
Modeling Multiple-object
Tracking as Constrained Flow

Optimization Problem

Introduction
• Multiple-object tracking

1. Detection Step: time-Independent
2. Linking Step: connect detections into most likely

trajectories: NP-Complete
• Problem: Linking detections into trajectories for multiple

visually-similar objects
• Solutions:
– Filtering, Greedy dynamic programming etc.: don’t

ensure global optimum
– Integer Linear Programming (ILP): Ensures global

optimum but NP-Complete

Multi-Object Tracking as Constrained
Flow optimization

• Divide scene into
! discrete locations.

• Model occupancy map
over time using directed
graph. "

#(!)

∀',) *
+:-∊/(+)

0+,-123 = 5-1 = *
6∊/(-)

0-,61

∀!,) *
-∊/(6)

06,-1 ≤ 1

∀!, ',) 06,-1 ≥ 0

Multi-Object Tracking as Constrained
Flow optimization

• Posterior probability of an
object:
– !: occupancy map (holding

variables!"#)
– ₣: set of feasible maps !.
– %&

#:random variable presenting
the true value of ' in time (.

–)# :signal

*
"∊,(./01234)

6./01234,"
= *

9:./;<=∊,(9)

69,./;<=
#

!∗ = arg!BCD∊₣ EF |% = !)#

HI&
= EF(J%&

= 1)#

– %&
as conditional independence

variable

!∗ = arg!BCD∊₣LMNO
#,&

EF J%&
= !)# = arg!BCD∊₣*

#,&

LMN EF J%&
= !)#

Integer Linear Programming (ILP)
Formulation

• !"
as conditional independence variable

• ILP System:
– Maximize ∑#," &'(

)*
+

,-)*
+ ∑.∊0(") 3",.

#

– Subject to ∀5, 6, 7 3",.
≥ 0

∀5, 7 :

.∊0(")

3",.
≤ 1

∀5, 7 :

.∊0 "

3",.
− :

>:"∊0(>)

3>,"
#-, ≤ 0

:

>∊0 @ABCDEF

3.,>
− :

":.∊0(")

3",.
#-, ≤ 0

G∗ = argGMNO∊₣&'(Q

#,"

RS T!"
= G U# = argGMNO∊₣:

#,"

&'(
V"
#

1 − V"
G"

#

From Integer to Continuous Linear Program

• Integer LP solution: NP-complete problem
• Continuous LP: Polynomial time average

complexity
• Relax the ‘integer’ condition to reduce

complexity
• Problem: continuous LP does not usually

converge to optimal solution of original ILP!!
• Solution: Total-unimodularity of constraint

matrix

Total Unimodularity

• Total-Unimodular Matrix:
– all square sub-matrices has determinants 1,0 or -1

or
– For every subset of rows R Í {1,2…,m}, there is a

partition of rows such that R = R1 U R2, R1 ∩ R2 = Ø
"j = 1,2,…n (Σi∈R1 aij - Σi∈R2 aij)∈ {-1,0,1}

• Ensures integer solution even for continuous
LP

• Constraint matrix is Total-Unimodular

Total-Unimodularity of Constraint Matrix

• Constraint matrix:
– arrange columns in
ascending order of
time; each column
represent one location
at one time instant

• Rows:
– divided into 2 parts
based on
conditions

Total-Unimodularity of Constraint Matrix

• Only 3 rows can be non-zero (∈ {-1,0,1}) for one
column

• Eight cases

for partitions
R1 = R∩U1,R2 = R∩U2 for any R Í {1,2…,m}

• Every possibility satisfies total-unimodualrity
but 3rd –Problem

• Solution: Move non-zero row of R1 to R2 for 3rd

case

K-shortest paths (KSP) formulation

• Why?
– Relaxed ILP solution polynomial but practically not

efficient!
– Need real time efficiency for practical problems

• KSP:
– Given a graph G(V,E), compute a set of k shortest

paths {p1,p2,…..,pk} such that the total cost is
minimum

KSP formulation
– Problem constraints:

• Node disjoint
• Node simple

Three node-simple shortest paths: 6,20,21
Three non-simple shortest paths (allowing loops ‘aba’ &
‘ded’):6,8,10

KSP formulation

• ILP to KSP

– Maximizing flow in ILP is equivalent to minimizing

path cost function in KSP (just negate the ILP

objective function)

– Any path between source and sink nodes with

arbitrary ‘k’ is in the set of feasible solutions of ILP

– The value of ‘k’ that achieves min. cost is the one

that maximizes the flow in ILP solution

KSP formulation

• Optimality of ‘k’ is guaranteed due to convexity of
the path cost function

• The shortest paths at each iteration are
computed by Dijkstra’s algorithm
– Complexity?
• O(k(m+nlogn))

Applications

• 2D segmentation to 3D segmentation:

– 2D: shortest path problem; Dijkstra’s algorithm

– 3D: minimal weight surface problem

• can be presented as instance of ILP with totally

unimodular constraint matrix

• Optimization by LP:

– LP provides an upper/ lower bound for original ILP

– Branch-and-bound: optimization of ILP through recursive

LP solution.

• Tracking multiple humans in surveillance videos

• Min-Cost flow problems: e.g. efficient network routing

Question??

• How does Total-Unimodulairty ensure Integer
solution even for continuous linear
program??

Answer: Total-Unimodularity -> Integer Solution

• Quadratic system: Cx = y

• Cramer’s rule: xj = |Cy
j|/|C|

• Cy
j = C with jth column replaced with y, (C1, C2,

..Cj-1 ,y, Cj+1 ,..Cm)

• |Cy
j| = Σi (-1)i+j yi |Cij|

• Cij = C with ith row, jth column deleted

• If |C| ∈ {-1,1} and Cij ∈ {-1,0,1} for all I and j,
then x is integer => Total Unimodularity,
Integer solution

Question??

• Why is the path cost function of KSP convex?

Answer: Edge costs can be negative and total path
cost function is summation for successive shortest path

costs that are monotonically increasing!

• At each iteration for ‘k’, we have:

• Therefore, the path cost function over ‘k’ is
convex

