
Research Article
Evidence of Exponential Speed-Up in the Solution of Hard
Optimization Problems

Fabio L. Traversa,1 Pietro Cicotti,2 Forrest Sheldon,3 and Massimiliano Di Ventra 3

1MemComputing Inc., San Diego, CA 92130, USA
2San Diego Supercomputer Center, La Jolla, CA 92093, USA
3Department of Physics, University of California, La Jolla, San Diego, CA 92093, USA

Correspondence should be addressed to Massimiliano Di Ventra; diventra@physics.ucsd.edu

Received 17 April 2018; Accepted 29 May 2018; Published 3 July 2018

Academic Editor: Viet-Thanh Pham

Copyright © 2018 Fabio L. Traversa et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Optimization problems pervade essentially every scientific discipline and industry. A common form requires identifying a solution
satisfying the maximum number among a set of many conflicting constraints. Often, these problems are particularly difficult to
solve, requiring resources that grow exponentially with the size of the problem. Over the past decades, research has focused on
developing heuristic approaches that attempt to find an approximation to the solution. However, despite numerous research
efforts, in many cases even approximations to the optimal solution are hard to find, as the computational time for further
refining a candidate solution also grows exponentially with input size. In this paper, we show a noncombinatorial approach to
hard optimization problems that achieves an exponential speed-up and finds better approximations than the current state of the
art. First, we map the optimization problem into a Boolean circuit made of specially designed, self-organizing logic gates, which
can be built with (nonquantum) electronic elements with memory. The equilibrium points of the circuit represent the
approximation to the problem at hand. Then, we solve its associated nonlinear ordinary differential equations numerically,
towards the equilibrium points. We demonstrate this exponential gain by comparing a sequential MATLAB implementation of
our solver with the winners of the 2016 Max-SAT competition on a variety of hard optimization instances. We show empirical
evidence that our solver scales linearly with the size of the problem, both in time and memory, and argue that this property
derives from the collective behavior of the simulated physical circuit. Our approach can be applied to other types of optimization
problems, and the results presented here have far-reaching consequences in many fields.

1. Introduction

In real-life applications, it is common to encounter problems
where one needs to find the best solution within a vast set of
possible solutions. These optimization problems are routinely
faced in many commercial segments, including transpor-
tation, goods delivery, software packages or hardware
upgrades, network traffic and congestion management,
and circuit design, to name just a few [1, 2]. Many of these
problems can be easily mapped into combinatorial optimiza-
tion problems, namely, they can be written as Boolean for-
mulas with many constraints (clauses) among different
variables (either negated or not, i.e., literals) with the con-
straints themselves related by some logical proposition [1].

It is typical to write the Boolean formulas as conjunctions
(the logical ANDs, also represented by the symbol ∧) of
disjunctions (the logical ORs, represented by the symbol ∨),
in the so called conjunctive normal form (CNF). The CNF
representation is universal in that any Boolean formula can
be written in this form [3].

A simple example of a CNF formula ϕ x is

ϕ x = ¬x1∨x2 ∧ ¬x2∨¬x3∨x4 ∧ x1∨¬x2∨x3∨¬x4
∧ ¬x1∨x4 ∧ x1∨x2∨¬x4 ,

1

in which we have four variables, xj, with j = 1, 2, 3, 4, five
clauses, and fourteen literals (the symbol ¬ indicates

Hindawi
Complexity
Volume 2018, Article ID 7982851, 13 pages
https://doi.org/10.1155/2018/7982851

http://orcid.org/0000-0001-9416-189X
https://doi.org/10.1155/2018/7982851

negation). The problem is then to find an assignment sat-
isfying the maximum number of clauses, that is, in which
as many clauses as possible have at least one literal that is
true. Such a clause is then said to be satisfied, otherwise
it is unsatisfied [3], and the problem itself is known as
Max-SAT (maximum satisfiability).

A Max-SAT problem whose CNF representation has
exactly k literals k ≥ 2 per clause is called Max-EkSAT.
Max-EkSAT is a ubiquitous optimization problem with
widespread industrial applications. We will focus on its
solution as a test bed in the main text and refer the reader
to the appendix where we have applied our approach to a
wide range of optimization problems, including weighted
Max-SAT, [4] for its application to machine learning and
[5] for the solution of the worst cases of a satisfiable problem
known as the subset sum.

Max-EkSAT lies in the NP-hard class, meaning that
any problem in NP can be reduced to it in polynomial
time [1]. More informally, we expect that worst case
instances will require resources which grow (at least)
exponentially in the input size to solve, and additionally,
problems in this class generally also require exponential
resources in order to check a proposed solution. Due
to this, complete algorithms that attempt to solve Max-
EkSAT instances quickly become infeasible for large prob-
lems. Much research has instead focused on incomplete
solvers that perform a stochastic local search, by generat-
ing an initial assignment and iteratively improving upon
it. This approach has proven effective at approximating
and sometimes solving large instances of SAT and other
problems. For instance, in recent Max-SAT competitions
[6], incomplete solvers outpace complete solvers by two
orders of magnitude on random and crafted benchmarks.
However, they too suffer from the same exponential time
dependence as complete solvers for sufficiently large or hard
instances [7–9].

It has further been shown, using probabilistically
checkable proofs [10], that many classes of combinatorial
optimization problems (including the Max-EkSAT) have
an inapproximability gap. This means that no algorithm
can overcome, in polynomial time, a fraction of the opti-
mal solution, unless NP=P [10, 11]. In other words, for
heuristics to improve on their approximation beyond this
limit would require exponentially increasing time. For
example, for the Max-E3SAT, it has been proved that if
NP ≠ P, then there is no algorithm that can give an
approximation better than 7/8 of the optimal number of
satisfied clauses [11].

Despite these difficulties, it is often necessary to solve or
approximate optimization problems such as these as
quickly as possible, and the quality of the approximation
can have direct outcomes on the cost to businesses, the
speed of our internet connections, or the efficiency of our
shipping, to name a few important cases. In what follows,
we outline a novel approach to generating approximations
to Max-EkSAT and demonstrate its efficacy on a variety
of instances both generated to provide the worst cases within
the inapproximability gap and drawn from Max-SAT
competitions [6].

2. The Memcomputing Approach

In this work, we consider a radically different noncombi-
natorial approach to hard optimization problems. Our
approach is based on the simulation of digital memcomputing
machines (DMMs) [5, 12, 13]. A brief introduction of these
machines is provided in the appendix. The reader inter-
ested in a more in-depth discussion is urged to look at
the extensive papers [5, 12]. The practical realization of
DMMs can be accomplished using standard circuit elements
and those with memory (time nonlocality, hence the name
“memcomputing” [14]).

Time nonlocality allows us to build logic gates that self-
organize into their logical proposition, irrespective of whether
the signal comes from the traditional input or output [12].
We call them self-organizing logic gates (SOLGs), and circuits
built out of them, self-organizing logic circuits (SOLCs). Our
approach then follows these steps.

(1) We first construct the Boolean circuit that repre-
sents the problem at hand (e.g., the Max-EkSAT
of Figure 1).

(2) We replace the traditional (unidirectional) Boolean
gates of this Boolean circuit with SOLGs.

(3) We feed the appropriate terminals with the required
output of the problem (e.g., the logical 1 if we are
interested in checking its satisfiability).

(4) Finally, the electronic circuit built out of these SOLGs
can be described by nonlinear ordinary differential
equations, which can be solved to find the equilib-
rium (steady-state) points. These equilibria represent
the approximation to the optimization problem [12].

The procedure of how we transform a combinatorial
optimization problem into an electronic circuit as well as a
sketch of its numerical solution is discussed further in the
appendix (see also [12]). The important point to note is that
SOLGs and SOLCs manifest long-range order due to the
presence of instantons [15]. Instantons connect topologically
inequivalent critical points in the phase space, hence generat-
ing nonlocality in the system. This translates into a collective
dynamical behavior that allows gates at an arbitrary distance
to correlate very efficiently so that, when a terminal of one
gate needs to change its truth value to satisfy that gate’s
logical proposition, a terminal at any other gate may pro-
vide the correct truth assignment while satisfying its own
logical proposition [5]. As we will explain later, this is the
key feature that allows these memcomputing machines to
solve complex problems efficiently, without the need to
explore a vast space of possibilities, as standard combinato-
rial approaches would do.

3. Results and Discussion

This radical change of perspective manifests its power
already in comparing simulations of DMMs with those
performed by the winners of the 2016 Max-SAT competition

2 Complexity

[6] on the competition benchmarks. When run on similar
hardware, our solver, which we named Falcon [12, 16, 17],
performs orders of magnitude faster than the winners in
the incomplete track of the competition, and in some cases
it finds the solution when the best solvers did not.

Since a direct comparison is difficult across hardware and
implementations (our solver is written in MATLAB which
is notoriously inefficient compared with the compiled lan-
guages of the competition solvers). Nevertheless, these tests
already provide strong indication of the advantages of our
approach using digital memcomputing machines over tradi-
tional combinatorial optimization.

However, in order to form a direct comparison and
more clearly show the exponential speed-up of our
approach, we have crafted three Max-SAT problems with
increasing levels of difficulty. We then compared our
memcomputing solver against two of the best solvers of
the 2016 Max-SAT competition (CCLS [18] and DeciLS
[19]—a new version of CnC-LS—kindly provided by
their developers) which are specifically designed to solve
these types of problems, but employing very different
solution strategies.

Random 3-SAT instances may be generated by selecting 3
variables out of n, joining them in a 3-SAT clause where each
is randomly negated and then repeating this for the desired
number of clausesM. These instances are known to undergo
a SAT/UNSAT transition when the ratio of clauses to vari-
ables, M/n = ρ (hereafter the “density”), crosses the critical
value ρc ≈ 4 3 [20, 21]. Exponential time is required to dem-
onstrate that an instance is UNSAT [22] and thus must also
be required to solve the corresponding Max-SAT, offering a
simple way to generate benchmarks.

However, the difficulty of computing approximations for
these instances varies widely. This can be partially attributed

to the fluctuations in variable occurrences and their nega-
tions [23] leading to “fields” which point towards the optima.
More balanced instances may be produced by starting with a
Random-XORSAT instance (also called hyperSAT [24]), that
is, a set of Boolean formulas defined by the XOR of Boolean
variables (the XOR symbol is ⊕) and converting it to a
Max-SAT instance.

Each XORSAT clause may be converted to a block of four
SAT clauses, for example,

x ⊕ y ⊕ z = 1→ x∨y∨z ∧ x∨¬y∨¬z ∧ ¬x∨¬y∨z ∧ ¬x∨y∨¬z ,
2

in which a variable and its negation appear symmetrically.
The special structure of XORSAT gives rise to a global algo-
rithm when the instance is satisfiable, allowing for a solution
in polynomial time using Gaussian elimination [24]. How-
ever, when unsatisfiable, occurring for ρ > 4 ⋅ 0 918 ≈ 3 7, this
same structure makes these problems very difficult for local
search solvers [22, 25]. In addition, the choice of instances
out of XORSAT clauses makes them particularly difficult also
for algorithms based on message passing [26].

A basic understanding of this difficulty can be obtained
by considering that changing a variable assignment affects
positively (namely, contributes a true literal to) the same
number of clauses as those affected negatively (where the
literal is false), because of the balanced occurences of the
variables. Therefore, for any combinatorial approach, when
a certain amount of satisfied clauses is reached, any further
improvement requires many simultaneous variable flips,
which is a nonlocal type of assignment. In other words, the
distance between two assignments at successive approxima-
tions becomes of the same order of the input length ∣x∣. This
means that going from an assignment x to a better one y, if
they have a distance d x, y =∑ j xj − yj

2 =O x , would

l4l1 l2

Boolean circuit representation of Max-SAT

CNF formula
(¬x1 < <

< x2) (¬ x2 ¬ x3 < < < < < < <x4) (x1 x2 x3 x4) (¬ x1 x4) (x 1 x2¬ ¬ ¬ x4)

l3 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14

x2
x1

x3

x4Boolean circuit

Multiterminal
OR gate

NOT
gate

< < <

Figure 1: Example of the mapping between a Boolean satisfiability formula in conjunctive normal form and a Boolean circuit made of
multiterminal OR and NOT gates. Each clause of the SAT formula is mapped into an OR with as many terminals as the literals in the
clause (the satisfiability of this multiterminal OR requires that at least one terminal has a truth value of 1). The global optimum of the
SAT formula, that is, the maximum number of satisfied clauses, corresponds to the maximum number of OR gates with output one. This
Boolean circuit is then transformed into a self-organizing logic circuit by substituting each standard Boolean gate with a self-organizing
logic gate [12], and each OR output is fed with a DC voltage generator representing the logic value of 1.

3Complexity

require checking O 2d x,y variable flips, which is the num-
ber of configurations that is exponential with respect to the
distance d x, y (the actual calculation requires the enumera-
tion of all possible flips of 1, 2,… , d x, y literals because the
distance d x, y is not known a priori. Hence, the actual

number of flips is ∑d x,y
k=0

∣x∣
k ≥ 2d x,y).

While more difficult, these instances also display some
variation in resolution time. In order to obtain instances of
more predictable difficulty, we impose a further constraint
requiring all variables to appear the same number of times
(or as near as possible while remaining consistent with the
number of clauses M = ρN), that is, the variable occurrences
are distributed as a δ-function. This variant is harder than the
previous one because of the additional balance induced by
the variable distribution, and our results indicate that they
display much lower variability in their difficulty.

In the following, we will call “random-Max-E3SAT” a
Max-E3SAT completely generated at random. This will
be used as an “easy” problem to test the performance of
all solvers. We refer to “hyper-Max-E3SAT” as the Max-
E3SAT generated from a random Max-E3XOR and finally

to “delta-Max-E3SAT” as a problem generated by the Max-
E3XOR with δ-function distribution of variables.

As it is evident in Figure 2, while the balanced structure of
Max-XORSAT poses a challenge to local search algorithms,
our memcomputing solver easily overcomes these limits
because, due to the collective (instantonic) behavior of the
circuit, the dynamics evolve towards deep minima very close
to the global optimum (see also the appendix). The reason is
that, as already anticipated, the collective state of the machine
allows simultaneous, nonlocal change of literals belonging to
gates arbitrarily far from each other [15]. This change is
consistent with the physics and the topology of the memcom-
puting circuit that naturally drive the system towards the
maximum number of satisfied SOLGs, without recourse to
any combinatorial selection scheme.

The optimum for all problems can be estimated using an
ensemble of small instances for which it is easier to find a
fairly good approximation. For example, instances of about
300 variables and density (clauses/variables) of ρ = 5 provide
a good indication of the global optimum in terms of percent-
age of unsatisfied clauses. We found that for the random-

5000

15000

25000

−2

0

2

4

6

Ti
m

e (
lo

g 1
0

(s
))

Falcon
CCLS
DeciLS

CCLS (projection)
DeciLS (projection)

500

1500

2500

Ti
m

e (
lo

g 1
0

(s
))

17
18

105 106 2 × 1060 4 × 103 8 × 103

Variables

Age of the universe

Figure 2: Simulation time comparison between incomplete solvers CCLS and DeciLS against our solver, Falcon, for the balanced and
constrained delta-Max-E3SAT. A threshold of 1 5% of unsatisfiable clauses has been set. We have then tested how long CCLS, DeciLS,
and our solver Falcon take to overcome this limit with increasing number of variables. All calculations have been performed on a single
thread of an Intel Xeon E5-2680 v3 with 128Gb DRAM shared on 24 threads. The local solvers require an exponentially increasing time
to reach that limit already visible at a few hundred variables for the CCLS and a few thousands for the DeciLS. Our solver has been tested
up to 2 × 106 variables and required order of 104 seconds for that maximum number of variables. We show also the estimate of time that
would have been required these local solvers to run up to 2 × 106 variables. The estimated time (dashed and dashed-dotted lines) has been
calculated using a linear regression of the log10 time versus the number of variables.

4 Complexity

Max-E3SAT, the optimum is expected at about 0 4% of
unsatisfied clauses, while for both the hyper- and delta-
Max-E3SAT, this value is about 1 3%. The difference between
these values is not surprising. As mentioned previously, it
is well known that for the latter two problems the transi-
tion from satisfiable to unsatisfiable is around a density of
ρ ≈ 3 7, while for random-Max-E3SAT, it is around ρ ≈ 4 3.
We have then chosen the same density of ρ = 5 for the
random-, hyper-, and delta-Max-E3SAT.

In order to prove the superior efficiency of our noncom-
binatorial approach for this class of hard problems, we have
evaluated their scaling properties up to 2 × 106 variables
(while keeping the density constant). We recall that the sim-
ulations of DMMs have been done using a MATLAB code,
while CCLS and DeciLS are compiled codes. Therefore, the
level of optimization is expected to be higher in the compiled
codes, making a direct performance comparison harder,
although for large problem sizes, our solver has much better
performance compared to CCLS and DeciLS. Nevertheless,
we are more interested in the scaling of the approximation
time. Specifically, for hard cases where incomplete solvers
diverge exponentially in time, our solver diverges linearly.
This is the most important test and the central result of our
paper. It is shown in Figure 2.

The hard inapproximability limit and its exponential
nature for both the combinatorial heuristics CCLS and
DeciLS is clearly visible in Figure 2, where we have set a
threshold of 1 5% of unsatisfiable clauses for the delta-Max-
E3SAT. We have then tested how long CCLS, DeciLS, and
our solver Falcon take to overcome this limit with increasing
number of clauses. All calculations have been done on a
single core of an Intel Xeon E5-2680 v3.

The exponential blowup of CCLS and DeciLS is already
evident for small instances of the problem, while our non-
combinatorial approach performs linearly, in both time and
memory, for any number of variables we have tested so far.
In fact, we have tested our solver up to 2 × 106 variables,
requiring ∼104 seconds to reach the target 1 5% threshold.
The heuristic solvers, if they could run up to the same
number of variables, would require, in the best case, about
∼102500 seconds, which is ∼102480 times the estimated age
of the universe.

To better highlight the linear scaling of our solver, we
compare it in Figure 3 with CCLS (qualitatively, all other
incomplete solvers should perform similarly). Each plot
of Figure 3 displays the percentage of unsatisfied clauses
versus time, normalized with respect to the number of
variables n. Clearly, linear scaling for these hard problems
is a very desirable feature and very difficult to achieve with
combinatorial approaches. However, the reason for such
linear scaling is subtle.

Regarding memory, since we simulate (integrate) differ-
ential equations in time, and the circuit scales linearly with
the number of literals, the linear scaling in memory require-
ments of our simulations is easy to understand (see also the
appendix). On the other hand, linear scaling in simulation
time implies constant scaling, namely, independent of the
problem size, when we look at the “machine time,” which is

the number of (differential equation discretized time) steps
for the simulation to reach equilibrium. The reason for
this unexpected machine time constant scaling can be
found again in the long-range order of the dynamics of
the system [15] (see also the appendix). As we have shown
analytically in [15] using topological field theory, this
long-range order leads to nondecreasing spatial (and tem-
poral) correlations in memcomputing machines. In fact,
Figure 3 clearly shows that self-organizing logic circuits
relax close to the predicted global minimum, while the
CCLS does so only for the (“easy”) random-Max-E3SAT.
This is further illustrated in Figure 4 of the appendix for
random-, hyper-, and delta-Max-E3SAT.

4. Conclusions

In conclusion, we have shown empirical evidence that a non-
combinatorial approach—based on the simulation of digital
memcomputing machines—to the solution of hard combi-
natorial optimization problems outperforms exponentially
heuristics specifically designed to solve such problems. In
particular, with our approach, we were able to find far better
approximations to hard instances with millions of variables
in a few hours on a single core, with linear scaling both in
time and memory of the processor. For the same sizes,
winners of the 2016 Max-SAT competition would require
several orders of magnitude more than the age of the universe
to find the same approximations. Of course, these numerical
results are not intended to prove that there are polynomial
solutions to NP-hard problems. Rather, they show that
physics-inspired approaches can help tremendously in
solving some of the most complex problems faced in acade-
mia and industry. We thus hope that this work will motivate
further research along these lines.

Appendix

Methods

The noncombinatorial approach we discuss here is based
on the concept of universal memcomputing machines
(UMMs) [13] introduced by two of us (Fabio L. Traversa
and Massimiliano Di Ventra). UMMs are a class of com-
puting machines composed of interconnected memory
units. The topology of such network is chosen to solve the
specific problem at hand. UMMs use the collective state of
the interconnected memory units to perform computation
[12, 27], so they can take advantage of long-range correla-
tions that can significantly boost the efficiency of the compu-
tation [12, 15]. If the input and output of UMMs can be
mapped into strings of integers, belonging to a limited subset
of N, we obtain the digital (hence scalable) version of UMMs
(DMMs) [12]. In particular, we consider DMMs whose input
and output can be mapped into Z2.

A possible, practical realization of DMMs is self-
organizing logic circuits (SOLCs) composed of SOLGs [12].
SOLGs are logic gates that can accept inputs from any termi-
nals and self-organize their internal state to satisfy their logic
relations. For example, a self-organizing OR (SO-OR) is

5Complexity

10−2 10−1 100 101 102 10310−3

Time/n, 103 × s/n

4 × 103 CCLS
32 × 103 CCLS
256 × 103 CCLS
2048 × 103 CCLS

32 × 103 Falcon
256 × 103 Falcon
2048 × 103 Falcon

4 × 103 Falcon

0
1
2
3
4
5
6
7
8
9

10
11
12
13

U
N

SA
T

(%
)

(a)

4 × 103 CCLS
32 × 103 CCLS
256 × 103 CCLS
2048 × 103 CCLS

32 × 103 Falcon
256 × 103 Falcon
2048 × 103 Falcon

4 × 103 Falcon

10−2 10−1 100 101 102 10310−3

Time/n, 103 × s/n

0
1
2
3
4
5
6
7
8
9

10
11
12
13

U
N

SA
T

(%
)

(b)

4 × 103 CCLS
32 × 103 CCLS
256 × 103 CCLS
2048 × 103 CCLS

32 × 103 Falcon
256 × 103 Falcon
2048 × 103 Falcon

4 × 103 Falcon

10−2 10−1 100 101 102 10310−3

Time/n, 103 × s/n

0
1
2
3
4
5
6
7
8
9

10
11
12
13

U
N

SA
T

(%
)

(c)

Figure 3: Comparison between the incomplete solver CCLS versus our noncombinatorial solver, Falcon, for (a) random-Max-E3SAT,
(b) hyper-Max-E3SAT, and (c) delta-Max-E3SAT. In these plots, the percentage of unsatisfied clauses versus the time normalized with
respect to the number of variables is shown to highlight the linear scaling of our solver. All calculations have been performed on a single
thread of an Intel Xeon E5-2680 v3 with 128Gb DRAM shared on 24 threads.

6 Complexity

U
N

SA
T

(%
)

t = 2−1 10−3 n CCLS
t = 22 10−3 n CCLS
t = 25 10−3 n CCLS

t = 2−1 10−3 n Falcon
t = 22 10−3 n Falcon
t = 25 10−3 n Falcon

9

10

0

1

2

3

8
4

105 106104

Variables

(a)

t = 2−1 10−3 n CCLS
t = 22 10−3 n CCLS
t = 25 10−3 n CCLS

t = 2−1 10−3 n Falcon
t = 22 10−3 n Falcon
t = 25 10−3 n Falcon

U
N

SA
T

(%
)

9

10

0

1

2

3

8
4

105 106104

Variables

(b)

t = 2−1 10−3 n CCLS
t = 22 10−3 n CCLS
t = 25 10−3 n CCLS

t = 2−1 10−3 n Falcon
t = 22 10−3 n Falcon
t = 25 10−3 n Falcon

105 106104

Variables

0

1

2

3

4
8

9

10

U
N

SA
T

(%
)

(c)

Figure 4: Comparison between the CCLS solver versus our solver, Falcon, for (a) random-Max-E3SAT, (b) hyper-Max-E3SAT, and (c) delta-
Max-E3SAT. In these plots, the percentage of unsatisfied clauses versus the number of variables is shown. Different curves are for different
simulation time-outs (in seconds) following the relation tout = kn with n = ∣x∣ and k an integer given in the legend. All calculations have
been performed on a single thread of an Intel Xeon E5-2680 v3 with 128Gb DRAM shared on 24 threads.

7Complexity

a 3-terminal gate whose internal machinery drives the
terminal states to satisfy the relation x0 = x1∨x2, where x0 is
the state of the conventional output terminal, and x1 and x2
are the states of the conventional input terminals. Therefore,
unlike conventional logic gates, the SO-OR can be fed also at
the output terminal. If we set x0 to some state, the SO-OR
then will self-organize to give logically consistent states x1
and x2.

We can use SOLCs to solve combinatorial problems by
expressing them in Boolean format and then mapping the
latter onto logic circuits. As a relevant example for this work,
we can take the Max-SAT problem written in CNF. When we
transform the SAT into a Boolean circuit, we have multiter-
minal OR gates connected together in order to represent a
logic formula (see Figure 1 of the main text). Hence, we can
substitute conventional logic gates by SOLGs and set all
output of the SO-ORs to logical 1. We now let the SOLC to
self-organize to satisfy the largest number of SO-ORs.

We have previously shown [12] that SOLCs can be
realized via standard (nonquantum) electronic components
(we employ the realization described in [12], just slightly
modified to deal with CNF formulas).

One of the key components of SOLGs is the dynamic
correction module we have designed to correct the inconsis-
tent logic gate configurations. While the design and details
of this component can be found in [12], we recall here its
working principle. The error correction module dynamically
reads the voltages at the terminals of the gate and injects a
large current when the gate is in an inconsistent configu-
ration, a small current otherwise.

The nonquantum electronic nature of SOLCs can be
fully described by a system of nonlinear ordinary differential
equations of the type

x t = F x t , 3

where x = vj, xi ∈ X (X is the phase space) is the collection
of voltages, vj, at the terminals and the internal state
variables, xi, of the electronic elements with memory; F is a
system of nonlinear ordinary differential equations, repre-
senting the flow vector field [12]. We can then efficiently sim-
ulate them by numerical integration. Therefore, SOLCs are
nothing other than dynamical systems. In this case, a solution
of the problem we want to solve (e.g., the Max-SAT) employ-
ing a DMM is mapped into an equilibrium point of the
dynamical system. The system is engineered in such a way
that, starting from any initial condition (generally chosen at
random), it evolves to converge into an equilibrium.

We have discussed in [12] (see also [5]) the relevant
properties that the dynamical systems representing DMMs
should have to behave in this way. Among them, an impor-
tant feature, fundamental to guarantee the convergence, is
that they are point dissipative [28]. This implies that the
dynamical system has bounded orbits (no divergences), and
it is endowed with an asymptotically stable global attractor,
that is, a compact set in the phase space that attracts any
other point. This feature has also allowed us to prove that
no chaotic behavior can emerge if equilibrium points are
present [29], as well as absence of periodic orbits [30].

Finally, the point dissipative property guarantees conver-
gence to equilibrium irrespective of the initial conditions.

We can finally summarize the power of these machines
with the following hierarchical picture. DMMs use the topol-
ogy of the internal connectivity of its elements to represent
the problem to solve (this is called information overhead
in [12]). Then, the collective state of the machine can
manipulate all inputs, outputs, and connecting variables
in a massively parallel fashion (intrinsic parallelism [12]).

In addition, the nonlinearity of the dynamical system
equations induces a transient instantonic phase with long-
range order, both in space and time [15]. This long-range
order allows the system to converge exponentially fast to
the equilibrium points that are associated to the approxima-
tions of optimization problems, by exploring a subspace (that
scales at most polynomially with input size) of the phase
space. This subspace is considerably smaller than the entire
phase space itself [15].

In fact, as briefly discussed in the main text, the particular
realization of DMMs we have presented in this work (similar
to the ones in [12]) supports infinite-range correlations in the
infinite input size limit, as shown in [15]. This enables an
ideal scale-free behavior (namely, one where the correlations
do not decay) of the SOLC. This was derived analytically
using topological field theory in [15] and can also be
supported numerically from Figure 5 as follows.

In order to simulate the system, we have employed a
time step size-controlled forward-integration scheme for
the differential equations that describe it [31]. Since the
number of variables of the problem grows linearly with the
input size because the number of gates grows only linearly,
each time step to be simulated requires only a linear number
of floating point operations and a memory linearly growing
with input size. Then, the simulation time is just a linear
function of the machine time. In Figure 5, it is reported
the same as in Figure 3 of the main text but with the SOLC
time (not normalized) on the x-axis. It is evident that the
relaxation of the system is independent of the input size
(ideal scale-free scaling). This is a very interesting and rare
result for an extensive interconnected system. All these
ingredients are necessary for the correct, efficient operation
of a DMM.

The approximations to an optimization problem found
by DMMs are very close to the global minimum of the prob-
lem, and this is guaranteed by the topology of the connectiv-
ity. This is clearly demonstrated in Figure 4 where the
unsatisfied clauses are plotted versus variables for different
simulation times, scaled linearly by the number of variables.
While for the random-Max-E3SAT, both our solver and the
CCLS approach the 0 4% minimum; in the case of the
hyper-Max-E3SAT, CCLS reaches a hard inapproximability
limit of about 2% for large instances. As expected, the
delta-Max-E3SAT, instead, is a much worse case, and the
inapproximability limit for CCLS is at about 3%.

In contrast, our noncombinatorial approach directly
reaches the global minimum in all cases. Interestingly, our
solver shows slightly better performances for the delta-
Max-E3SAT (the most difficult of the three cases) as can be
seen by taking a closer look at Figure 4.

8 Complexity

4 × 103 Falcon
32 × 103 Falcon

256 × 103 Falcon
2048 × 103 Falcon

10−2 10−1 10010−3

Time (a.u.)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

U
N

SA
T

(%
)

(a)

4 × 103 Falcon
32 × 103 Falcon

256 × 103 Falcon
2048 × 103 Falcon

10−2 10−1 10010−3

Time (a.u.)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

U
N

SA
T

(%
)

(b)

4 × 103 Falcon
32 × 103 Falcon

256 × 103 Falcon
2048 × 103 Falcon

10−2 10−1 10010−3

Time (a.u.)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

U
N

SA
T

(%
)

(c)

Figure 5: Percentage of unsatisfied clauses versus the machine time (i.e., simulated time steps) is shown to highlight the linear scaling of our
solver, Falcon, for (a) random-Max-E3SAT, (b) hyper-Max-E3SAT, and (c) delta-Max-E3SAT. All calculations have been performed on a
single thread of an Intel Xeon E5-2680 v3 with 128Gb DRAM shared on 24 threads.

9Complexity

A Brief Survey on Max-SAT Solvers

Asmentioned in the main text, there are two main (combina-
torial) approaches to solve or approximate the Max-SAT
problem. The first is based on the exhaustive exploration of
the solution space and leads to the so-called “complete”
solvers [7, 22]. The complete solvers use algorithms typically
based on the branch-and-bound approach [1, 19] in which a
greedy bound is first put on the optimum and then this is
used to prune the resulting search tree. Despite this pruning,
they still scale exponentially with input size ∣x∣ because they
exhaustively search a space ZO ∣x∣

2 = 0, 1 O ∣x∣ . However,
when the computation is finished, complete solvers are guar-
anteed to have found the global optimum of the Max-SAT.

Incomplete solvers [7, 8], in comparison, cannot guaran-
tee the optimality of their solution as they do not explore the
entire solution space. Instead, they proceed by generating an
initial assignment and iteratively improving upon it. This
trade-off allows them to find solutions, when they do, much
more quickly than complete algorithms. In the most recent
Max-SAT competition [6], incomplete track solvers found
solutions of two orders of magnitude faster than complete
track solvers in random and crafted benchmarks.

The quintessential incomplete solver is WalkSAT [8]
which proceeds through a stochastic local search. After an
initial assignment is generated, an unsatisfied clause is
selected and one variable from the clause has its assignment
flipped. This will leave this clause satisfied but may alter the
state of other clauses in which the variable occurs. The proce-
dure is continued for a specified number of steps or until a
solution is found. Most current local search solvers work
similarly with various heuristics to select the next variable flip
and utilize restarts and/or noise and a host of other features.

We compared our solver, Falcon, with two of the best
solvers from the 2016 Max-SAT competition, CCLS [18]
and DeciLS [19]. CCLS won the crafted track for unweighted

Max-SAT and performed near the top of the random track. It
performs a local search (LS) with configuration checking
(CC), and the binary provided took no tuning parameters.
Local search solvers will often retrace flips many times lead-
ing to an inefficient search. Configuration checking keeps
track of when neighboring variables have been flipped and
only allows a variable to be flipped again when at least one
of its neighbors has changed its assignment. DeciLS is an
updated version of CnC-LS which won the industrial track
for unweighted Max-SAT and combines a unit propagation
based decimation (Deci) and local search (LS) with restarts.
An assignment is first generated through unit propagation-
based decimation [22] in which conflicts are allowed, and
the result is given to a local search for a specified number
of steps. The process is then restarted, and the best result of
the previous search is used to guide the subsequent decima-
tion and resolve conflicts. This allows the solver to explore
very different reasoning chains and areas of the solution
space. We used the parameters values recommended in [19]
for good performance across a range of instances, and subse-
quent tuning has indicated that the results are insensitive to
changes in this range.

Weighted Partial Max-SAT

In order to more efficiently map a large number of maximi-
zation problems into Max-SAT, it is sometimes useful to
consider a variant: weighted partial Max-SAT [1, 19].
Weighted partial Max-SAT is a version of Max-SAT for
which a subset of clauses must be satisfied (“hard” clauses),
while the remaining clauses (“soft” clauses) may be weighted,
and the sum of the weights of satisfied clauses must be
maximized. The Max-SAT is a particular case of the weighted
partial Max-SAT in which all clauses are soft and have the
same weight.

1200 1300 1400 1500 1600 1700 1800
Number of clauses

10−2

10−1

100

101

102

103

104

C
om

pu
ta

tio
na

l t
im

e (
s)

Random 2 Max-SAT with 200 variables

Unable to find the solution

Complete solver (ahms-ls-1.70)

Incomplete solver (borealis)

Memcomputing solver (Falcon)

Figure 6: Results from the 2016 Max-SAT competition for the random Max-2SAT problem compared with our memcomputing
solver, Falcon.

10 Complexity

Because of the presence of hard clauses, the weighted
partial Max-SAT is, in general, harder than the Max-SAT
for all kind of solvers. In fact, this is one of the main reasons
heuristics are often unable to find even approximations to
those problems (see, e.g., Figures 8 and 9).

Including weights and hard clauses in self-organizing
logic circuits (SOLCs) is simple. Recalling that each OR gate
representing a clause has attached at each terminal a dynamic
correction module that injects a large current when the gate is
in an inconsistent configuration, we can tune the maximum
current allowed for each correction module in the following
way. We set the maximum current injected by the dynamic
correction modules connected to the SO-OR gates propor-
tionally to the weights of the clauses. For the hard clauses,
we can set the maximum current injected by the dynamic
correction modules connected to the hard SO-OR gates,
larger than the sum of all maximum currents injected by

the dynamic correction modules connected to all soft
SO-OR gates connected to that hard SO-OR gate. This will
guarantee that the hard clauses will have always the priority
on the soft clauses.

Comparison from the 2016
Max-SAT Competition

We have tested SOLCs on problems taken from the 2016
Max-SAT competition and compared them against the
results of the winners of each category of that competition.
Even if the comparison is not completely fair because our
code is written in MATLAB while the other codes are written
in compiled languages, and the benchmark is not the same
because we ran on different processors (we ran all our
simulations on an Intel Xeon E5-2680 v3 but used the same

Forced random binary problem (SAT mapping)

Incomplete solver (dsat-wpm3-in-pms)
Complete solver (Open-WBO16)

Memcomputing solver (Falcon)

200 300 400 500 600 700 800
Number of variables

10−2

10−1

100

101

102

103

104

C
om

pu
ta

tio
na

l t
im

e (
s)

Figure 8: Results from the 2016 Max-SAT competition for the forced random binary problem compared with our memcomputing
solver, Falcon.

1200 1400 1600 1800 2000 2200 2400 2600

Number of clauses

10−2

10−1

100

101

102

103

104

C
om

pu
ta

tio
na

l t
im

e (
s)

Max-CUT (2 Max-SAT mapping) with 200 variables

Complete solver (ahms-ls-1.70)

Incomplete solver (CCLS)

Unable to find the solution

Memcomputing solver (Falcon)

Figure 7: Results from the 2016 Max-SAT competition for the Max-CUT problem compared with our memcomputing solver, Falcon.

11Complexity

number of threads allowed in theMax-SAT competition), the
results are still interesting.

In Figures 6 and 7, we compare the random Max-
2SAT and random Max-CUT instances, which are non-
weighted problems [1]. In those cases, the scaling is
similar to the heuristics, but the absolute time is orders
of magnitude lower.

Of more interest are the results of Figures 8 and 9. These
correspond to two problems (called forced random binary
and Max Clique [1]) that, when mapped, become weighted
partial Max-SAT instances. As discussed, these are especially
hard. In fact, oftentimes, the best heuristics could not even
find approximations because they were not able to satisfy
all hard clauses, while our solver always does.

Data Availability

All calculations reported here have been performed by one of
us (Pietro Cicotti) on a single processor of the Comet cluster
of the San Diego Supercomputer Center, which is an NSF
resource funded under award number 1341698. Apart from
the instances freely available from the 2016 Max-SAT com-
petition [6], the authors would be delighted to provide, upon
request, all instances of the constrained delta-Max-E3SAT
used to generate Figure 2 and those related to all the other
figures in this work.

Conflicts of Interest

Fabio L. Traversa and Massimiliano Di Ventra are the
cofounders of MemComputing Inc. This company is com-
mercializing the software used in the simulations of this work.

Acknowledgments

The authors sincerely thank Dr. Shaowei Cai for providing
the authors with the binary compiled codes CCLS and

DeciLS. The authors also thank Haik Manukian and Robert
Sinkovits for helpful discussions. Massimiliano Di Ventra
and Fabio L. Traversa acknowledge partial support from
the Center for Memory Recording Research at UCSD.
Massimiliano Di Ventra and Forrest Sheldon acknowledge
partial support from the MemComputing Inc.

References

[1] K. S. Christos and H. Papadimitriou, Combinatorial Optimi-
zation, Dover Publications Inc., 1998.

[2] S. H. Z. Edwin and K. P. Chong, An Introduction to Opti-
mization, John Wiley & Sons Inc., 2013.

[3] M. R. Garey and D. S. Johnson, Computers and Intractability: a
Guide to the Theory of NP-Completeness, W. H. Freeman &
Co., New York, NY, USA, 1990.

[4] H. Manukian, F. L. Traversa, and M. Di Ventra, arXiv,
vol. 1801, article 00512, 2018.

[5] M. Di Ventra and F. L. Traversa, Journal of Applied Physics,
vol. 123, no. 18, article 180901, 2018.

[6] http://www.maxsat.udl.cat/16/index.html.

[7] C. P. Gomes, H. Kautz, A. Sabharwal, and B. Selman,
Handbook of Knowledge Representation, F. Van Harmelen,
V. Lifschitz, and B. Porter, Eds., vol. 1, Elsevier, 2008.

[8] H. A. Kautz, A. Sabharwal, and B. Selman, Handbook of
Satisfiability, A. Biere, M. Heule, and H. van Maaren, Eds.,
vol. 185, IOS press, 2009.

[9] J. Hromkovic, Algorithmics for Hard Problems: Introduction to
Combinatorial Optimization, Randomization, Approximation,
and Heuristics, Springer, 2010.

[10] U. Feige, “A threshold of ln n for approximating set cover,”
Journal of the ACM, vol. 45, no. 4, pp. 634–652, 1998.

[11] J. Hastad, “Some optimal inapproximability results,” Journal of
the ACM, vol. 48, no. 4, pp. 798–859, 2001.

[12] F. L. Traversa and M. Di Ventra, “Polynomial-time solution of
prime factorization and NP-complete problems with digital

700

Number of variables n
1000

Incomplete solver (dsat-wpm3-in-pms)

Complete solver (Open-WBO16)

Unable to find the solution

𝜌 ~ 3 𝜌 ~ n/7.7 𝜌 ~ n/3.9 𝜌 ~ n/2.6
Max Clique (SAT mapping)

Memcomputing solver (Falcon)

45 378 1035 3321 300 700 300 700 300
500 1000500 1000500

10−2

10−1

100

101

102

103

104

C
om

pu
ta

tio
na

l t
im

e (
s)

Figure 9: Results from the 2016 Max-SAT competition for the Max Clique problem compared with our memcomputing solver, Falcon.

12 Complexity

http://www.maxsat.udl.cat/16/index.html

memcomputing machines,” Chaos: An Interdisciplinary Jour-
nal of Nonlinear Science, vol. 27, no. 2, article 023107, 2017.

[13] F. L. Traversa and M. Di Ventra, “Universal memcomputing
machines,” IEEE transactions on neural networks and learning
systems, vol. 26, no. 11, pp. 2702–2715, 2015.

[14] M. Di Ventra and Y. V. Pershin, “The parallel approach,”
Nature Physics, vol. 9, no. 4, pp. 200–202, 2013.

[15] M. Di Ventra, F. L. Traversa, and I. V. Ovchinnikov, “Topolog-
ical field theory and computing with instantons,” Annalen der
Physik, vol. 529, no. 12, article 1700123, 2017.

[16] F. L. Traversa, Y. V. Pershin, and M. Di Ventra, “Memory
models of adaptive behavior,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 24, no. 9, pp. 1437–
1448, 2013.

[17] F. L. Traversa, F. Bonani, Y. V. Pershin, and M. Di Ventra,
“Dynamic computing random access memory,” Nanotechnol-
ogy, vol. 25, no. 28, article 285201, 2014.

[18] C. Luo, S. Cai, W. Wu, Z. Jie, and K. Su, “CCLS: an efficient
local search algorithm for weighted maximum satisfiability,”
IEEE Transactions on Computers, vol. 64, no. 7, pp. 1830–
1843, 2015.

[19] S. Cai, C. Luo, and H. Zhang, “From decimation to local search
and back: a new approach to MaxSAT,” in Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intel-
ligence (IJCAI-17), pp. 571–577, Melbourne, Australia, August
2017.

[20] B. Selman, H. Levesque, and D. Mitchell, “A new method for
solving hard satisfiability problems,” in Proceedings of the
Tenth National Conference on Artificial Intelligence (AAAI-
92), pp. 440–446, San Jose, CA, USA, July 1992.

[21] S. Kirkpatrick and B. Selman, “Critical behavior in the satisfia-
bility of random boolean expressions,” Science, vol. 264,
no. 5163, pp. 1297–1301, 1994.

[22] S. Cocco, R. Monasson, A. Montanari, and G. Semerjian,
Analyzing Search Algorithms with Physical Methods, Compu-
tational Complexity and Statistical Physics, 2006.

[23] W. Barthel, A. K. Hartmann, M. Leone, F. Ricci-Tersenghi,
M. Weigt, and R. Zecchina, Physical Review Letters, vol. 88,
no. 18, article 188701, 2002.

[24] F. Ricci-Tersenghi, M. Weigt, and R. Zecchina, “Simplest
random K-satisfiability problem,” Physical Review E, vol. 63,
no. 2, 2001.

[25] H. Jia, C. Moore, and B. Selman, International Conference on
Theory and Applications of Satisfiability Testing, Springer,
2004.

[26] M. Mezard and A. Montanari, Information, Physics, and
Computation, Oxford University Press, 2009.

[27] F. L. Traversa, C. Ramella, F. Bonani, and M. Di Ventra,
“Memcomputing NP-complete problems in polynomial time
using polynomial resources and collective states,” Science
Advances, vol. 1, no. 6, article e1500031, 2015.

[28] J. Hale, “Asymptotic behavior of dissipative systems,” in
Mathematical Surveys and Monographs, vol. 25, American
Mathematical Society, Providence, Rhode Island, 2nd
edition, 2010.

[29] M. Di Ventra and F. L. Traversa, Physics Letters A, vol. 381,
no. 38, pp. 3255–3257, 2017.

[30] M. Di Ventra and F. L. Traversa, “Absence of periodic orbits in
digital memcomputing machines with solutions,” Chaos: An
Interdisciplinary Journal of Nonlinear Science, vol. 27, no. 10,
article 101101, 2017.

[31] J. S. R. Bulirsch, Introduction to Numerical Analysis, Springer,
2010.

13Complexity

Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

