Modeling Multiple-object
Tracking as Constrained Flow
Optimization Problem

Introduction

 Multiple-object tracking
1. Detection Step: time-Independent

2. Linking Step: connect detections into most likely
trajectories: NP-Complete

: Linking detections into trajectories for multiple
visually-similar objects
e Solutions:
— Filtering, Greedy dynamic programming etc.: don’t
ensure global optimum

— Integer Linear Programming (ILP): Ensures global
optimum but NP-Complete

Multi-Object Tracking as Constrained
Flow optimization

* Divide scene into * Model occupancy map
k discrete locations. over time using directed
K graph.
® O O
o o o Nk - fhaeno

Multi-Object Tracking as Constrained
Flow optimization

e Posterior probability of an
object:

— m: occupancy map (holding
variables m;)

— ¥F: set of feasible maps m.

— M/ :random variable presenting
the true value of i in time t.

— It :signal

w

: 0@
=1 ~
a 's‘\. 4

Position ‘

(¥

fvtsource»j . z fk't'vsink plt = P\(Mlt = 1|It)

JEN (Wsource) k:VsinkeN (k) .
m* = argmax,,esP(M = m|It)

— M;{ as conditional independence
variable

m* = argmaxpelog nﬁ(Mit =m|l*) = argmaxmegz: logP(Mf = m|I*)
ti o

Integer Linear Programming (ILP)
Formulation

« M/ asconditional independence variable

t
m* = argmaxperlog | | P(M] = m|It) = argmaxmeFZ <l0g] fl t) mf
LA = Pi
* |LP System:

t
P Pi
— Maximize Zt,i (lOg 1—pl-t> ZjEN(i) ff]
— Subjectto Vi, j,t f =0

Vi, t z fi <1

&)
vie Y fh=) fit<o
JEN() k:ieN (k)

t t—1
fi — z fij =0
keN (Vsource) i:JeN (i)

From Integer to Continuous Linear Program

* Integer LP solution: NP-complete problem

e Continuous LP: Polynomial time average
complexity

* Relax the ‘integer’ condition to reduce
complexity

continuous LP does not usually
converge to optimal solution of original ILP!!

Total-unimodularity of constraint
matrix

Total Unimodularity

* Total-Unimodular Matrix:
— all square sub-matrices has determinants 1,0 or -1
or

— For every subset of rows R < {1,2...,m}, thereis a
partition of rows such that R=R;UR,, R;NR, =@

Vi-=12,.n (Zicr1 3j- Zier2 ;) € {-1,0,1}

* Ensures integer solution even for continuous
LP

e Constraint matrix is Total-Unimodular

Total-Unimodularity of Constraint Matrix

* Constraint matrix:
— arrange columns in
ascending order of
time; each column
represent one location

at one time instant

Rows:

— divided into 2 parts

based on Fiis {Dienwy i <1}, ¥, i
conditions 2=) TN)f Zhem,\)fk L <0}, Vt,i

ZAL ke/\z(k)fkt <0

Total-Unimodularity of Constraint Matrix

* Only 3 rows can be non-zero (e{ 1,0,1}) for one
column e 041 '

Eight cases

for partitions
R;=RNU,R, = Rr\U2 for any R c1{1,2...,.m}

Every possibility satisfies total-unimodualrity
but 3 —

Move non-zero row of R, to R, for 3™
case

K-shortest paths (KSP) formulation

e Why?
— Relaxed ILP solution polynomial but practically not

efficient!
— Need real time efficiency for practical problems

e KSP:

— Given a graph G(V,E), compute a set of k shortest
paths {p1,p2,.....,pk} such that the total cost is
minimum

KSP formulation
— Problem constraints:
* Node disjoint
* Node simple

Three node-simple shortest paths: 6,20,21

Three non-simple shortest paths (allowing loops ‘aba’ &
‘ded’):6,8,10

KSP formulation
e ILP to KSP

— Maximizing flow in ILP is equivalent to minimizing
path cost function in KSP (just negate the ILP
objective function)

arbitrary ‘k’ is in the set of feasible solutions of ILP

— The value of ‘k’ that achieves min. cost is the one
that maximizes the flow in ILP solution

KSP formulation

* Optimality of ‘k’ is guaranteed due to convexity of
the path cost function

z
cost(Py) = cost(p;)

1=1

* The shortest paths at each iteration are
computed by Dijkstra’s algorithm
— Complexity?
e O(k(m+nlogn))

Applications

2D segmentation to 3D segmentation:
— 2D: shortest path problem; Dijkstra’s algorithm
— 3D: minimal weight surface problem

e can be presented as instance of ILP with totally
unimodular constraint matrix

Optimization by LP:
— LP provides an upper/ lower bound for original ILP

— Branch-and-bound: optimization of ILP through recursive
LP solution.

Tracking multiple humans in surveillance videos
Min-Cost flow problems: e.g. efficient network routing

* How does Total-Unimodulairty ensure Integer
solution even for continuous linear
program??

Total-Unimodularity -> Integer Solution

Quadratic system: Cx =y

Cramer’s rule: x; = |C/J|/|C]

C,) = Cwith j* column replaced with y, (C,, C,,
Ci1 ¥ G -G

|Cyj| = Z; (-1)"y; |Cij|

C;; = C with i*" row, j*" column deleted

If [C| €{-1,1}and C; € {-1,0,1} for all I and j,
then x is integer =>

* Why is the path cost function of KSP convex?

Edge costs can be negative and total path
cost function is summation for successive shortest path
costs that are monotonically increasing!

e At each iteration for ‘k’, we have:

cost(pry1) = cost(p]) Vi

cost(Py) =) cost(p;)

1=1

* Therefore, the path cost function over ‘k’ is

convex cost(Pp. ;) = cost(Pp.) < cost(Pr.)

