
Assignment#3 Key

1. Show prfs are closed under three-way
mutual induction
Three-way mutual induction means that each induction step after
calculating the base is computed using the previous value of the other
function.

The formal hypothesis is:
Assume g1, g2, g3, h1, h2, and h3 are already known to be prf, then so
are f1, f2, and f3, where
f1(x,0) = g1(x); f1(x,y+1) = h1(f2(x,y),f3(x,y));
f2(x,0) = g2(x); f2(x,y+1) = h2(f3(x,y),f1(x,y))
f3(x,0) = g3(x); f3(x,y+1) = h3(f1(x,y),f2(x,y))

Proof is by construction

2/24/2020 © UCF CS 2

Three-Way Mutual Induction (Co-Recursion)

F will do all three computations in “parallel”

F(x,0) = <g1(x), g2(x), g3(x)> // bases for all three

F(x, y+1) = < h1(<F(x,y)>2,<F(x,y)>3), h2(<F(x,y)>3,<F(x,y)>1), h3(<F(x,y)>1,<F(x,y)>2) >

F produces triples containing the values of f1, f2, and f3, in its first, second and third, component,
respectively. The above shows F is a prf.

f1, f2, and f3 are then defined from F as follows:

f1(x,y) = <F(x,y)>1

f2(x,y) = <F(x,y)>2

f3(x,y) = <F(x,y)>3

This shows that f1, f2, and f3 are also prf’s, as was desired.

2/24/2020 © UCF CS 3

2. Show every non-empty, re set is the range
of a prf
Let S be an arbitrary non-empty, re set. Furthermore, let S be the range
of some partial recursive function fs. Show that S is the range of some
primitive recursive function, call it hs. First, since S is non-empty, it
contains some element, call this element a.

hs(<x,t>) = STP(fs, x, t) * VALUE(fs, x, t) + (1-STP(fs, x, t)) * a

Note that hs is a prf since we defined it from just STP, VALUE, multiply,
addition, and limited subtraction, all of which we previously showed
were prf’s. Also, this is very close to the prf we already showed on Page
155 of Computability Notes where we started with a semi-decision
procedure rather than an enumerating partial recursive function.

Discussion of #2 (the actual proof it works)

All and only the elements in S will be enumerated by fs, which mean
that, if y ∈ S, then ∃x such that fS(x) = y. But that y ∈ S iff exists a x and
t such that STP(fs, x, t) and VALUE(fs, x, t) = y. hs enumerates all such
values y in the function below. To make it an algorithm, we handle the
case where ~STP(fs, x, t) by having hs enumerate a, a value whose
existence we know by the assumption that S≠∅.

hs(<x,t>) = STP(fs, x, t) * VALUE(fs, x, t) + (1-STP(fs, x, t)) * a

This analysis shows that hs enumerates all and only those values in S.

