
Modeling Multiple-object 
Tracking as Constrained Flow 

Optimization Problem



Introduction
• Multiple-object tracking

1. Detection Step: time-Independent 
2. Linking Step: connect detections into most likely 

trajectories: NP-Complete
• Problem: Linking detections into trajectories for multiple 

visually-similar objects
• Solutions:
– Filtering, Greedy dynamic programming etc.: don’t 

ensure global optimum
– Integer Linear Programming (ILP): Ensures global 

optimum but NP-Complete 



Multi-Object Tracking as Constrained 
Flow optimization

• Divide scene into 
! discrete locations. 

• Model occupancy map 
over time using directed 
graph. "
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Multi-Object Tracking as Constrained 
Flow optimization

• Posterior probability of an 
object:
– !: occupancy map (holding 

variables!"#)
– ₣: set of feasible maps !.
– %&

#:random variable presenting 
the true value of ' in time (.
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Integer Linear Programming (ILP) 
Formulation

• !"
# as conditional independence variable

• ILP System:
– Maximize ∑#," &'(
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From Integer to Continuous Linear Program

• Integer LP solution: NP-complete problem
• Continuous LP: Polynomial time average 

complexity
• Relax the ‘integer’ condition to reduce 

complexity
• Problem: continuous LP does not usually 

converge to optimal solution of original ILP!!
• Solution: Total-unimodularity of constraint 

matrix 



Total Unimodularity

• Total-Unimodular Matrix: 
– all square sub-matrices has determinants 1,0 or -1

or
– For every subset of rows R Í {1,2…,m}, there is a 

partition of rows such that R = R1 U R2, R1 ∩ R2 = Ø 
"j = 1,2,…n (Σi∈R1 aij - Σi∈R2 aij)∈ {-1,0,1} 

• Ensures integer solution even for continuous 
LP

• Constraint matrix is Total-Unimodular



Total-Unimodularity of Constraint Matrix

• Constraint matrix: 
– arrange columns in 
ascending order of 
time; each column 
represent one location
at one time instant

• Rows: 
– divided into 2 parts 
based on 
conditions



Total-Unimodularity of Constraint Matrix

• Only 3 rows can be non-zero (∈ {-1,0,1} ) for one 
column

• Eight cases 

for partitions 
R1 = R∩U1,R2 = R∩U2 for any R Í {1,2…,m}

• Every possibility satisfies total-unimodualrity
but 3rd –Problem

• Solution: Move non-zero row of R1 to R2 for 3rd

case



K-shortest paths (KSP) formulation

• Why?
– Relaxed ILP solution polynomial but practically not 

efficient!
– Need real time efficiency for practical problems

• KSP:
– Given a graph G(V,E), compute a set of k shortest 

paths {p1,p2,…..,pk} such that the total cost is 
minimum



KSP formulation
– Problem constraints: 

• Node disjoint
• Node simple

Three node-simple shortest paths: 6,20,21
Three non-simple shortest paths (allowing loops ‘aba’ & 
‘ded’):6,8,10



KSP formulation

• ILP to KSP

– Maximizing flow in ILP is equivalent to minimizing 

path cost function in KSP (just negate the ILP 

objective function)

– Any path between source and sink nodes with 

arbitrary ‘k’ is in the set of feasible solutions of ILP

– The value of ‘k’ that achieves min. cost is the one 

that maximizes the flow in ILP solution



KSP formulation

• Optimality of ‘k’ is guaranteed due to convexity of 
the path cost function 

• The shortest paths at each iteration are 
computed by Dijkstra’s algorithm
– Complexity?
• O(k(m+nlogn))



Applications

• 2D segmentation to 3D segmentation:

– 2D: shortest path problem; Dijkstra’s algorithm

– 3D: minimal weight surface problem

• can be presented as instance of ILP with totally 

unimodular constraint matrix

• Optimization by LP:

– LP provides an upper/ lower bound for original ILP

– Branch-and-bound: optimization of ILP through recursive 

LP solution.

• Tracking multiple humans in surveillance videos

• Min-Cost flow problems: e.g. efficient network routing



Question??

• How does Total-Unimodulairty ensure Integer 
solution even for continuous linear 
program??



Answer: Total-Unimodularity -> Integer Solution

• Quadratic system: Cx = y

• Cramer’s rule: xj = |Cy
j|/|C|

• Cy
j = C with jth column replaced with y, (C1, C2, 

..Cj-1 ,y, Cj+1 ,..Cm)

• |Cy
j| = Σi (-1)i+j yi |Cij|

• Cij = C with ith row, jth column deleted  

• If |C| ∈ {-1,1} and Cij ∈ {-1,0,1} for all I and j, 
then x is integer => Total Unimodularity, 
Integer solution



Question??

• Why is the path cost function of KSP convex?



Answer: Edge costs can be negative and total path 
cost function is summation for successive shortest path 

costs that are monotonically increasing!

• At each iteration for ‘k’, we have:

• Therefore, the path cost function over ‘k’ is 
convex 


