
Assignment#3 Key



1. Show prfs are closed under three-way 
mutual induction
Three-way mutual induction means that each induction step after 
calculating the base is computed using the previous value of the other 
function.

The formal hypothesis is:
Assume g1, g2, g3, h1, h2, and h3 are already known to be prf, then so 
are f1, f2, and f3, where
f1(x,0) = g1(x); f1(x,y+1) = h1(f2(x,y),f3(x,y));
f2(x,0) = g2(x); f2(x,y+1) = h2(f3(x,y),f1(x,y))
f3(x,0) = g3(x); f3(x,y+1) = h3(f1(x,y),f2(x,y))

Proof is by construction
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Three-Way Mutual Induction (Co-Recursion)

F will do all three computations in “parallel”

F(x,0) = <g1(x), g2(x), g3(x)> // bases for all three

F(x, y+1) = < h1(<F(x,y)>2,<F(x,y)>3), h2(<F(x,y)>3,<F(x,y)>1), h3(<F(x,y)>1,<F(x,y)>2) >

F produces triples containing the values of f1, f2, and f3, in its first, second and third, component, 
respectively. The above shows F is a prf. 

f1, f2, and f3 are then defined from F as follows: 

f1(x,y) = <F(x,y)>1

f2(x,y) = <F(x,y)>2

f3(x,y) = <F(x,y)>3

This shows that f1, f2, and f3 are also prf’s, as was desired.
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2. Show every non-empty, re set is the range 
of a prf
Let S be an arbitrary non-empty, re set. Furthermore, let S be the range 
of some partial recursive function fs. Show that S is the range of some 
primitive recursive function, call it hs. First, since S is non-empty, it 
contains some element, call this element a. 

hs(<x,t>) = STP(fs, x, t ) * VALUE(fs, x, t ) + (1-STP(fs, x, t )) * a

Note that hs is a prf since we defined it from just STP, VALUE, multiply, 
addition, and limited subtraction, all of which we previously showed 
were prf’s. Also, this is very close to the prf we already showed on Page 
155 of Computability Notes where we started with a semi-decision 
procedure rather than an enumerating partial recursive function.



Discussion of #2 (the actual proof it works)

All and only the elements in S will be enumerated by fs, which mean 
that, if y ∈ S, then ∃x such that fS(x) = y. But that y ∈ S iff exists a x and 
t such that STP(fs, x, t ) and VALUE(fs, x, t ) = y. hs enumerates all such 
values y in the function below. To make it an algorithm, we handle the 
case where ~STP(fs, x, t ) by having hs enumerate a, a value whose 
existence we know by the assumption that S≠∅.  

hs(<x,t>) = STP(fs, x, t ) * VALUE(fs, x, t ) + (1-STP(fs, x, t )) * a

This analysis shows that hs enumerates all and only those values in S.


