
Published as a conference paper at ICLR 2019

LEARNING A SAT SOLVER FROM SINGLE-BIT SUPER-
VISION

Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, David L. Dill
Department of Computer Science
Stanford University
Stanford, CA 94305
{dselsam,mlamm,buenz,pliang,dill}@cs.stanford.edu

Leonardo de Moura
Microsoft Research
Redmond, WA 98052
leonardo@microsoft.com

ABSTRACT

We present NeuroSAT, a message passing neural network that learns to solve SAT
problems after only being trained as a classifier to predict satisfiability. Although
it is not competitive with state-of-the-art SAT solvers, NeuroSAT can solve prob-
lems that are substantially larger and more difficult than it ever saw during training
by simply running for more iterations. Moreover, NeuroSAT generalizes to novel
distributions; after training only on random SAT problems, at test time it can solve
SAT problems encoding graph coloring, clique detection, dominating set, and ver-
tex cover problems, all on a range of distributions over small random graphs.

1 INTRODUCTION

The propositional satisfiability problem (SAT) is one of the most fundamental problems of computer
science. Cook (1971) showed that the problem is NP-complete, which means that searching for
any kind of efficiently-checkable certificate in any context can be reduced to finding a satisfying
assignment of a propositional formula. In practice, search problems arising from a wide range of
domains such as hardware and software verification, test pattern generation, planning, scheduling,
and combinatorics are all routinely solved by constructing an appropriate SAT problem and then
calling a SAT solver (Gomes et al., 2008). Modern SAT solvers based on backtracking search are
extremely well-engineered and have been able to solve problems of practical interest with millions
of variables (Biere et al., 2009).

We consider the question: can a neural network learn to solve SAT problems? To answer, we
develop a novel message passing neural network (MPNN) (Scarselli et al., 2009; Li et al., 2015;
Gilmer et al., 2017), NeuroSAT, and train it as a classifier to predict satisfiability on a dataset of
random SAT problems. We provide NeuroSAT with only a single bit of supervision for each SAT
problem that indicates whether or not the problem is satisfiable. When making a prediction about a
new SAT problem, we find that NeuroSAT guesses unsatisfiable with low confidence until it finds a
solution, at which point it converges and guesses satisfiable with very high confidence. The solution
itself can almost always be automatically decoded from the network’s activations, making NeuroSAT
an end-to-end SAT solver. See Figure 1 for an illustration of the train and test regimes.

Although it is not competitive with state-of-the-art SAT solvers, NeuroSAT can solve SAT problems
that are substantially larger and more difficult than it ever saw during training by simply performing
more iterations of message passing. Despite only running for a few dozen iterations during training,
at test time NeuroSAT continues to find solutions to harder problems after hundreds and even thou-
sands of iterations. The learning process has yielded not a traditional classifier but rather a procedure
that can be run indefinitely to search for solutions to problems of varying difficulty.

1

ar
X

iv
:1

80
2.

03
68

5v
3

 [
cs

.A
I]

 5
 J

an
 2

01
9

Published as a conference paper at ICLR 2019

{
Input: SAT problem P
Output: 1 {P is satisfiable}

}
(a) Train

P NeuroSAT Unsatisfiable

P NeuroSAT Solution

(b) Test

Figure 1: We train NeuroSAT to predict whether SAT problems are satisfiable, providing only a
single bit of supervision for each problem. At test time, when NeuroSAT predicts satisfiable, we can
almost always extract a satisfying assignment from the network’s activations. The problems at test
time can also be substantially larger, more difficult, and even from entirely different domains than
the problems seen during training.

Moreover, NeuroSAT generalizes to entirely new domains. Since NeuroSAT operates on SAT prob-
lems and since SAT is NP-complete, NeuroSAT can be queried on SAT problems encoding any
kind of search problem for which certificates can be checked in polynomial time. Although we train
it using only problems from a single random problem generator, at test time it can solve SAT prob-
lems encoding graph coloring, clique detection, dominating set, and vertex cover problems, all on a
range of distributions over small random graphs.

The same neural network architecture can also be used to help construct proofs for unsatisfiable
problems. When we train it on a different dataset in which every unsatisfiable problem contains a
small contradiction (call this trained model NeuroUNSAT), it learns to detect these contradictions
instead of searching for satisfying assignments. Just as we can extract solutions from NeuroSAT’s
activations, we can extract the variables involved in the contradiction from NeuroUNSAT’s activa-
tions. When the number of variables involved in the contradiction is small relative to the total num-
ber of variables, knowing which variables are involved in the contradiction can enable constructing
a resolution proof more efficiently.

2 PROBLEM SETUP

Background. A formula of propositional logic is a boolean expression built using the constants
true (1) and false (0), variables, negations, conjunctions, and disjunctions. A formula is satisfiable
provided there exists an assignment of boolean values to its variables such that the formula evaluates
to 1. For example, the formula (x1 ∨ x2 ∨ x3) ∧ ¬(x1 ∧ x2 ∧ x3) is satisfiable because it will
evaluate to 1 under every assignment that does not map x1, x2 and x3 to the same value. For every
formula, there exists an equisatisfiable formula in conjunctive normal form (CNF), expressed as a
conjunction of disjunctions of (possibly negated) variables.1 Each conjunct of a formula in CNF is
called a clause, and each (possibly negated) variable within a clause is called a literal. The formula
above is equivalent to the CNF formula (x1∨x2∨x3)∧(¬x1∨¬x2∨¬x3), which we can represent
more concisely as {1|2|3, 1|2|3}. A formula in CNF has a satisfying assignment if and only if it
has an assignment such that every clause has at least one literal mapped to 1. A SAT problem is a
formula in CNF, where the goal is to determine if the formula is satisfiable, and if so, to produce a
satisfying assignment of truth values to variables. We use n to denote the number of of variables in
a SAT problem, and m to denote the number of clauses.

Classification task. For a SAT problem P , we define φ(P) to be true if and only if P is satisfiable.
Our first goal is to learn a classifier that approximates φ. Given a distribution Ψ over SAT problems,
we can construct datasetsDtrain andDtest with examples of the form (P, φ(P)) by sampling problems
P ∼ Ψ and computing φ(P) using an existing SAT solver. At test time, we get only the problem
P and the goal is to predict φ(P), i.e. to determine if P is satisfiable. Ultimately we care about the
solving task, which also includes finding solutions to satisfiable problems.

1This transformation can be done in linear time such that the size of the resulting formula has only grown
linearly with respect to the original formula (Tseitin, 1968).

2

Published as a conference paper at ICLR 2019

3 MODEL

A SAT problem has a simple syntactic structure and therefore could be encoded into a vector space
using standard methods such as an RNN. However, the semantics of propositional logic induce rich
invariances that such a syntactic method would ignore, such as permutation invariance and negation
invariance. Specifically, the satisfiability of a formula is not affected by permuting the variables (e.g.
swapping x1 and x2 throughout the formula), by permuting the clauses (e.g. swapping the first clause
with the second clause), or by permuting the literals within a clause (e.g. replacing the clause 1|2
with 2|1. The satisfiability of a formula is also not affected by negating every literal corresponding
to a given variable (e.g. negating all occurrences of x1 in {1|2, 1|3} to yield {1|2, 1|3}).
We now describe our neural network architecture, NeuroSAT, that enforces both permutation invari-
ance and negation invariance. We encode a SAT problem as an undirected graph with one node for
every literal, one node for every clause, an edge between every literal and every clause it appears in,
and a different type of edge between each pair of complementary literals (e.g. between xi and xi).
NeuroSAT iteratively refines a vector space embedding for each node by passing “messages” back
and forth along the edges of the graph as described in Gilmer et al. (2017). At every time step, we
have an embedding for every literal and every clause. An iteration consists of two stages. First, each
clause receives messages from its neighboring literals and updates its embedding accordingly. Next,
each literal receives messages from its neighboring clauses as well as from its complement, then
updates its embedding accordingly. Figure 2 provides a high-level illustration of the architecture.

x1 x1 x2 x2

c1 c2

(a)

x1 x1 x2 x2

c1 c2

(b)

Figure 2: High-level illustration of NeuroSAT operating on the graph representation of {1|2, 1|2}.
On the top of both figures are nodes for each of the four literals, and on the bottom are nodes
for each of the two clauses. At every time step t, we have an embedding for every literal and
every clause. An iteration consists of two stages. First, each clause receives messages from its
neighboring literals and updates it embedding accordingly (Figure 2a). Next, each literal receives
messages from its neighboring clause as well as from its complement, and updates its embedding
accordingly (Figure 2b).

More formally, our model is parameterized by two vectors (Linit, Cinit), three multilayer perceptrons
(Lmsg, Cmsg, Lvote) and two layer-norm LSTMs (Ba et al., 2016; Hochreiter & Schmidhuber, 1997)
(Lu, Cu). At every time step t, we have a matrix L(t) ∈ R2n×d whose ith row contains the em-
bedding for the literal `i and a matrix C(t) ∈ Rm×d whose jth row contains the embedding for
the clause cj , which we initialize by tiling Linit and Cinit respectively. We also have hidden states
L
(t)
h ∈ R2n×d and C(t)

h ∈ Rm×d for Lu and Cu respectively, both initialized to zero matrices. Let
M be the (bipartite) adjacency matrix defined by M(i, j) = 1 {`i ∈ cj} and let Flip be the operator
that takes a matrix L and swaps each row of L with the row corresponding to the literal’s negation.
A single iteration consists of applying the following two updates:

(C(t+1), C
(t+1)
h)← Cu([C

(t)
h ,M>Lmsg(L(t))])

(L(t+1), L
(t+1)
h)← Lu([L

(t)
h ,Flip(L(t)),MCmsg(C(t+1))])

After T iterations, we compute L(T)
∗ ← Lvote(L

(T)) ∈ R2n, which contains a single scalar for each
literal (the literal’s vote), and then we compute the average of the literal votes y(T) ← mean(L

(T)
∗) ∈

R. We train the network to minimize the sigmoid cross-entropy loss between the logit y(T) and the
true label φ(P).

Our architecture enforces permutation invariance by operating on nodes and edges according to the
topology of the graph without any additional ordering over nodes or edges. Likewise, it enforces
negation invariance by treating all literals the same no matter whether they originated as a positive
or negative occurrence of a variable.

3

Published as a conference paper at ICLR 2019

Iteration −→

Figure 3: The sequence of literal votes L(1)
∗ to L(24)

∗ as NeuroSAT runs on a satisfiable problem
from SR(20). For clarity, we reshape each L(t)

∗ to be an Rn×2 matrix so that each literal is paired
with its complement; specifically, the ith row contains the scalar votes for xi and xi. Here white
represents zero, blue negative and red positive. For several iterations, almost every literal is voting
unsat with low confidence (light blue). Then a few scattered literals start voting sat for the next few
iterations, but not enough to affect the mean vote. Suddenly there is a phase transition and all the
literals (and hence the network as a whole) start to vote sat with very high confidence (dark red).
After the phase transition, the vote for each literal converges and the network stops evolving.

We stress that none of the learned parameters depend on the size of the SAT problem and that a single
model can be trained and tested on problems of arbitrary and varying sizes. At both train and test
time, the input to the model is simply any bipartite adjacency matrix M over any number of literals
and clauses. The learned parameters only determine how each individual literal and clause behaves
in terms of its neighbors in the graph. Variation in problem size is handled by the aggregation
operators: we sum the outgoing messages of each of a node’s neighbors to form the incoming
message, and we take the mean of the literal votes at the end of message passing to form the logit
y(T).

4 TRAINING DATA

We want our neural network to be able to classify (and ultimately solve) SAT problems from a
variety of domains that it never trained on. One can easily construct distributions over SAT prob-
lems for which it would be possible to predict satisfiability with perfect accuracy based only on
crude statistics; however, a neural network trained on such a distribution would be unlikely to gen-
eralize to problems from other domains. To force our network to learn something substantive, we
create a distribution SR(n) over pairs of random SAT problems on n variables with the follow-
ing property: one element of the pair is satisfiable, the other is unsatisfiable, and the two differ
by negating only a single literal occurrence in a single clause. To generate a random clause on
n variables, SR(n) first samples a small integer k (with mean 5) 2 then samples k variables uni-
formly at random without replacement, and finally negates each one with independent probability
50%. It continues to generate clauses ci in this fashion, adding them to the SAT problem, and
then querying a traditional SAT solver (we used Minisat Sorensson & Een (2005)), until adding the
clause cm finally makes the problem unsatisfiable. Since {c1, . . . , cm−1} had a satisfying assign-
ment, negating a single literal in cm must yield a satisfiable problem {c1, . . . , cm−1, c′m}. The pair
({c1, . . . , cm−1, cm}, {c1, . . . , cm−1, c′m}) are a sample from SR(n).

5 PREDICTING SATISFIABILITY

Although our ultimate goal is to solve SAT problems arising from a variety of domains, we begin
by training NeuroSAT as a classifier to predict satisfiability on SR(40). Problems in SR(40) are
small enough to be solved efficiently by modern SAT solvers—a fact we rely on to generate the

2We use 2 + Bernoulli(0.3) + Geo(0.4) so that we generate clauses of varying size but with only a
small number of clauses of length 2, since too many random clauses of length 2 make the problems too easy on
average.

4

Published as a conference paper at ICLR 2019

problems—but the classification problem is highly non-trivial from a machine learning perspective.
Each problem has 40 variables and over 200 clauses on average, and the positive and negative
examples differ by negating only a single literal occurrence out of a thousand. We were unable to
train an LSTM on a many-hot encoding of clauses (specialized to problems with 40 variables) to
predict with>50% accuracy on its training set. Even the canonical SAT solver MiniSAT (Sorensson
& Een, 2005) needs to backjump3 almost ten times on average, and needs to perform over a hundred
primitive logical inferences (i.e. unit propagations) to solve each problem.

We instantiated the NeuroSAT architecture described in §3 with d = 128 dimensions for the literal
embeddings, the clause embeddings, and all the hidden units; 3 hidden layers and a linear output
layer for each of the MLPs Lmsg, Cmsg, and Lvote; and rectified linear units for all non-linearities.
We regularized by the `2 norm of the parameters scaled by 10−10, and performed T = 26 iterations
of message passing on every problem. We trained our model using the ADAM optimizer (Kingma
& Ba, 2014) with a learning rate of 2 × 10−5, clipping the gradients by global norm with clipping
ratio 0.65 (Pascanu et al., 2012). We batched multiple problems together, with each batch containing
up to 12,000 nodes (i.e. literals plus clauses). To accelerate the learning, we sampled the number of
variables n uniformly from between 10 and 40 during training (i.e. we trained on SR(U(10, 40))),
though we only evaluate on SR(40). We trained on millions of problems.

After training, NeuroSAT is able to classify the test set correctly with 85% accuracy. In the next
section, we examine how NeuroSAT manages to do so and show how we can decode solutions to
satisfiable problems from its activations. Note: for the entire rest of the paper, NeuroSAT refers to
the specific trained model that has only been trained on SR(U(10, 40)).

6 DECODING SATISFYING ASSIGNMENTS

Let us try to understand what NeuroSAT (trained on SR(U(10, 40))) is computing as it runs on new
problems at test time. For a given run, we can compute and visualize the 2n-dimensional vector of
literal votes L(t)

∗ ← Lvote(L
(t)) at every iteration t. Figure 3 illustrates the sequence of literal votes

L
(1)
∗ to L(24)

∗ as NeuroSAT runs on a satisfiable problem from SR(20). For clarity, we reshape each
L
(t)
∗ to be an Rn×2 matrix so that each literal is paired with its complement; specifically, the ith row

contains the scalar votes for xi and xi. Here white represents zero, blue negative and red positive.
For several iterations, almost every literal is voting unsat with low confidence (light blue). Then a
few scattered literals start voting sat for the next few iterations, but not enough to affect the mean
vote. Suddenly, there is a phase transition and all the literals (and hence the network as a whole)
start to vote sat with very high confidence (dark red). After the phase transition, the vote for each
literal converges and the network stops evolving.

NeuroSAT seems to exhibit qualitatively similar behavior on every satisfiable problem that it predicts
correctly. The problems for which NeuroSAT guesses unsat are similar except without the phase
change: it continues to guess unsat with low-confidence for as many iterations as NeuroSAT runs for.
NeuroSAT never becomes highly confident that a problem is unsat, and it almost never guesses sat
on an unsat problem. These results suggest that NeuroSAT searches for a certificate of satisfiability,
and that it only guesses sat once it has found one.

Let us look more carefully at the literal votes L(24)
∗ from Figure 3 after convergence. Note that

most of the variables have one literal vote distinctly darker than the other. Moreover, the dark votes
are all approximately equal to each other, and the light votes are all approximately equal to each
other as well. Thus the votes seem to encode one bit for each variable. It turns out that these bits
encode a satisfying assignment in this case, but they do not do so reliably in general. Recall from
§3 that NeuroSAT projects the higher dimensional literal embeddings L(T) ∈ R2n×d to the literal
votes L(T)

∗ using the MLP Lvote. Figure 4 illustrates the two-dimensional PCA embeddings for L(12)

to L(26) (skipping every other time step) as NeuroSAT runs on a satisfiable problem from SR(40).
Blue and red dots indicate literals that are set to 0 and 1 in the satisfying assignment that it eventually
finds, respectively. The blue and red dots cannot be linearly separated until the phase transition at
the end, at which point they form two distinct clusters according to the satisfying assignment. We

3i.e. backtrack multiple steps at a time

5

Published as a conference paper at ICLR 2019

Trained on: SR(U(10, 40))
Trained with: 26 iterations

Tested on: SR(40)
Tested with: 26 iterations

Overall test accuracy: 85%
Accuracy on unsat problems: 96%

Accuracy on sat problems: 73%
Percent of sat problems solved: 70%

Table 1: NeuroSAT’s performance at test time on SR(40) after training on SR(U(10, 40)). It
almost never guesses sat on unsatisfiable problems. On satisfiable problems, it correctly guesses sat
73% of the time, and we can decode a satisfying assignment for 70% of the satisfiable problems by
clustering the literal embeddings L(T) as described in §6.

observe a similar clustering almost every time the network guesses sat. Thus the literal votes L(T)
∗

only ever encode the satisfying assignment by chance, when the projection Lvote happens to preserve
this clustering.

Our analysis suggests a more reliable way to decode solutions from NeuroSAT’s internal activations:
2-cluster L(T) to get cluster centers ∆1 and ∆2, partition the variables according to the predicate
‖xi−∆1‖2+‖xi−∆2‖2 < ‖xi−∆2‖2+‖xi−∆1‖2, and then try both candidate assignments that
result from mapping the partitions to truth values. This decoding procedure (using k-means to find
the two cluster centers) successfully decodes a satisfying assignment for over 70% of the satisfiable
problems in the SR(40) test set. Table 1 summarizes the results when training on SR(U(10, 40))
and testing on SR(40).

Iteration −→

Figure 4: PCA projections for the high-dimensional literal embeddings L(12) to L(26) (skipping
every other time step) as NeuroSAT runs on a satisfiable problem from SR(40). Blue and red
dots indicate literals that are set to 0 and 1 in the satisfying assignment that it eventually finds,
respectively. We see that the blue and red dots are mixed up and cannot be linearly separated until the
phase transition at the end, at which point they form two distinct clusters according to the satisfying
assignment.

Recall that at training time, NeuroSAT is only given a single bit of supervision for each SAT prob-
lem. Moreover, the positive and negative examples in the dataset differ only by the placement of a
single edge. NeuroSAT has learned to search for satisfying assignments solely to explain that single
bit of supervision.

7 EXTRAPOLATING TO OTHER PROBLEM DISTRIBUTIONS

7.1 BIGGER PROBLEMS

Even though we only train NeuroSAT on SR(U(10, 40)), it is able to solve SAT problems sampled
from SR(n) for n much larger than 40 by simply running for more iterations of message passing.
Figure 5 shows NeuroSAT’s success rate on SR(n) for a range of n as a function of the number of
iterations T . For n = 200, there are 2160 times more possible assignments to the variables than any
problem it saw during training, and yet it can solve 25% of the satisfiable problems in SR(200) by
running for four times more iterations than it performed during training. On the other hand, when
restricted to the number of iterations it was trained with, it solves under 10% of them. Thus we see
that its ability to solve bigger and harder problems depends on the fact that the dynamical system it
has learned encodes generic procedural knowledge that can operate effectively over a wide range of
time frames.

6

Published as a conference paper at ICLR 2019

Figure 5: NeuroSAT’s success rate on SR(n)
for a range of n as a function of the number of
iterations T . Even though we only train Neu-
roSAT on SR(40) and below, it is able to solve
SAT problems sampled from SR(n) for nmuch
larger than 40 by simply running for more itera-
tions.

Figure 6: Example graph from the Forest-Fire
distribution. The graph has a coloring for k ≥ 5,
a clique for k ≤ 3, a dominating set for k ≥ 3,
and a vertex cover for k ≥ 6. However, these
properties are not perceptually obvious and re-
quire deliberate computation to determine.

7.2 DIFFERENT PROBLEMS

Every problem in NP can be reduced to SAT in polynomial time, and SAT problems arising from
different domains may have radically different structural and statistical properties. Even though
NeuroSAT has learned to search for satisfying assignments on problems from SR(n), we may still
find that the dynamical system it has learned only works properly on problems similar to those it
was trained on.

To assess NeuroSAT’s ability to extrapolate to different classes of problems, we generated problems
in several other domains and then encoded them all into SAT problems (using standard encodings).
In particular, we started by generating one hundred graphs from each of six different random graph
distributions (Barabasi, Erdös-Renyi, Forest-Fire, Random-k-Regular, Random-Static-Power-Law,
and Random-Geometric).4 We found parameters for the random graph generators such that each
graph has ten nodes and seventeen edges on average. For each graph in each collection, we generated
graph coloring problems (3 ≤ k ≤ 5), dominating-set problems (2 ≤ k ≤ 4)), clique-detection
problems (3 ≤ k ≤ 5), and vertex cover problems (4 ≤ k ≤ 6).5 We chose the range of k
for each problem to include the threshold for most of the graphs while avoiding trivial problems
such as 2-clique. As before, we used Minisat Sorensson & Een (2005) to determine satisfiability.
Figure 6 shows an example graph from the distribution. Note that the trained network does not know
anything a priori about these tasks; the generated SAT problems need to encode not only the graphs
themselves but also formal descriptions of the tasks to be solved.

Out of the 7,200 generated problems, we kept only the 4,888 satisfiable problems. On average
these problems contained over two and a half times as many clauses as the problems in SR(40).
We ran NeuroSAT for 512 iterations on each of them and found that we could successfully decode
solutions for 85% of them. In contrast, Survey Propagation (SP) (Braunstein et al., 2005), the
canonical (learning-free) message passing algorithm for satisfiability, does not on its own converge
to a satisfying assignment on any of these problems.6 This suggests that NeuroSAT has not simply
found a way to approximate SP, but rather has synthesized a qualitatively different algorithm.

4See Newman (2010) for an overview of random graph distributions.
5See (Lewis, 1983) for an overview of these problems as well as the standard encodings.
6We implementated the version with reinforcement messages described in Knuth (2015), along with the

numerical trick explained in Exercise 359.

7

Published as a conference paper at ICLR 2019

8 FINDING UNSAT CORES

NeuroSAT (trained on SR(U(10, 40))) can find satisfying assignments but is not helpful in con-
structing proofs of unsatisfiability. When it runs on an unsatisfiable problem, it keeps searching
for a satisfying assignment indefinitely and non-systematically. However, when we train the same
architecture on a dataset in which each unsatisfiable problem has a small subset of clauses that are
already unsatisfiable (called an unsat core), it learns to detect these unsat cores instead of searching
for satisfying assignments. The literals involved in the unsat core can be decoded from its internal
activations. When the number of literals involved in the unsat core is small relative to the total num-
ber of literals, knowing the literals involved in the unsat core can enable constructing a resolution
proof more efficiently.

We generated a new distribution SRC(n, u) that is similar to SR(n) except that every unsatisfiable
problem contains a small unsat core. Here n is the number of variables as before, and u is an unsat
core over x1, . . . , xk (k < n) that can be made into a satisfiable set of clauses u′ by negating a single
literal. We sample a pair from SRC(n, u) as follows. First, we initialize a problem with u′, and then
we sample clauses (over x1 to xn) just as we did for SR(n) until the problem becomes unsatisfiable.
We can now negate a literal in the final clause to get a satisfiable problem ps, and then we can swap
u′ for u in ps to get pu, which is unsatisfiable since it contains the unsat core u. We created train
and test datasets from SRC(40, u) with u sampled at random for each problem from a collection of
three unsat cores ranging from three clauses to nine clauses: the unsat core R from Knuth (2015),
and the two unsat cores resulting from encoding the pigeonhole principles PP(2, 1) and PP(3, 2).7
We trained our architecture on this dataset, and we refer to the trained model as NeuroUNSAT.

(a) NeuroUNSAT running on a satisfiable prob-
lem.

(b) NeuroUNSAT running on an unsatisfiable
problem.

Figure 7: The sequence of literal votes L(t)
∗ as NeuroUNSAT runs on a pair of problems from

SRC(30,PP(3, 2)). In both cases, the literals in the first six rows are involved in the unsat core.
In 7a, NeuroUNSAT inspects the modified core u′ of the satisfiable problem but concludes that it
does not match the pattern. In 7b, NeuroUNSAT finds the unsat core u and votes unsat with high
confidence (dark blue).

NeuroUNSAT is able to predict satisfiability on the test set with 100% accuracy. Upon inspection,
it seems to do so by learning to recognize the unsat cores. Figure 7 shows NeuroUNSAT running
on a pair of problems from SRC(30,PP(3, 2)). In both cases, the literals in the first six rows are
involved in the unsat core. In Figure 7a, NeuroUNSAT inspects the modified core u′ of the satisfiable
problem but concludes that it does not match the pattern exactly. In Figure 7b, NeuroUNSAT finds
the unsat core u and votes unsat with high confidence (dark blue). As in §6, the literals involved
in the unsat core can sometimes be decoded from the literal votes L(T)

∗ , but it is more reliable to 2-
cluster the higher-dimensional literal embeddings L(T). On the test set, the small number of literals
involved in the unsat core end up in their own cluster 98% of the time.

Note that we do not expect NeuroUNSAT to generalize to arbitary unsat cores: as far as we know
it is simply memorizing a collection of specific subgraphs, and there is no evidence it has learned a
generic procedure to prove unsat.

9 RELATED WORK

There have been many attempts over the years to apply statistical learning to various aspects of the
SAT problem: restart strategies (Haim & Walsh, 2009), branching heuristics (Liang et al., 2016;

7The pigeonhole principle and the standard SAT encoding are described in Knuth (2015).

8

Published as a conference paper at ICLR 2019

Grozea & Popescu, 2014; Flint & Blaschko, 2012), parameter tuning (Singh et al., 2009), and solver
selection (Xu et al., 2008). None of these approaches use neural networks, and instead make use of
both generic graph features and features extracted from the runs of SAT solvers. Moreover, these
approaches are designed to assist existing solvers and do not aim to solve SAT problems on their
own.

From the machine learning perspective, the closest work to ours is Palm et al. (2017), which showed
that an MPNN can be trained to predict the unique solutions of Sudoku puzzles. We believe that their
network’s success is an instance of the phenomenon we study in this paper, namely that MPNNs can
synthesize local search algorithms for constraint satisfaction problems. Evans et al. (2018) present
a neural network architecture that can learn to predict whether one propositional formula entails an-
other by randomly sampling and evaluating candidate assignments. Unlike NeuroSAT, their network
does not perform heuristic search and can only work on simple problems for which random guess-
ing is tractable. There have also been several recent papers showing that various neural network
architectures can learn good heuristics for NP-hard combinatorial optimization problems (Vinyals
et al., 2015; Bello et al., 2016; Dai et al., 2017); however, finding low-cost solutions to optimization
problems requires less precise reasoning than finding satisfying assignments.

10 DISCUSSION

Our main motivation has been scientific: to better understand the extent to which neural networks are
capable of precise, logical reasoning. Our work has definitively established that neural networks can
learn to perform discrete search on their own without the help of hard-coded search procedures, even
after only end-to-end training with minimal supervision. We found this result surprising and think it
constitutes an important contribution to the community’s evolving understanding of the capabilities
and limitations of neural networks.

Although not our primary concern, we also hope that our findings eventually lead to improvements
in practical SAT solving. As we stressed early on, as an end-to-end SAT solver the trained NeuroSAT
system discussed in this paper is still vastly less reliable than the state-of-the-art. We concede that
we see no obvious path to beating existing SAT solvers. One approach might be to continue to train
NeuroSAT as an end-to-end solver on increasingly difficult problems. A second approach might be
to use a system like NeuroSAT to help guide decisions within a more traditional SAT solver, though
it is not clear that NeuroSAT provides any useful information before it finds a satisfying assignment.
However, as we discussed in §8, when we trained our architecture on different data it learned an
entirely different procedure. In a separate experiment omitted for space reasons, we also trained
our architecture to predict whether there is a satisfying assignment involving each individual literal
in the problem and found that it was able to predict these bits with high accuracy as well. Unlike
NeuroSAT, it made both type I and type II errors, had no discernable phase transition, and could
make reasonable predictions within only a few rounds. We believe that architectures descended
from NeuroSAT will be able to learn very different mechanisms and heuristics depending on the
data they are trained on and the details of their objective functions. We are cautiously optimistic that
a descendant of NeuroSAT will one day lead to improvements to the state-of-the-art.

ACKNOWLEDGEMENTS

We thank Steve Mussmann, Alexander Ratner, Nathaniel Thomas, Vatsal Sharan and Cristina White
for providing valuable feedback on early drafts. We also thank William Hamilton, Geoffrey Irving
and Arun Chaganty for helpful discussions. This work was supported by Future of Life Institute
grant 2017-158712.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

9

Published as a conference paper at ICLR 2019

Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh. Conflict-driven clause learning
sat solvers. Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, pp.
131–153, 2009.

Alfredo Braunstein, Marc Mézard, and Riccardo Zecchina. Survey propagation: An algorithm for
satisfiability. Random Structures & Algorithms, 27(2):201–226, 2005.

Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings of the third annual
ACM symposium on Theory of computing, pp. 151–158. ACM, 1971.

Hanjun Dai, Elias B Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. arXiv preprint arXiv:1704.01665, 2017.

Richard Evans, David Saxton, David Amos, Pushmeet Kohli, and Edward Grefenstette. Can neural
networks understand logical entailment? arXiv preprint arXiv:1802.08535, 2018.

Alex Flint and Matthew Blaschko. Perceptron learning of sat. In Advances in Neural Information
Processing Systems, pp. 2771–2779, 2012.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. arXiv preprint arXiv:1704.01212, 2017.

Carla P Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. Satisfiability solvers. Founda-
tions of Artificial Intelligence, 3:89–134, 2008.

Cristian Grozea and Marius Popescu. Can machine learning learn a decision oracle for np problems?
a test on sat. Fundamenta Informaticae, 131(3-4):441–450, 2014.

Shai Haim and Toby Walsh. Restart strategy selection using machine learning techniques. CoRR,
abs/0907.5032, 2009.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780,
1997.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Donald E Knuth. The art of computer programming, volume 4, fascicle 6: Satisfiability, 2015.

Harry R Lewis. Computers and intractability. a guide to the theory of np-completeness, 1983.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning rate based branch-
ing heuristic for sat solvers. In International Conference on Theory and Applications of Satisfia-
bility Testing, pp. 123–140. Springer, 2016.

Mark Newman. Networks: an introduction. Oxford university press, 2010.

Rasmus Berg Palm, Ulrich Paquet, and Ole Winther. Recurrent relational networks for complex
relational reasoning. arXiv preprint arXiv:1711.08028, 2017.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. Understanding the exploding gradient prob-
lem. CoRR, abs/1211.5063, 2012.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

Rishabh Singh, Joseph P Near, Vijay Ganesh, and Martin Rinard. Avatarsat: An auto-tuning boolean
sat solver. 2009.

Niklas Sorensson and Niklas Een. Minisat v1. 13-a sat solver with conflict-clause minimization.
SAT, 2005(53):1–2, 2005.

10

Published as a conference paper at ICLR 2019

G Tseitin. On the complexity ofderivation in propositional calculus. Studies in Constrained Mathe-
matics and Mathematical Logic, 1968.

O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. In Advances in Neural Information
Processing Systems (NIPS), pp. 2674–2682, 2015.

L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. SATzilla: portfolio-based algorithm selection
for SAT. Journal of Artificial Intelligence Research (JAIR), 32:565–606, 2008.

11

	1 Introduction
	2 Problem Setup
	3 Model
	4 Training data
	5 Predicting satisfiability
	6 Decoding satisfying assignments
	7 Extrapolating to other problem distributions
	7.1 Bigger problems
	7.2 Different problems

	8 Finding unsat cores
	9 Related work
	10 Discussion

