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Quantum superiority for verifying NP-complete problems with
linear optics
Juan Miguel Arrazola1, Eleni Diamanti 2 and Iordanis Kerenidis1,3

Demonstrating quantum superiority for some computational task will be a milestone for quantum technologies and would show
that computational advantages are possible not only with a universal quantum computer but with simpler physical devices. Linear
optics is such a simpler but powerful platform where classically-hard information processing tasks, such as Boson Sampling, can be
in principle implemented. In this work, we study a fundamentally different type of computational task to achieve quantum
superiority using linear optics, namely the task of verifying NP-complete problems. We focus on a protocol by Aaronson et al. (2008)
that uses quantum proofs for verification. We show that the proof states can be implemented in terms of a single photon in an
equal superposition over many optical modes. Similarly, the tests can be performed using linear-optical transformations consisting
of a few operations: a global permutation of all modes, simple interferometers acting on at most four modes, and measurement
using single-photon detectors. We also show that the protocol can tolerate experimental imperfections.
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INTRODUCTION
Quantum mechanics offers unprecedented possibilities to trans-
mit and process information that have the potential to
revolutionize information and communication technologies. While
many such advantages are well understood theoretically, building
a large-scale universal quantum computer or a fully-connected
quantum internet remain formidable tasks for the not-so-near
future. Towards these goals, it is important and worthwhile to
identify examples where quantum superiority can be achieved
using physical systems realizable with current or emerging
technologies.
It has been fruitful to focus on specific physical systems and

search for tasks that are well suited to be deployed in such
platforms and where a quantum advantage can be demonstrated.
A prime example of this is linear optics, namely the set of
transformations on optical modes which preserve the total photon
number. Linear optics can be used to perform universal quantum
computing,1–4 increase the precision of estimation in metrology5–7

and run efficient quantum protocols in communication complex-
ity.8–12 On the road to achieving universal quantum computing, it
has also become interesting to study specific tasks, notably Boson
Sampling,13–18 where a computational advantage may be
demonstrated by a linear optics scheme that is simpler to
implement than a universal quantum computer.
Boson Sampling is a canonical example of a task suitable for

quantum superiority. There, the task is to sample from the
distribution that arises when a number of photons starting in
some optical modes go through a circuit composed of beams-
plitters and phase-shifters. While this task is in theory possible to
perform by just running the corresponding linear optics circuit, it
is related to some computationally hard problems in classical
computation. There are other proposals for showing a quantum
advantage in a computational context, including, for example,

sparse commuting quantum circuits (IQP), where a randomly
chosen IQP circuit is applied to a square lattice of N qubits.19–24

Note that both above mentioned examples perform circuits of
depth at least

ffiffiffiffi
N

p
.

The above proposals, however, present some drawbacks. First,
the real difficulty in performing these tasks in a classical computer
remains unclear, since it is based on unproven conjectures. In fact,
recent results25,26 provide much faster classical algorithms for
Boson Sampling, implying that quantum superiority may need a
system with a very large number of photons and optical modes.
Second, while in theory we know what the linear optics system is
supposed to do, one cannot verify whether the physical
implementation actually works correctly or not. In other words,
we have no means of testing if our linear optics system works as it
should. Third, Boson Sampling or random IQP circuits do not
correspond to problems required for real-world applications.
Hence, finding an interesting computational task whose classical
hardness is well established and which can be solved efficiently
and in a verifiable way by a linear optics system remains a
challenge.
Here, we deviate considerably from all previous examples and

describe a fundamentally different type of computational task to
achieve quantum superiority using linear optics. More precisely,
we consider the task of verifying NP-complete problems, for
example verifying whether a boolean formula is satisfiable or not.
In this setting, an all powerful but untrusted prover—usually

denoted as Merlin—gives a witness of the solution, for example
the truth assignment that satisfies the boolean formula, to an
honest but computationally bounded verifier—referred to as
Arthur—who checks the validity of the witness. By definition of
the complexity class NP, if a witness exists, it is always possible for
Merlin to provide a proof to Arthur who can verify it in polynomial
time; for example Merlin can just provide the truth assignment
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that satisfies the boolean formula. If no witness exists, i.e. if the
formula is unsatisfiable, then Arthur will always reject no matter
what Merlin sends to him. But what happens if we restrict the
amount of information that can be revealed to Arthur by these
proofs? Can Arthur still verify if the formula is satisfied when he
receives a proof that does not reveal much information about the
satisfying truth assignment? In fact, if the revealed information is
sufficiently small, it is in general no longer possible for Arthur to
perform an efficient verification. Thus, in the case of verification
where the revealed information is restricted, it might in principle
be possible that quantum proofs can be verified more efficiently
than classical ones, giving rise to a computational advantage.
Indeed, it was shown in ref. 27 that for any NP-complete problem
of size N, Merlin can send Oð ffiffiffiffi

N
p Þ quantum proofs each revealing

O(log N) bits of information, so that, under the promise that the
proofs are not entangled with each other, they can be verified by
Arthur in polynomial time on a quantum computer. On the other
hand, in the classical case, we will see that any verification
algorithm acting on proofs that reveal at most Oð ffiffiffiffi

N
p

logNÞ bits of
information—as in the quantum protocol—must run in exponen-
tial time.
In this work, we show that the verification protocol of ref. 27 for

NP-complete problems can be implemented using simple linear-
optical circuits and photonic sources. We assume, of course, that
the prover has access to a classical witness when it exists. The
proof states are implemented in terms of a single photon in an
equal superposition over many optical modes, while the linear-
optical transformations employed in the verification can be
decomposed in terms of two main operations: a global permuta-
tion of all modes, and simple interferometers acting on at most
four modes. As a consequence, the experimental requirements are
significantly less stringent than those needed for linear-optics
quantum computing or for performing arbitrary linear optics
transformations. Our results illustrate another example of a
computational quantum advantage in a linear optics setting.
Moreover, we show that the protocol can tolerate experimental
imperfections such as limited visibility and losses.
Let us make a few remarks about our result. First, the classical

hardness of the problem is based on a well-established and widely
believed conjecture, the exponential time hypothesis,28 namely
that the best classical algorithm for NP runs in time 2δN for a
constant 0 < δ ≤ 1. In fact, the strong exponential time hypoth-
esis29 claims that δ= 1. Second, the validity of the quantum circuit
can be easily verified by running it on instances for which we
already know the answer. Third, there is a vast number of NP-
complete problems that arise naturally in all sciences and being
able to verify them is an important task. Restricting the
information leaked from the proofs is also a subject that has
been extensively studied in the area of Zero Knowledge proofs30

and it is relevant in cases where privacy is important. The fact that
one can perform this verification with a simple linear optics
system provides more evidence of the power and versatility of
linear optics. Last, we note that our task is not solved by a typical
quantum circuit, but involves an interaction between two parties;
hence the quantum superiority is not for solving a computational
task but for verifying efficiently the solution of a computationally
hard problem.

RESULTS
Quantum verification of 2-out-of-4 SAT
We first review the verification protocol for the NP-complete 2-
out-of-4 satisfiability problem (2-out-of-4 SAT) of ref. 27, which
consists of three tests that Arthur must be able to perform. By
definition of NP, all other problems in the class can be reduced to
2-out-of-4 SAT with only a polynomial overhead and then verified.
We will then describe how the proof states can be implemented

and how each of these tests is carried out in a linear-optical
setting.
In 2-out-of-4 SAT, we are given a formula over N binary variables

consisting of a conjunction of clauses, each of which contains
exactly four variables. The clauses are satisfied if and only if exactly
two variables are equal to 1, i.e. if xi+ xj+ xk+ xl= 2 for a clause
relating the variables xi, xj, xk and xl. The problem is to decide
whether there exists an assignment x= x1x2…xN such that the
formula is satisfied. We focus on the case in which the 2-out-of-4
SAT instance meets two conditions. First, the instance must be
balanced, meaning that every variable occurs in at most a
constant number of clauses, and furthermore, the instance must
be a PCP, i.e. either it is satisfiable or else a fraction of at most 1−
ε of the clauses should be satisfiable, for some ε > 0. These
conditions can always be guaranteed when reducing the 3-
satisfiability (3SAT) problem to 2-out-of-4 SAT,27,31 and therefore
any NP-complete problem can be reduced to an instance of 2-out-
of-4 SAT satisfying these restrictions by first reducing it to an
instance of 3SAT.
In a valid verification protocol, if there exists a satisfying

assignment for the instance, then a correct proof is accepted by
Arthur with high probability—typically larger than 2/3. This
property is called completeness. Similarly, if there is no satisfying
assignment for the instance, then any proof is rejected by Arthur
with high probability—again, typically larger than 2/3. This
property is known as soundness. In ref. 27, it was shown that
there exists a quantum verification protocol for 2-out-of-4 SAT that
is both sound and complete. In the following, we describe how
this protocol can be carried out in a linear-optical setting.

State preparation
Since we are verifying NP-complete problems, we have to assume
that the prover has access to the classical witness, otherwise there
would be an efficient algorithm for NP, which is highly unlikely.
Then, the first ingredient in the verification protocol is the
construction of the quantum proofs. Merlin sends Arthur K proofs
ψxj i1� ψxj i2�¼ � ψxj iK , with K ¼ Oð ffiffiffiffi

N
p Þ. Each of these proofs is

an N-dimensional state of the form

ψxj i ¼ 1ffiffiffiffi
N

p
XN
i¼1

ð�1Þxi ij i; (1)

where x is the string satisfying the instance of the 2-out-of-4 SAT
problem. We henceforth refer to any state of this form as a proper
state. Note that, using results for satisfiability solvers as outlined
for instance in ref. 32, in order to verify the correctness of our
circuit we can choose pairs of instances and solutions that can be
efficiently generated but are still hard for a classical Arthur to
solve.
Proper states are mathematically equivalent to a state of

log2Nd e qubits and therefore it can only reveal at most log2Nd e
bits of information about x. In a linear-optical setting, this state can
be implemented in terms of a single photon in a superposition
over N different modes as

ψxj i ¼ 1ffiffiffiffi
N

p
XN
i¼1

ð�1Þxi ayi 0j i; (2)

where ayi is the creation operator for the i-th mode.
The soundness proofs of ref. 27 assume that Merlin can only

send states in a Hilbert space of dimension N, which in this case
corresponds to the single-photon subspace of the N modes. To
ensure soundness of the verification, Arthur simply rejects the
proof if he observes more than one photon in the states he
measures. Indeed, in this case, for any strategy in which Merlin
sends states containing n photons with probability P(n), the
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acceptance probability by Arthur obeys

PðacceptÞ ¼ P1
n¼0

PðacceptjnÞPðnÞ
¼ Pðacceptj1ÞPð1Þ

(3)

since P (accept|n)= 0 for any n ≠ 1. This probability is maximized
for P(1)= 1 and therefore we ensure that Merlin’s optimal strategy
employs single photon states, in which case the soundness proof
of ref. 27 is valid.
It is also required that the states are not entangled with each

other. There is no known general method of detecting this
entanglement27 and therefore Arthur cannot enforce this condi-
tion through a test in his verification. We thus view this
unentanglement condition as a promise on the form of the
proofs produced by Merlin. Note that this requirement can be
enforced if we assume that Arthur interacts with

ffiffiffiffi
N

p
non-

communicating provers that do not share any entanglement.27 In
fact, the unentanglement condition can be enforced even if there
are just two non-communicating provers that do not share any
entanglement.33

One way for Merlin to create the state ψxj i is to start with an
initial state of the form

ψj i ¼ 1ffiffiffiffi
N

p
XN
i¼1

ayi 0j i; (4)

and then have N phase-shifters acting on each of the N modes
which apply a phase-shift of −1 only when the corresponding bit
of the classical witness x is 1. This allows Merlin to perform the
transformation ψj i ! ψxj i as desired.
Equal superposition states of the form of Eq. (4) can be created

by sending a single photon through a cascade of beamsplitters
(see Fig. 1). An equal superposition state over N modes can be
implemented in this way using O(log N) beamsplitters resulting in
a linear optics circuit of depth O(log N). Such circuits have been
implemented for small N.34 The output modes are then sent
through phase-shifters to create the proof states.
Once the proof states have been prepared, Arthur performs his

verification which employs three tests: the satisfiability, uniformity,
and symmetry tests. Arthur selects one of the three tests uniformly
at random and decides whether to accept or reject the proof
depending on the specific criterion of each test. We further
describe how these tests can be performed in a linear optics
setting.

Satisfiability test
In the satisfiability test, Arthur checks that the assignment x which
is encoded in the quantum proofs satisfies the 2-out-of-4 SAT
instance. To do so, Arthur divides all the clauses into a constant
number of blocks B1, B2,…, Bs in such a way that each block
contains at least Ω(N) clauses and in each block, no variable
appears more than once. This partition into different blocks is
guaranteed to exist because the instance is balanced. Arthur
selects a block Br uniformly at random from this set. He then picks
a state ψxj i at random from the K copies and performs a
permutation ΠSat of the modes that groups them into the clauses
corresponding to the selected block Br. After the permutation, for
every clause of the form xi+ j+ xk+ xl, the corresponding modes
ai, aj, ak, al have been placed in sequence beside each other. For
each such set of four modes, Arthur interferes them in the circuit
shown in Fig. 2.
The effect of this interferometer is to perform a mode

transformation between the input modes ai, aj, ak, al and the
output modes a0i ; a

0
j ; a

0
k ; a

0
l given by

ai ! 1
2 a0i ;þa0j ;þa0k ;þa0l
� �

aj ! 1
2 a0i ;þa0j ;�a0k ;�a0l
� �

ak ! 1
2 a0i ;�a0j ;þa0k ;�a0l
� �

al ! 1
2 a0i ;�a0j ;�a0k;þa0l
� �

:

For a single-photon proper state, as in Eq. (2), this relation
implies that the probability of observing a photon in each of the
output modes is given by

Pa0i ¼ 1
4N ð�1Þxi þ ð�1Þxj þ ð�1Þxk þ ð�1Þxl½ �2

Pa0j ¼ 1
4N ð�1Þxi þ ð�1Þxj � ð�1Þxk � ð�1Þxl½ �2

Pa0k ¼ 1
4N ð�1Þxi � ð�1Þxj þ ð�1Þxk � ð�1Þxl½ �2

Pa0l ¼ 1
4N ð�1Þxi � ð�1Þxj � ð�1Þxk þ ð�1Þxl½ �2:

Whenever the clause is satisfied, i.e. when xi+ xj+ xk+ xl= 2, a
photon will never be detected in mode a0i . We refer to this mode
as the satisfiability mode. If the clause is not satisfied, the
probability of observing a photon in the satisfiability mode is
twice the one in the other three modes.
Arthur’s criterion for acceptance is the following: he accepts the

proof if and only if exactly one photon is detected and it is not
detected in a satisfiability mode. This is illustrated in Fig. 3. In the
honest Merlin case, the test will pass with certainty while, as
shown in ref. 27, if x is not a satisfying assignment of the problem,
a constant fraction of the clauses will be unsatisfied, leading to an
overall constant probability of rejecting the proof, since there are
Ω(N) clauses in each block. Thus, the test has perfect completeness
and constant soundness.

Fig. 1 State preparation circuit. Circuit for creating the proof states
used in the verification protocol, illustrated for N= 8. A single
photon passes through a cascade of beamsplitters to create an
equal superposition state over all the output modes, which are then
subject to a phase-shift which depends on the string x

Fig. 2 Interferometer for testing satisfiability of 2-out-of-4 SAT. In
the ideal case, the detector for mode a0i will never detect a photon if
the clause is satisfied and there will be one photon detected in one
of the other three modes with certainty. If the clause is not satisfied,
there is at least a probability Ω(1/N) of observing a photon in this
mode
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Uniformity test
Arthur’s satisfiability test functions correctly whenever the states
sent by Merlin are proper states, i.e. of the form of Eq. (2). Arthur
requires an additional test to certify that the states he receives are
proper states. To perform this uniformity test, Arthur first selects a
random perfect matching on the set {1,2,…,N}. A perfect matching
is a partitioning of the set into N/2 disjoint edges {(i1, j1), (i2, j2),…,
(iN/2, jN/2)}. For instance, {(1, 3),(2, 5),(4, 6)} is a possible matching on
the set {1, 2, 3, 4, 5, 6}. For each of the K states he receives, Arthur
performs a permutation of the modes such that all modes are
paired according to the edges (i, j) in the matching. After the
permutation, for every edge he interferes the corresponding pair
of modes in a 50:50 beam-splitter and checks for photons in the
outputs. The beam-splitter performs the transformation

ai ! 1ffiffiffi
2

p a0i þ a0j
� �

; aj ! 1ffiffiffi
2

p a0i � a0j
� �

:

which means that, for a proper state, the probabilities of observing
a photon in each output are

Pa0i ¼ 1
2N ð�1Þxi þ ð�1Þxj½ �2

Pa0j ¼ 1
2N ð�1Þxi � ð�1Þxj½ �2:

Thus, whenever a photon is detected in a pair of modes ða0i ; a0jÞ,
Arthur learns the value of xi ⊕ xj. This allows a labelling of all
possible outcomes of this measurement as (i, j, b), with b= xi ⊕ xj.
Arthur’s uniformity test is the following: he performs the

measurement described above on all K copies of the state and he
accepts the proof only if there are no incompatible outcomes of
the form (i, j, 0) and (i, j, 1). As before, he also requires that there is
exactly one photon detected in each state and he rejects the proof
if there are no collisions, i.e. photons detected for the same edge
(i,j) in different copies. The test is illustrated in Fig. 4.
By choosing K ¼ Oð ffiffiffiffi

N
p Þ, it follows from the generalized

birthday paradox35 that collisions will occur with high probability.
In the honest case, incompatible outcomes never occur and
therefore the test has constant completeness where rejection of a
correct proof only occurs if there are no collisions. On the other
hand, if the states are far from a proper state, it was shown in
ref. 27 that the test has a constant probability of rejecting the proof
for any other input state and thus has constant soundness.

Symmetry test
If Arthur performs a satisfiability and a uniformity test, the only
room left for Merlin to deviate from honest behaviour is to send
different proper states in each of the K systems. To protect against
this, Arthur needs to check that all states are equal. He can achieve
this by using a SWAP test: a two-outcome measurement on a pair
of states with the property that the probability of obtaining each
outcome depends on the inner product of the states.
To perform the test in a linear optics setting, Arthur randomly

selects two out of the K states and performs a permutation that
pairs the i-th mode of the first state with the i-th mode of the
second state for all i= 1, 2,…, N. Afterwards, each pair of modes is
sent through a 50:50 beamsplitter. The output modes of each
beam-splitter can be labelled as the “up” mode and the “down”
mode. The interference of the two photons corresponds to a
generalized version of the Hong-Ou-Mandel effect36 and indeed it
was shown in ref. 37 that for any two proper input states ψj i and
ϕj i as in Eq. (2), the probability of observing a coincidence, i.e. a
photon in an “up” mode and the other photon in a “down” mode,
is equal to (1−|〈ψ|ϕ〉|2)/2, the same probability of a SWAP test
resulting in a ‘different state’ outcome. In particular, this implies
that coincidences never occur if the states are equal.
This property allows Arthur to perform the following test for

symmetry: he accepts the proof if and only if exactly two photons
are detected and there are no coincidences. Note that the SWAP
test is a crucial component in quantum fingerprinting8,38 and its
implementation in a linear-optical setting has already been
demonstrated in recent quantum fingerprinting experiments.10,11

The symmetry test is illustrated in Fig. 5.
In the honest case, the test passes with certainty and therefore

it has perfect completeness, while it was shown in ref. 27 that the
test also has constant soundness. Overall, by selecting randomly
between these three tests, Arthur can verify Merlin’s proof with
perfect completeness and constant soundness, as required by a
verification protocol.
For the satisfiability and symmetry tests described above, the

verifier needs to randomly pick one or a pair of the K proofs on
which to apply the test. Note that the verifier can pick this before
the proofs arrive. One way of doing this is a K × K block switch that
takes as input the K proofs, puts two random ones as the first two
and leaves the remaining unchanged.
In summary, to perform the verification of 2-out-of-4 SAT for an

instance of size N, Arthur needs the following components when
using spatial modes:

1. 1. K ¼ Oð ffiffiffiffi
N

p Þ single photon sources.
2. K fixed cascades of beamsplitters of depth O(log N), each

preparing a single photon in an equal superposition over N
modes.

Fig. 3 Linear-optical circuit for the satisfiability test. Arthur selects a
block Br at random and performs a permutation ΠSat of the
incoming modes that groups them according to the clauses in the
block. The modes of each clause are then sent through a four-mode
interferometer and Arthur checks for photons in the outputs. Modes
not in the block are not interfered, but detection still takes place. He
accepts the proof if at most one photon is detected and it does not
happen in any of the satisfiability modes, which are depicted in red

Fig. 4 Linear-optical circuit for the uniformity test for one state.
Arthur selects a matching at random and performs a permutation
ΠM of the N modes that pairs them according to the edges of the
matching. The pairs of modes interfere in 50:50 beamsplitters and
Arthur checks for photons in the outputs. This circuit is used for
each of the K states and Arthur rejects the proof if he observes
incompatible outcomes of the form (i, j, 0) and (i, j, 1) across different
states
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3. KN phase-shifters, one for each mode.
4. One K × K block switch that permutes groups of N modes.
5. K N × N switches that perform arbitrary permutations of N

modes.
6. One 2N × 2N switch that performs an arbitrary permutation

of 2N modes.
7. O(N) four-mode interferometers for the satisfiability test.
8. O(KN) two-mode interferometers for the uniformity and

symmetry tests. This includes the photon number resolving
detectors.

A complete setup for the verification protocol is illustrated in
Fig. 6. Note that by separating the modes in time it would be
possible to use a constant number of interferometers and
detectors, greatly reducing the number of required components.
It is also possible to optimize the required resources by using
delay circuits to suitably direct the selected proofs depending on
the chosen test.
In the next section, we calculate the running time of this

quantum verification protocol showing that it runs in polynomial
time. Note also that only Oð ffiffiffiffi

N
p

logNÞ bits of information are
revealed to the verifier about the witness x. Then, we show that
any classical algorithm using proofs that reveal only Oð ffiffiffiffi

N
p

logNÞ
bits of information requires exponential time under the only
assumption that there are no classical algorithms for NP-complete
problems running in time less than 2O(N).

Running time of the verification algorithm
The quantum verification procedure can be decomposed into
three main steps: the preparation by the prover of the quantum
states that correspond to the classical witness, a permutation
circuit that the verifier uses to rearrange the optical modes
according to his random choices, and interferometers running on
at most four modes each. As discussed before, given knowledge of

the classical witness x, each proof state can be prepared using a
simple cascade of beamsplitters of size O(N) and of depth O(log N)
as well as phase-shifters, while the interference circuits for the
tests have constant depth and O(N) size. Let us look a bit more
carefully at the permutation circuit which just spatially rearranges
the modes. First, notice that all the random choices of the verifier
can be made before he receives the proofs, so the entire
permutation circuit can be prepared in advance. For the
satisfiability and uniformity tests, we need a permutation module
acting on N modes; while in the symmetry test, the permutation
acts on 2N modes. Such permutations can be performed using a
universal circuit of size O(N2),39,40 but there also exist standard
microelectromechanical system switches (MEMS) that perform
such permutations using only O(N) adjustable mirrors. MEMS
switches have been demonstrated to work for up to 1100
modes.41 We also need a permutation to choose one or two of the
K proofs for the satisfiability and symmetry tests, which can also
be performed by a switch of size OðKÞ ¼ Oð ffiffiffiffi

N
p Þ. Hence, if the

proofs arrive at the same time in different spatial modes, the size
of the quantum circuit is O(KN) (dominated by the state
preparation).
For the running time of the quantum verification algorithm, let

us consider first the case of all proofs arriving at the same time in
different spatial modes. Then, we divide the algorithm into two
steps: the preprocessing of the permutation circuit, which takes
time O(N); and the quantum execution of the algorithm that takes
time O(logN), which is the depth of the quantum circuit. Note that,
using standard Chernhoff bound arguments, the verification error
can be reduced to any small constant by simply repeating the
protocol a constant number of times. In the case each proof
comes sequentially, the running time of the quantum execution is
also O(N) since we possibly need to wait until the last proof.
The states employed are each of dimension N, so the global

state consisting of all copies has dimension logNK ¼ γ
ffiffiffiffi
N

p
logN,

for some small constant γ. The dimension of this state places an
upper bound on the information that it contains about the
classical witness x. In particular, for any proof state ρ, we have that

Fig. 5 Linear-optical circuit for the symmetry test. Arthur selects two
out of the K states uniformly at random and performs a permutation
ΠS that pairs the modes from each state, which are subsequently
interfered in 50:50 beamsplitters. The outputs can be divided into a
set of “up” modes (depicted by red detectors) and “down” modes
(green detectors). The probability of observing a coincidence, i.e. a
photon in an “up” mode and the other photon in a “down” mode,
depends on the inner product of the states and never occurs if the
states are equal. Arthur can use this property to detect if the states
are different. This is shown in the figure by clicks occurring in an
“up” and a “down” mode, which cause Arthur to reject

Fig. 6 Complete setup for the linear-optical verification of 2-out-of-4
SAT. For illustration, we consider the case of N= 4 and K= 3. Merlin
prepares three equal-superposition states of a single photon. Each
mode passes through phase shifters (green) to encode the satisfying
assignment x as in Eq. (2). Arthur then applies a permutation Π on
the modes depending on which of the three tests he is going to
perform and which proofs he randomly picked. At the output of the
permutation, he attaches either four-mode interferometers for the
satisfiability test (blue), or 50:50 beamsplitters to each pair of modes
(red) for the other two tests. He checks for photons in the outputs
and decides whether to accept or reject depending on the pattern
of clicks observed
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the mutual information with the string x satisfies

IðX : ρÞ ¼ HðρÞ � HðρjXÞ � HðρÞ � γ
ffiffiffiffi
N

p
logN: (5)

In summary, we have a quantum verification procedure where
the verifier takes as input a proof revealing at most γ

ffiffiffiffi
N

p
logN bits

of information about x and can verify instances of 2-out-of-4-SAT
in O(N) time.
What can we say about the running time of a classical

verification algorithm receiving a proof that reveals the same
amount of information? Denote by R(A) the running time of any
verification algorithm acting on a classical proof ϕ with
IðX : ϕÞ � HðϕÞ � γ

ffiffiffiffi
N

p
logN. We want to bound the asymptotic

scaling of R(A) by using the verification algorithm A to produce an
algorithm for 2-out-of-4 SAT by randomly searching over all
possible proofs. The algorithm is the following:

1. Generate a random proof. From the entropy bound, the
probability of guessing a correct proof is
pguessðϕÞ ¼ 2�HminðϕÞ � 2�HðϕÞ � 2�γ

ffiffiffi
N

p
logN .

2. Repeat the verification protocol on this proof Oð ffiffiffiffi
N

p
logNÞ

times and take the majority vote of the outcomes. This
identifies whether or not the proof is correct except with
probability Oð2�γ

ffiffiffi
N

p
logNÞ.

3. Repeat the previous steps Oð2γ
ffiffiffi
N

p
logNÞ times to ensure that,

if it exists, a correct proof will be found with high
probability. Accept if a valid proof is found, reject otherwise.

This is an algorithm for 2-out-of-4-SAT with running time
O

ffiffiffiffi
N

p
logN2γ

ffiffiffi
N

p
logN

� �
RðAÞ. Under the exponential time hypothesis

that algorithms for NP-complete problems must have running
time 2δN, we have that

O
ffiffiffiffi
N

p
logN2γ

ffiffiffi
N

p
logN

� �
RðAÞ � 2δN (6)

and therefore

RðAÞ � O
1ffiffiffiffi

N
p

logN
2δN�γ

ffiffiffi
N

p
logN

� �
; (7)

which is exponential in the input size N for large enough N. Since
we showed that the quantum verification runs in polynomial time,
we conclude that there is a quantum advantage in the linear-
optical verification of an NP-complete problem with proofs
revealing a restricted amount of information.
Let us now make a quick calculation to understand what order

of N we would possibly need in order to show quantum
superiority. Note that the constant γ comes from the uniformity
test, where we need enough proofs to find a collision with high
enough probability. Using standard arguments for the probability
of collision we can take γ= 2 and assure a probability higher than
98%. Let us also assume the strong exponential time hypothesis,
namely δ= 1. In this case, we need to make sure that a classical
algorithm which runs in time exponential in N � 2

ffiffiffiffi
N

p
logN

remains infeasible. By taking N= 512, we have that the exponent
in Eq. (7) is more than 100. Note that N is the number of optical
modes for each of the 2

ffiffiffiffi
N

p
proofs and that each proof contains

one photon. In other words, our circuit has a total of 46 photons,
each one in 512 optical modes. The number of photons is
comparable to the other proposals, namely Boson Sampling and
IQP circuits. While the number of optical modes in our scheme is
significantly larger, the depth of the linear-optical part of the
circuit can be just logarithmic in N, since the permutation part can
be performed with standard microelectromechanical system
switches. This is of course a high level calculation and there is
significant space for optimizing these parameters. On the other
hand, it is important to consider experimental imperfections as
well.
In the following, we discuss the role of experimental imperfec-

tions in the quantum verification scheme, showing that they can

be tolerated by increasing the number of copies by a constant
factor.

Experimental imperfections
In linear optics, there are three main forms of experimental
imperfections: detector dark counts, limited interferometric
visibility, and losses. Let us start with dark counts. For a state of
N modes, where the dark count probability for each detector is
pdark, the probability of obtaining a single click due to a dark count
is

pclick ¼ 1� ð1� pdarkÞN � Npdark ; (8)

which is negligible as long as N � 1=pdark . Typical values of the
dark count probability are below 10−6, whereas, as discussed, a
quantum advantage can be reached for values of N many orders
of magnitude smaller than 106.
Limited interferometric visibility refers to all deviations from the

ideal state preparation and transformations. This will not lead to a
change in the expected number of clicks, but it can cause the
wrong detectors to fire. The verification protocol can then tolerate
limited visibility as long as there remains a constant gap between
soundness and completeness of the test, i.e., of the difference
between the probability of accepting a correct proof and the one
of accepting an incorrect one, since this difference can be
amplified by repeating the verification a constant number of
times. Note that our protocol provides such a constant gap in the
case of no imperfections.
Losses in the verification are problematic for the tests as we

have previously defined them, since proofs are rejected if no
photons are detected. To address this, we can modify the tests to
correct for this effect. Let η be the overall transmissivity of the
protocol, meaning that a single photon is detected with
probability η. We address the modifications to each test
separately.
As stated previously, the satisfiability test acts on a single

randomly chosen state and rejects if no photons are detected. In
the presence of losses, this would cause the test to reject with
probability 1− η even for a correct proof. Instead, we modify the
test by instead randomly selecting O(1/η) states to ensure a high
probability of observing a photon in at least one state, and then
performing the satisfiability test on each of them. The proof is
then accepted if and only if no photons are detected in the
satisfiability modes, not more than one photon is detected in each
state, and there is at least one state for which a photon is
detected.
Similarly, to test for symmetry, instead of randomly selecting a

single pair of states, we must now randomly select O(1/η2) pairs of
states to ensure a high probability of having two photons in at
least one pair of states, and perform the symmetry test on each
pair. In this case, we accept the proof if and only if no
coincidences are observed for any state, no more than two
photons are detected for any pair, and there is at least one pair for
which two photons are detected.
Finally, in the uniformity test, a measurement is made on all

K ¼ Oð ffiffiffiffi
N

p Þ states, so in this case we can compensate for the
presence of losses by increasing the number of copies to K ¼
Oð ffiffiffiffi

N
p

=ηÞ in order to ensure a high probability of obtaining a
collision. Arthur accepts the proof if and only if no incompatible
outcomes of the form (i, j, 0) and (i, j, 1) occur, at least one collision
occurs, and not more than one photon is detected in any state.
Overall, these modifications to the tests lead to completeness of

the verification in the presence of losses. With respect to the
soundness, note that any statistics that Merlin can induce in
Arthur’s measurement in the presence of losses can also be
obtained in the ideal lossless case, since Merlin can just introduce
the losses himself—so we recover the soundness of the lossless
case.
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Note also that what we want to demonstrate is a quantum
circuit that verifies the NP-complete problem correctly and from
which the verifier does not get more than Oð ffiffiffiffi

N
p

logNÞ bits of
information about the classical witness. In practice one can ensure
this by just making sure that the number of detector clicks are
bounded, since this is the way the verifier obtains information. It is
important to remember that we are not in a cryptographic setting
where we have to worry about a verifier trying to cheat by
changing the circuit in order to get more information from the
prover. Hence, even though we increased the number of photons
by a factor 1/η2, the information the verifier gets is still
Oð ffiffiffiffi

N
p

logNÞ, since most photons get lost. Of course, if we want
to be even more stringent and ensure that the verifier could not
get more information even if he replaces the entire circuit with a
lossless one, then we can include the factor 1/η2 and upper bound
the information as O

ffiffiffiffi
N

p
logN=η2

� �
.

DISCUSSION
We have shown that it is possible to verify NP-complete problems
using simple linear optics. This is done by reducing instances of
any NP-complete problem to a balanced instance of 2-out-of-4
SAT. The solution is encoded into single-photon states in a
superposition across many optical modes, which are then verified
by choosing randomly between three different tests. Each of these
tests can be implemented using simple linear optics, namely
mode permutations and interferometry of at most four modes. We
have also shown that a quantum advantage can be obtained for
the running time of verification algorithms of proofs that reveal a
limited amount of information about the variables. This advantage
only holds if the states are not entangled with each other, which
we take as a promise from the prover. Overall, our results provide
another example of the surprising computational power of linear
optics.
Besides the advantage that we discuss in this paper, there are

other features of this protocol that are appealing. One of them is
the low energy expenditure of the scheme. The only energy
consumption takes place in the state preparation, which uses only
a few photons, and in the permutation of the modes. This is likely
to be less resource-intensive than running conventional compu-
ters for the same verification. Additionally, besides thinking of the
limited information of the proofs as a restriction on the
verification, we can view it as a security goal of Merlin who wants
to convince Arthur without revealing full information about the
solution. These questions are studied in the context of zero-
knowledge proofs, where verification is possible without revealing
any information. However, those protocols are interactive and
often very complex. Our verification scheme provides a simple
alternative where only partial information is revealed while
requiring no interaction.
In terms of experimental realizations of the verification protocol,

as discussed before, technology is currently available to perform
arbitrary permutations of large number of modes using micro-
electromechanical systems, which can be employed to build
optical switches capable of permuting as many as 1100 modes.41

Since the interferometers act on a small number of modes, the
entire verification circuits could in principle be built modularly
from small integrated chips, which can be manufactured
independently from each other. Finally, although significant
progress has been made in preparing high-dimensional single
photon states using integrated photonics,34 it remains a challenge
to create many such states independently for interferometric
experiments. It is likely, however, that the verification can be
performed using coherent states instead of single photons, in
which case only a single coherent laser source would be needed
which can be subsequently split into the desired modes. Indeed,
as shown in Ref 9 given one single-photon state and a linear-
optical measurement on it, replacing the single photon with a

coherent state leads to measurement statistics that are equivalent
to a randomly-selected number of repetitions of the same
measurement on a single-photon state. Further work is needed
to ensure that the quantum superiority is retained in this case.
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