machine not accepted by any logarithmic-time k-threshold
machine. We have not yet reached a contradiction since it is possible that a polynomial-time k-
threshold machine is accepted by some logarithmic-time &k 4 1-threshold machine.

Now SAT is accepted by a log-time k-threshold machine for some fixed k. All of NP, and
thus the counting hierarchy is reducible to SAT via simple projections. All of the polynomial-time
constant threshold machines can be simulated by a logarithmic-time k-threshold machine giving us
the contradiction.

This proof is a great example of the diagonalization method: We want to prove a separation.
First we assume the collapse. Then we get other collapses and keep on collapsing until we can
apply a straightforward diagonalization.



2.2 Time and Space Hierarchies

The first uses of diagonalization in complexity theory came in the very first papers. The main results
of the seminal paper in complexity theory by Hartmanis and Stearns [HS65] gave deterministic time
and space hierarchy results using straightforward diagonalization.

Nondeterministic hierarchy results are not so straightforward because of the need to do the
opposite in the diagonalization step. Ibarra [Iba72] showed how to get good bounds for the nonde-
terministic space hierarchy by making many collapses and then applying Savitch’s Theorem [Sav70]
to get the determinism needed for diagonalization. Immerman [Imm88] and Szelepcsényi [Sze88]’s
results that nondeterministic space is closed under complement removed this problem and gave
tight hierarchies.

We do not believe nondeterministic time is closed under complement and we also do not have
any deterministic simulation nearly as nice as Savitch’s theorem for space. However, using a large
number of collapses we can achieve quite a tight hierarchy for nondeterministic time.

Cook [Coo73] first showed that NTIME(n") C NTIME(n®) if 1 < r < s. Seiferas, Fischer
and Meyer [SFMT8] give a significantly stronger version.

Theorem 2.1 (Seiferas-Fischer-Meyer) For any time-constructible functions s and t such that
s(n+1) = o(t(n)), there exists a language accepted in nondeterministic time t(n) but not accepted
in nondeterministic time s(n).

We sketch a simple proof of Theorem 2.1 due to Zak [Zak83].

Sketch of Proof: Let Mjy,... be an enumeration of nondeterministic Turing machines. We define
a nondeterministic machine M that acts as follows on input w = 1%01™01%: If k& < m!™) then
simulate M; on input 1°01™01%+! for ¢(Jw|) steps. If k = m*™) then accept if 1°01™0 rejects which
we can do quickly as a function of the current input size.

This machine uses time ¢(n) so by assumption can be simulated in time s(n) by some machine
M;. Since s(n + 1) = o(t(n)) we have for sufficiently large m,

t(m)

1°01™0 € L(M) < 1'01™01 € L(M) & --- & 1°01™01™ " € L(M) < 1°01™0 ¢ L(M)

a contradiction. O

2.3 Delayed Diagonalization

In 1975, Ladner [Lad75] showed that if P # NP there must an incomplete set in NP — P. His
proof creates a set that is sometimes SAT to keep it out of P and sometimes the empty set to keep
it incomplete. The tricky part is to keep the set in NP. We need to be patient and wait until we
actually see a diagonalization occur.

Theorem 2.2 (Ladner) If P # NP then there exists a set A such that
1. A€ NP,
2. AP, and

3. A is not NP-complete.



Proof: We will create a polynomial-time computable function f : 1* — N. We define our set A as
A={¢| ¢ € SAT and f(|¢|) is even}.

Clearly A is in NP. We will use f to indicate our current stage. When f is equal to 2¢ then we will
try to prevent A from being accepted by the ith polynomial-time Turing machine. When f is equal
to 2¢+1 we will prevent SAT from reducing to A via the ith polynomial-time computable reduction.
To keep f polynomial-time computable we will need to wait not only for the diagonalization to
occur but for there to be enough time for us to see it. Thus the notion of “delayed diagonalization.”

Let Mjy,... be an enumeration of the polynomial-time computable Turing machines. Let g1, ...
be an enumeration of polynomial-time computable functions.

Initially let f(0) = 2. We will start in stage n = 1.

STAGE n:

Let j = f(n—1). If j is even we will work against A = L(M;). If j is odd we will work against
2
91 reducing SAT to A.
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CASE j = 2k:

See if there exists a formula ¢ such that |¢p| < logn and ¢ is in the symmetric difference of
L(My) and A as defined so far. If so let f(n) = j + 1 otherwise let f(n) = j.

CASE j = 2k + 1:

See if there exists a formula ¢ such that |¢| < logn and either
1. ¢ € SAT and gx(¢) € A, or
2. ¢ ¢ SAT and gi(¢) € A.

If so then let f(n) = j + 1 otherwise let f(n) = j.

If f(n) goes to infinity then we have fulfilled the conditions for A. If f(n) reaches a limit of
2k then A will be equal to L(Mj) and also finitely different from SAT violating the P # NP
assumption. Likewise if f(n) reaches a limit of 2k + 1 then g; will reduce SAT to A but A will be
finite again violating the P # NP assumption.

2.4 Every separation is diagonalization?

Partly in response to the relativization work of Baker, Gill and Solovay [BGS75], Kozen [Ko0z80]
took a different tact. He argued that any proof of say P # NP would be a proof by diagonalization.

Let My, ... be an enumeration of the polynomial-time computable machines. Let h be a function
mapping ¥* to the natural numbers. We define diag,, as

diag;, = {z | M) () rejects}.
Kozen notes that either of the following two conditions guarantee that diagy, is not in P.

1. For all L in P there is some x such that L = L(Mj(y)).



2. For all L in P there is L' such that L' and L differ in finitely many places and for infinitely
many z, L' = L(Mpy)).

Theorem 2.3 (Kozen) For any computable set B not in P there exists a computable h such that
B = diagy,. Moreover, h can be chosen to meet both of the conditions above.

In particular if P # NP then we can take B = SAT in Theorem 2.3. Any proof that P # NP
would imply a proof of the existence of an h fulfilling the conditions above such that SAT = diag;,.

I believe this result says more about the difficulty of exactly formalizing the notion of a “diag-
onalization proof” than of actually arguing the diagonalization technique is the only technique we
have for class separation.

2.5 Separations against nonuniform classes

Diagonalizing against nonuniform classes appears quite difficult. One could use some input to
diagonalize against a particular circuit. Unfortunately we usually have more circuits than inputs.

Kannan [Kan82] gives an interesting strategy for showing that some classes do not have small
circuits.

Theorem 2.4 (Kannan)

k

1. For any fized k, there is a language in X5 N 115 not computable in n”-size circuits.

2. There is a language in Z4E N H4E not computable by 2°) _size circuits.
3. There is a language in Eg N Hg not computable by polynomial-size circuits.

The class EE represents the 20 version of Ei.

Proof: We will give the proof for the first. The other two are similar.

Fix k. Consider the set of strings L consisting of = accepted by the lexicographically least
circuit of size n**! that is different from all circuits of size n¥. Simple counting arguments show
that such circuits must exist. This expression can be formulated in 3.

To get a separation at the second level of the hierarchy we use a nonconstructive argument. If
SAT does not have n* size circuits than the result follows. Otherwise by Karp and Lipton [KL80]
the entire polynomial-time hierarchy and thus L is contained in 35 N T15. O

Is this proof a diagonalization argument or really a simple combinatorial argument? It is not
clear and an informal survey of fellow complexity theorists gave a mixed response.

2.6 Nonrelativizing Separations

Buhrman, Fortnow and Thierauf [BFT98] give the first separation result that does not relativize.
Consider the class MAgxp that consists of languages proven by an interactive proof system where
the prover sends a single message to a probabilistic exponential-time verifier.

Theorem 2.5 (Buhrman-Fortnow-Thierauf)
1. There exists a language in M Agxp that does not have polynomial-size circuits.

2. There exists a relativized world where every language in MAgxp has polynomial-size circuits.



Proof of Theorem 2.5(1): Assume that MAgxp has polynomial-size circuits. This implies that
EXP has polynomial-size circuits and thus that EXP = MA [BFL91]. We then have ¥ C MA
and by translation that Zg‘xp C MAEgxp. This contradicts Kannan’s result [Kan82] that E?XP
does not have polynomial-size circuits. [

The proof does not relativize because it relies on the result of Babai, Fortnow and Lund [BFL91]
that EXP has polynomial-size circuits implies EXP = MA which follows from their nonrelativizing
proof of MIP = NEXP.

This proof shows that one can get nonrelativizing diagonalization arguments by using nonrela-
tivizing collapses.

3 Approaches to separating L from NP

While the P # NP question remains quite formidable, the L ## NP question seem much more
tractable. We have no reason to think this question is difficult. The lack of good relativization
models for space means we have no meaningful oracle model where L and NP collapse. Also since
L is a uniform class, the Razborov-Rudich [RR97] limitations do not apply.

In this section we give four different approaches to attack this problem.

3.1 Autoreducibility

Trakhtenbrot [Tra70a] first looked at autoreducibility in the computability setting as a measure of
redundancy in a set. Buhrman, Fortnow, van Melkebeek and Torenvliet [BFvMT00] showed that
in the complexity setting autoreducibility may help separate complexity classes.

A set A is autoreducible if there exists an oracle polynomial-time Turing machine M such
that L(M*) = A with the restriction that for all z, M“(z) does not query whether z is in A.
Buhrman, Fortnow, van Melkebeek and Torenvliet show a relationship between complete sets and
autoreducibility.

Theorem 3.1 (Buhrman-Fortnow-van Melkebeek-Torenvliet)
1. If every Turing-complete set for EXPSPACE is autoreducible then NL # NP.

2. If every nonadaptively- Turing-complete set for PSPACE is nonadaptively autoreducible then
NL # NP.

Assuming NL = NP Buhrman, Fortnow, van Melkebeek and Torenvliet create a series of
constructions to get an A such that

1. Ais in EXPSPACE,
2. A is Turing-hard for EXPSPACE and
3. A “diagonalizes” against all possible autoreductions.

They also give autoreductions for the EXP-complete sets and complete sets for some classes in
the exponential-time hierarchy. These autoreductions use game characterizations of classes creating
a contest between a player trying to show a string z is in a set A and a player trying to show that
z is not in A. Earlier Beigel and Feigenbaum [BF92] used a different technique to show that all of
the Turing-complete sets for PSPACE are autoreducible.



3.2 Intersecting Finite Automata

Karakostas, Lipton and Viglas [KLV00] give an interesting approach to the L # NP problem by
looking at the complexity of determining whether a collection of finite automata accept a common
string.

Given a finite automaton of s states one can determine whether the machine accepts any strings
at all in O(s) time by using depth-first search to determine if there exists a path from the initial
state to an accept state. If we are given k such automata, we can first create the intersecting
automaton by using cross products and then apply depth-first search to this automata in O(s¥)
time. Karakostas, Lipton and Vigas show that even small improvements in this running time would
yield complexity class separations.

Theorem 3.2 (Karakostas-Lipton-Viglas) Suppose we are given k finite automata with s states
and one additional automaton with t states. Let L be the intersection of the languages accepted by
these automata.

1. If we can determine whether L is not empty in s°®)¢ time then L # P.

2. If we can determine whether L is not empty with s®®)t-size circuits then L # NP.

The proof works by assigning finite automata F1, ..., Fj to different regions of the work tape. Each
F; is responsible for checking the computation when the head is in its region. Each F; has to keep
track of its region of the tape and the current tape head location. An additional automaton G
keeps track of the input tape. With appropriate choices of s for the sizes of the F; and ¢ for the size
of G, if we can determine that L is not empty in s°®)¢ time then we have L. C DTIME(n!*€) C P.

A similar proof shows that if we can determine whether L is not empty with s°*)¢-size circuits
then L has n'™¢ size circuits. If L = NP then L = ¥ and £} cannot have n* size circuits for any
fixed £ [Kan82].

We may have trouble applying Theorem 3.2 directly to separate L from NP because determining
whether L is not empty may just be a difficult problem. However, to separate L from NP, we need
only show a quick algorithm for checking that L is not empty under the assumption that L = NP.
There we may have more hope.

3.3 Hardness versus Randomness

Impagliazzo and Wigderson [IW97] show how to completely derandomize BPP using a strong
hardness assumption. Trying to show this or even stronger assumptions false can lead to complexity
separations.

Theorem 3.3 (Impagliazzo-Wigderson) If there exist languages in E that cannot be computed
by 2°) _size circuits then P = BPP.

This is a wonderful derandomization result—but that is the topic of another survey. Instead let
us focus on the antecedent. The antecedent seems awfully strong—It is impossible to have a very
large amount of advice to give a small improvement on time. However, proving it false would imply

P +# NP.

Theorem 3.4 If P = NP then there ezist languages in E that cannot be computed by 2° -size
circusts.



Proof: If P = NP then P = X} and by translation E = XF. However by Kannan [Kan82], =F
has languages that require 24" -gize circuits. O
A similar argument shows that if linear space has small circuits we can get weaker separations.

Theorem 3.5 If L = NP then there exist languages in DSPACE(n) that do not have 2°0™ -size
circusts.

It remains open whether even SAT € NTIME(n) C DSPACE(n) can be computed by 2°0)-size
circuits. However, if SAT does not have small circuits then we already know L # NP. This leads
to the following approach to separating those classes.

Theorem 3.6 If every language in DSPACE(n) has 20(") _size circuits assuming that SAT can
be computed in polynomial-size circuits then L # NP.

One can think of DSPACE(n) as linear alternating time. We want to simulate linear alternating
time with slightly subexponential circuits on the assumption that we can do one layer of alternation
in polynomial-size circuits.

3.4 Alternation, Time and Space

A recent approach looks at using collapses on machines of small alternations. This approach has
led to interesting time-space tradeoffs for satisfiability. Kannan [Kan84] had looked at similar
techniques in 1984 followed by more recent work by Fortnow [For00], Lipton and Viglas [LV99],
Tourlakis [Tou00] and Fortnow and van Melkebeek [FvMO0O].

We give an easy example showing time-space trade-offs on X7 time.

Theorem 3.7 (Fortnow-van Melkebeek) There ezists a language in X7 that cannot be com-
puted by any deterministic random-access Turing-machine using n*% time and O(logn) space.

Proof Sketch: Suppose the theorem is false. By translation we have every language L in 232
accepted by a deterministic Turing-machine M using n3°® time and O(logn) space.

We will simulate M by a 231'99 g™ 1hachine violating the Yo-time hierarchy which is proven
similarly to Theorem 2.1. Nondeterministically guess the configurations of M at the time step in'%°
for 0 < i < n'99. Universally pick an i < n'?? and deterministically check that the configuration
at time in'"%? can go to configuration (i + 1)n'%. O

Similar techniques show that 3} requires nearly n* deterministic time for small space-bounded
machines. If one could show that for some fixed k, 3} requires nJ time for all j then we have
separated L from NP.

We can also use these ideas to get time-space tradeoffs for satisfiability. Fortnow and van
Melkebeek building on the earlier papers show that satisfiability cannot be solved in n® time and
n°() space for random-access Turing machines for any a less than the golden ration, about 1.618.

4 Conclusions

Diagonalization, once given up for dead, has returned still giving us new and interesting lower
bounds. While the actual diagonalization step still remains easy, we have new tools and techniques
for collapsing classes. As we have seen in this survey, better collapses lead to better separations.
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