PART III

Context-Free Languages

110 Basic FL'T—Context-Free Languages

111

Part III
Context-Free Languages

14 Phrase-Structure Grammars

We have explored, now, two kinds of finite definitions of potentially infinite
languages: regular expressions—which describe how to build languages in-
ductively: by starting with a basis of simple languages and then building
larger languages from them via some family of operations—and Finite State
Automata—which describe a procedure for scanning strings from left to right
categorizing them via information gathered while scanning. We now will look
at a third approach—Phrase-Structure Grammars. These are a kind of rewrit-
ing system, a set of rules for forming strings by replacing one substring with
another.

In general, a phrase-structure grammar consists of a finite set of variables
(or non-terminals), which must be rewritten, a finite set of terminals, which
may not be, a single starting symbol (a non-terminal), and a finite set of
productions or rewrite rules.

Definition 50 A phrase-structure grammar G is a four-tuple (V,%, S, P),

where:
V' is a finite set of variables,

> s a terminal alphabet,
S €V s the start symbol,
PC(VUX)YV(VUXE)* x (VUX)* is a finite set of productions.

The productions specify a rewriting relation between strings of variables and
terminals which is usually expressed with an infix arrow, for example,

Example:
S — aXa
S — bXb
aX — abXb
bX — baXa
X — ¢

112 Basic FL'T—Context-Free Languages

Variables are typically upper-case letters, terminals, lower-case. The start
symbol is usually ‘S’. Under these conventions, grammars can often be unam-
biguously specified by giving just the set of productions. (Here, V' is {S, X},
¥ is {a, b, c}, and the start symbol is ‘S’.) Often, when there are alternative
ways to rewrite a given string they will be written as a single rule with the
alternatives separated by ‘|’. The S rules, for example, could be expressed:

S — aXa|bXb

Note that while the left hand side of a production must be non-empty
(we do not allow rewriting of nothing) the right hand side is under no such
restriction. A production in which the right hand side is empty is called an e-
production (or a null production). In essence, an e-production allows the string
on the left hand side to simply be erased. Grammars with no e-productions
are referred to as positive grammars.

Grammars are applied in a process that begins with the start symbol and
successively applies productions until only non-terminals remain:

<

S—aXa
,—/\\
aX a
~—~

aX—abXb
—
abX b a
~
bX—baXa
—T
aba X aba
<
X—c

aba ” ¢ " aba

The strings of terminals that can be obtained in this way are said to be de-
rived by the grammar and the sequence of strings of variables and terminals
witnessing it is a derivation. The strings of variables and terminals occurring
in a derivation (from S) are called sentential forms. The language generated
by a grammar G is the set of stings of terminals that can be derived by it.

To formalize these we start by extending the rewriting relation of the pro-
ductions to relations on arbitrary strings of variables and terminals:

Definition 51 If G = (V, X, S, P) is a phrase structure grammar and o and
v are strings in (V UX)*, then « directly derives v in G (« = v) iff there is

some production 3 — ' € P such that a = oyfa, and v = oy .

Context-Free Grammars 113

A derivation in G from « is a sequence (v, . . ., o) of strings over (VUX)*
in which a = oy and for all 1 < i <m, a;_1 :G> Q;.

A string « derives v in G (« :;> v) iff there is a derivation (o, ..., ap)

(where m > 1) for which o = oy and v = .-

When it is clear from the context, we will usually drop the G from the
notations for derives and directly derives.

73. Given this formal definition of derivation, what would be the effect of
extending P to (V UX)* x (V UX)*, of allowing ¢ on the left-hand side
of productions?

Definition 52 If G = (V,X, S, P) is a phrase structure grammar then the
language generated by G is

L(G):{wEE*|S=;>w}.

15 Context-Free Grammars

The defining power of phrase-structure grammars can be restricted by restrict-
ing the form of the productions. We are interested, in particular, in produc-
tions which rewrite single non-terminals, i.e., in which the left hand side of
every production is a single variable.

Definition 53 A Context-Free Grammar (CFQG) is a phrase-structure gram-
mar (V, %, S, P) in which P CV x (V UX)*.

A language is a Context-Free Language (CFL) iff it is L(G) for some CFG
G.

We will refer to the class of all context-free languages as CFL.

This restriction limits each derivation step to rewrite a single variable, but
more importantly, there can be no restriction on when that variable may be
rewritten—a production for X can be applied whenever X appears in a senten-
tial form. The grammar of Example 14 actually rewrites single variables—X
rewrites as either ‘bXb’ or ‘aXa’, for instance—but it limits rewriting as ‘b.Xb’
to ‘X’s that occur with an ‘e’ immediately to the left and rewriting as ‘aXa’ to
contexts with ‘b’ immediately to the left. The term Context-Free comes from
the fact that these grammars cannot restrict the context in which a production
applies.

114 Basic FL'T—Context-Free Languages

Because rewriting in CFGs expands single non-terminals to strings of ter-
minals and non-terminals it is possible to represent a derivation as a tree in
which the children of a node labeled with a non-terminal are labeled with the
string to which it is rewritten. Since every non-terminal must be rewritten dur-
ing the course of a (complete) derivation, the leaves of a (complete) derivation
tree will necessarily be labeled with terminals or, in the case of e-productions,
with ‘€’. We can formalize this as follows:

Definition 54 (Derivation tree in G) IfG = (V,X,S, P) is a CFG then:

o If X — w € P for w € ¥* then the depth one tree with root labeled X
and yield w is a derivation tree for w from X in G.

o If X — woYiwy---w, 1Yow, € P, for wy,...,w, € ¥, Y1,...,Y, €
V, and if ¥4,...,%, are derivation trees from Yi,...,Y, in G, respec-
tively, (yielding vq,...,v,, respectively) then the tree obtained from the
depth one tree with root labeled X and yield woYiwy -+ wp_1Yow, by
attaching X, ..., %, as subtrees at the nodes labeled Y1, ...,Y,, respec-
tively, is a derivation tree for wov,wy - - - wy_1vpw, from X in G.

e Nothing else is a derivation tree in G.

Example: Let G =(V,%, S, P), where P is:

S — a¥X |YXb
X — Xble
Y — aY|c

Then
Y X S
| N e
c X b a Y X
N | N
X b c X b
| N
c X b

|
Cc

Context-Free Grammars 115

are derivation trees for ¢ from'Y in G, for cbb from X in G and for accbb from
S in G, respectively.

Lemma 19 If G = (V,X,S, P) is a CFG then for all X € V and w € X*,
there is a derivation of w from X in G iff there is a derivation tree for w from
X inG.

Proof: To show that if there is a derivation of w from X in G then there is a
derivation tree for w from X in G, by induction on the length of the derivation:

(Basis:)
If X =;> w then X — w € P and the depth one tree with root labeled
X and yield w is a derivation tree for w from X in G.

(Ind:)

Suppose X derives w in GG by a derivation of n > 1 steps and for every
derivation of any string from any non-terminal in V' that is of length less than
n there is a corresponding derivation tree. Since the length of the derivation
of w from X is greater than one it must have the form

1 1
X=a=w
G G

for some X — a € P. Let a = woYiw;---Y,w, for w; € ¥* and Y; € V.
The remaining n — 1 steps of the derivation must rewrite each of the Y; to a
(possibly empty) string of terminals and must do so in n — 1 or fewer steps.
Thus for each Y; there is some v; € ¥* such that Y; % v;. Moreover, whatever

is derived from Y; must appear in w to the right of w;_; and to the left of w;.
Consequently, w = woviwy - - - v, w,. By the induction hypothesis there is a
derivation tree for each v; from Y; in G. It follows, then, from the second
clause of the definition of derivation trees, that there is a derivation tree for
w from X in G.
To show the converse, by induction on the structure of the tree:
(Basis:)

Suppose t is a derivation tree for w from X in G as defined in the first clause
of the definition of derivation trees. Then there is a production X — w € P

and, consequently, X :(1;> w.

116 Basic FL'T—Context-Free Languages

(Ind:)

Suppose t is formed by the second clause of the definition and that for all
simpler derivation trees there is a corresponding derivation. Then there is a
production X — wyYiw, ---Y,w, € P and derivation trees for v; from Y;
in G such that w = wov,w; - - - v, w,. Since the derivation trees for the v; are
subtrees of ¢ there are, by the IH, derivations of each of the v; from Y; in G.
Then there is a derivation

1 * *
X :G> weYiws - - - Yowy, :G> WU W1 * - * YWy :G> WoUL Wy - * * Vp Wy, = W

in which each of the Y; in turn are rewritten using the same sequence of pro-
ductions as the individual derivations. o

Note that it is possible to read derivations off of derivation trees by taking
progressively deeper “cuts” across the tree, e.g.,

S = aY X = acX = acXb = acXbb = acchb.

Each derivation tree, however, may encode several distinct derivations. Here,
for example, we can also get

S = aY X = aY Xb= aY Xbb = aY cbb = accbb

as well as two others. These are equivalent, though, in the sense that they all
rewrite a given instance of a non-terminal in exactly the same way, the only
difference between them is the order in which the productions are applied.

Definition 55 A left-most derivation in G is a derivation in which, at each
step, the left-most non-terminal is rewritten. A right-most derivation in G s
one in which, at each step, the right-most non-terminal is rewritten.

The first of the two derivations we obtained above is a left-most derivation,
the second a right-most.

In contrast, if there is more than one derivation tree for a given string then
these will differ in a substantial way—they must differ in the way that at least
one non-terminal is rewritten. For example,

S
— T
Y X b

Determining the Language Generated by CFG 117

is also a derivation tree for accbb from S in G. When a grammar can derive
a single string in two substantially distinct ways like this it is said to be
ambiguous.

Definition 56 A grammar G is ambiguous iff there is some string w € L(Q)
for which there are at least two distinct derivation trees for w from S in G.

Note that it is the grammar that is ambiguous, not the language. Many
languages that are generated by ambiguous grammars are also generated by
unambiguous grammars. There are, however, some languages that are not
generated by any unambiguous grammar. These are referred to a inherently
ambiguous languages.

Lemma 20 Suppose G = (V,%,S,P) is a CFG. Then for all X € V and
w € X, if t is a derivation tree for w from X in G there is both a left-most
derivation of w from X in G and a right-most derivation of w from X in G
corresponding to t and these derivations are unique.

74. Prove the lemma.

Corollary 6 A grammar G is ambiguous iff there is some string w € L(G)
for which there are at least two distinct left-most derivations of w from S in
G. (Similarly iff there are at least two distinct right-most derivations.)

15.1 Determining the Language Generated by CFG
Consider the following CFG

S — aB|bA|SS|e
A — Sa
B — Sb

We are interested in two things:
e to describe the language this grammar generates.

e to prove that it generates exactly that language.

118 Basic FL'T—Context-Free Languages

The most general approach to a problem like this is to explore a a variety
of derivations in the grammar and try to get a sense of the way in which it
builds strings. The key is to have a systematic approach to these explorations.
CFGs are a sort of inductive definition. For any CFG there will be a class of
simplest derivations—those in which there is no recursion, in which no non-
terminal occurs more than once along any path from the root of the derivation
tree to a leaf—and there will be a class of (minimal) recursive derivations—
those in which the non-terminal at the root also occurs at a leaf. (We will not
make these notions more precise here. The object is to give a way of organizing
your search. The analysis is not part of the proof; rather it is a way of arriving
at the invariants that form the foundation of the proof.)

Here the non-recursive derivations are:

S A B
6| a S/\b
|

g

®m — U

We include derivations from each of the nonterminals since we are going to
develop invariants describing the languages generated from each non-terminal.
Note that the basic strings derived from S, A, and B are ¢, a, and b, respec-
tively. With this particular grammar we can already note that A will derive
strings of the form wa where w is some string in the language derived from S.
Similarly, B derives strings of the form wb. Things are often not this simple.

One can construct any derivation tree in the grammar by starting with one
of these non-recursive derivations and inserting any number of the recursive
trees of the grammar:

S S S A B
/N yd N N
S S a B b A S a S b

N N] yd
S b S a b A a B

The first recursive S tree is obvious. Note, though, that there are also recur-
sive S trees that go through expansions of B and of A. These are actually
more productive, in a sense, since the first S tree just allows the iteration of
strings derived from S; its effect is that of a positive Kleene closure, albeit one
with complex consequences since the S may be embedded in the midst of a

Determining the Language Generated by CFG 119

derivation. The other two are responsible for embedding strings in the midst
of other strings.

Carrying out a few of these insertions, we can get a sense of how the strings
generated from S grow. (Again, in general one needs to carry this out for all
the non-terminals, not just for S.)

s s s s
/\ /\ d d
S s s s a B | 4
| | N N

n — W
lon
n — W
o

Carrying on for just the tree containing B:

A

S
el

a

L@
703
7D>
7m o)

&
o

7U:J

=2

Al
A

S
el

703
7m

o — Uy
o
»

<
o e

o — W &
<

/

A

m — U
o
A

m — WU

o

o
AN
o —[n & ()
0*7 o
o

o0 —

(We have not carried out all variations of each insertion.)

120 Basic FL'T—Context-Free Languages

One of the things that is immediately obvious from the structure of the
recursive trees (but not immediately from the rules themselves) is that ‘a’s
and ‘b’s are inserted in pairs. So one property we can be sure of is that their
numbers will be the same in all strings derived from S. Putting this together
with our understanding of the relationship between the strings derivable from
S and those derivable from A and B this leads to an initial hypothesis:

Claim 5

o S=we{ab} = |uw,=|w|,
e A= w € {a,b}* = w = w'a where |w'|, = |w'|,.

e B= w € {a,b}* = w = w'b where |w'|, = |[v'|,.

This much we are certain is true. To get the converse, though, it may
need to be strengthened; there may be more structure to the strings in these
languages than we have claimed. However, if we consider the trees obtained
by inserting recursive trees into the A tree as well as those obtained above
by inserting into the B tree it becomes clear that we can obtain all strings
of length up to four in which the numbers of ‘a’s and ‘0’s are equal. Thus, it
appears that the converse of the claim may be true as well. In proving this we
will have proven half of the characterization of the language generated by the
grammar.

Claim 6

e we {ab}* and |w|, = |w|, = S = w.
e w e {a,b}* and |w|, = |w|, = A = wa.

e we {a,b}* and |w|, = |w|, = B = wb.

Proof: (By induction on |w|.) Suppose w = ¢. Then

S=¢ A= Sa=ca=ua B =— Sb=¢b=0b.

Determining the Language Generated by CFG 121

Suppose w € {a,b}*, |w|, = |w|, and |w| = n. Suppose, further, that for all
such w of length less than n the claim is true. Break w into w;w, where wy
is the shortest non-empty prefix of w in which the number of ‘a’s and ‘b’s are
equal. Note that this implies that the ‘a’s and ‘b’s are equinumerous in ws as
well.

Suppose that ws is not empty. Then the lengths of w; and wy are both strictly
less than n and they both have equal numbers of ‘a’s and ‘0’s. From the
induction hypothesis, then,

S =SS = w1 S = wiwy = w

and
A = Sa == wa B = Sb = wb.

Suppose, on the other hand, w, is empty. Suppose w = aw’. (A similar
analysis applies if w starts with ‘b’.) Since no prefix of w has equal numbers
of ‘a’s and ‘b’s, w' must be of the form w"”b, where |w”|, = |w"|,. Then, by the
IH again,

S = aB = aSb = auw"b=w

and
A =— Sa = wa B =— Sbh = wb.

We now need only to complete the proof of Claim 5.

Proof (Claim 5): (By induction on the length of the derivation.)
(Basis:)
The base cases are just the non-recursive derivations.

S=c¢ lel, = lely
A= Sa=a = ca,
B— Sb—b = ¢b.

(Induction:)
Suppose the claim is true for all derivations of length less than n. Then
(letting ‘==’ denote “derives in n steps” and ‘= “derives in less than n

122 Basic FL'T—Context-Free Languages

steps”):
S=Lsw = S=aBZaw, or
S = bA 2= b, or
S = 99 =B 'S =2 w'uw",
A=w = A:>San=_%>w'a,
B w = A=— S22 .

In the first S case, by the induction hypothesis, w' = w"b where |w"|, = |w"|,.
Thus w = aw"b and |w|, = |w|,,.

The second case is similar, w’ = w"a where |w"|, = |w"|,. Thus w = bw"a and
w], = Jw],

In the third S case, we have that both w’ and w” have equal numbers of ‘a’s
and ‘b’s and, consequently, so does w.

Finally, in both the A and B case the claim follows immediately from the
induction hypothesis. .
It is worth noting that the way to carry out the induction is to ‘grow’ the
derivations from the beginning. It is easy to determine the set of productions
that may be the initial production of the derivation and trivially easy to de-
termine the sentential form to which they apply. The same cannot be said for
the last production of a derivation.

15.2 Non-inductive Proof that L C L(G)

For many simple grammars it is not necessary to actually carry out an induc-
tion to prove that every string in a given language is derivable in the grammar.
For instance consider the grammar G;:

S — aSh | e.

To show that w € {a’b* |7 > 0} = S :> w it suffices to give a derivation in

(Gap which yields w. Slnce w depends on the parameter ¢ the derivation will as
well. (We will use =% to denote “derives in i steps”.)
S =% 'St (S — aSh, i times)
= a't' (S—e).

Closure Properties 123

75. Prove that L(Gg) = {a'd’ | i > 0} by proving the remaining direction—
that L(Gg) C {a'b’ | i > 0}.

Corollary 7 The class of context-free languages is not a subset of the reqular
languages (CFL ¢ Regular).

We will employ this language ({a’b’ | i > 0}) as a canonical context-free
language—a standard example of a language that is in CFL but not regular.

16 Some Closure Properties of the class CFL

Suppose G1 = (V1,%, S1, P1) and Gy = (V5, 3, Sy, P,) are CFGs generating L,
and Lo, respectively, and that V; and V; are disjoint—they have no variables
in common. (Of course, if they were not disjoint we could simply rename
the variables in one set or the other, so we can assume this without loss of
generality.) Consider the language L;ULs. A string will be in this language iff
it can be derived either from S; in G5 or from Sy in G4. It should not be hard
to see that we can obtain a CFG for L; U Ly, by putting G; and G5 together

along with a new start symbol S and productions rewriting S as either S; or
SQ. Let

G=WVuWu{ShLE S, PUPU{S— 5,5 — Si})
We claim that w € L(G) < w € L(G1) U L(G2).
76. Why do we need to assume that the sets of non-terminals are disjoint?
77. Prove the claim.

It follows, then, that whenever L, and L, are CFLs then their union will
be a CFL as well.

Lemma 21 The class of context-free languages is closed under union.

Proof: Suppose L; and L, are CFLs then there must be CFGs G; and G,
(with disjoint sets of non-terminals) that generate them and, as we have just
established, we can combine these to form a CFG G that generates their union.
Thus their union is a CFL, as it is generated by a CFG. -

124 Basic FL'T—Context-Free Languages

Note that the proof is constructive. Given any two CFLs (represented by
their CFGs) we can effectively build a CFG representing their union. We will
make use of this construction shortly.

Consider, now, the concatenation of L; and Ly, Ly - Ly. A string w is in
this language iff it can be split into two parts w = wyws where wy, € Ly and
wy € Lo.

78. Give a construction that, from G; = (V1, X, S1, P1) and Gy = (V5, X, S, Ps),
builds a CFG G that generates L(G1)-L(G5). Argue that your construc-
tion is correct, that w € L(G) iff w € L(G) - L(G,).

Lemma 22 The class of context-free languages is closed under concatenation.

What about Kleene closure; is L} a CFL? Here we will need a CFG that
generates every string in L} for all 1 > 0. We can get LY(= {¢}) simply by
including the production S — &, moreover, if we have that we can derive L}
from S we can derive L™ (= Lt - L;) by including the production S — SS;.
This is all we need.

Claim 7 Let G, = (V1,%,S, Py) and
G = <‘/1U{S}72757P1U{S—)€7S—>S‘S’1}>7
where S & Vi. Then L(G) = (L(Gy))*.

Proof: To show that (L(G1))* C L(G), it suffices to show that if w €
(L(Gy))¢, for any i, then S :;> w. This we do by induction on 3.

(Basis:)
we (L(G1))=w=¢cand S = e

(Ind:)
Suppose that if w € (L(G;))* then S =;> w. To show that if w € (L(G,))"

then S =;> w: if w € (L(G4))"™! then w = wyw, for some w; € (L(G))* and
wy € L(G1). Then S :;> wy, by the induction hypothesis, and S; % wo,
1

by the definition of L(G1), which, since G includes every production in P,
implies S; =;> wy as well. Then

S :G> S5, :;> w151 ::;> WLWo = W.

Closure Properties 125

To show that L(G) C (L(G,))* it suffices to show that if S :;> w, then

w € (L(G,))* for some i > 0. Since we are proving a property of the strings
derived in G we proceed by induction on the length of the derivation of the
string.
(Basis:)

The minimal derivation from S in G is § = ¢ and ¢ € (L(Gy)°.

(Ind:)
Suppose S =Z> w, n > 1, and for all strings v derivable from S in G in

fewer than n steps v € (L(G;))* for some i > 0. Since n > 1 the first step
of the derivation of w must be S — S§5;. It follows that w = w;wy, where
S % w; and S % ws. Since the only productions of G' that are not in P;

are the S productions and since no production introduces S except S — S5,

the derivation of wy from S; in G must involve only productions from P;. It

follows that Sy % wq as well. Thus w; € (L(G1))" for some i and wy € L(G).
1

It follows that w = wywy € (L(G1))"™! B

Lemma 23 The class of context-free languages is closed under Kleene closure.

It should be immediately obvious that the singleton language {¢} and the
singleton languages containing just the strings of length 1 over % are CFLs.
By definition, every regular language is obtainable from these languages by a
finite sequence of unions, concatenations and Kleene closures. But we have
just shown that the result of these operations when applied to CFLs is also a
CFL. Consequently, every regular language must be context-free. Putting this
together with Corollary 7 we get:

Corollary 8 The class of regular languages is properly contained in the class
of CFLs (Regular C CFL).

16.1 Closure of CFL under substitution

A substitution f for an alphabet X is a mapping of each symbol ¢ of ¥ to
some language (not necessarily over the same alphabet), which we will denote
f(o). For any string w € X, the image of w under f is the set of all strings
obtained by substituting for each symbol ¢ in w any string in f(o). The

126 Basic FL'T—Context-Free Languages

substitution may be non-uniform—the string replacing each occurrence of a
symbol is chosen independently of the strings replacing any other occurrences
of that symbol. For any language L € ¥*, the image of L under f is the union
of the images of the strings in L under f, i.e.,

f(L) ={f(w) |we L}

Example: Let ¥ = {a,b} and f = {a — L(a*c),b — L(a*b*)}. Then
f(aba) = L(a*ca*b*a*c) and if L = L((ab)*) then f(L) = L((a*ca*b*)*).

Lemma 24 The class of context-free languages is closed under substitution by
contert-free languages.

Proof (Sketch): If L € CFL then L = L(G) for some CFG G = (V, %, S, P).
Similarly, if f is a substitution into CFL then for each o € X the language
f(o)is L(G,) for some CFG G, = (V,,%,, Sy, P,). Without loss of generality,
the sets of non-terminals of the grammars are pairwise disjoint. The idea is
to build a grammar for f(L) by replacing every occurrence of a terminal o in
the productions in P with the start symbol S, of its corresponding grammar.
This is then combined with the union of P,. It is not hard to see that a tree is
a derivation tree of the combined grammar iff it is a derivation tree of G with
each leaf labeled o (independently) replaced with a derivation tree of G,. -

79. Show that closure of CFL under substitution into CFL implies closure
of CFL under union, concatenation and Kleene closure.
[Hint: Show first that L(a + b), L(ab) and L(a*) are context-free lan-
guages. Then for any CFLs L, and L, show how to obtain L,UL,. L,L,
and L} from these by substitution.]

16.2 Constructing Grammars for CFLs

These closure properties can often be used to simplify the task of developing a
grammar for a CFL. The idea is to decompose the language into simpler lan-
guages in such a way that the decomposition can be reversed using operations
that preserve context-freeness. In many cases the decomposition can reduce
the language in question into trivially CF languages—either regular languages
or canonical CFLs.

Closure Properties 127

For example, let

L={we L(1*a’b*c") | |w|; odd= |w|, >0 and |w|, = |w|,
lw|, even = |w|, =0 and |w|, # |w|_}.

Then

L = L UL, L.={weL]||w|, even},L,={w € L ||w|, odd}.
where L, = Lie- Loy - Ly—.
where Li, = L((11)%).
where L, = L(aa").
where Ly—. = hpe(Lap), and hye = {a > b,b— c}.
where L, = Li,- Lyg.
where L, = L(1(11)").

where Lbaéc = Lb>c U Lb<c-
where Lb>c = L(bb*) . Lbc-
where Ly, = Ly - L(cc").

Since it reduces L to regular and canonical CF languages, the decomposition,
in itself, suffices to prove that L is a CFL. To construct a CFG generating L
we need only to use obvious CFGs for the simple languages and to apply the
constructions of the closure proofs.

where Gy is S1e — 1157, | .
where Gyt i Sar — aSas, Sax — aSas | €.
where Gy is Sp. — bSpec | €.

)
)
)
Li, = L(G1,) where Gy, is S1o — 1Se.
L(bb*) = L(Gpy) where Gy is Spy — bShe, St — bSpe | €.
L(cc®) = L(Gey) where Gep is Sep — ¢Sex, Sex — €Sex | €.
Lyse = L(Gyse) where Gise is Spse — SppSpe-
Lyce = L(Gp<e) where Gpee iS Spee — SpeSey -
Lyze = L(Goze) where Giope i Spre — Shse | Sh<e-
L. =L(G,) where Geis Se —> S1eSa+She-
L, = L(G,) where G, is S, — S1oShc-
)

where G is S — S, | S,.

128 Basic FL'T—Context-Free Languages

In other words, G is

S— S| S, Se —> S1eSa+She So — S10Sh£c
Sie — 1151 | & Sar — aSy, Sax —> aSa | €
Sbc — bSbcC | € Slo — 1Sle Sb;éc — Sb>c | Sb<c
Sb>c — Sb-I-Sbc Sb<c — Schc+ Sb-l— B bSb*
Spe — bSpe | £ Sor — cS., Suw — Ser | £.

80. Give a CFG for Lgy = {a’®’cF | i # j or j # k} by decomposing the
language into trivial languages.

Another approach that often works is to start with an inductive definition
of the language and then convert it, nearly directly, to a CFG. For example,
let Ly = {w € {a,b}* | |w|, = |w|,}. To show that this is a CFL, start by
considering how strings in the language can be constructed from other strings.
The simplest string in the language is just €. Moreover, if we have strings
wi,we € Lo then we can construct another string in L, by concatenating
them. In addition, we can construct a another string by adding an ‘a’ to the
left end of wy and a ‘b’ to its right end or vice versa. This may be enough. If
it is not our attempt to prove that every string in L, is generated by the CFG
we come up with will fail. Fortunately, the cases on which it fails should give
us examples of how we need to extend the definition. Putting this together as
an inductive definition:

.6EL2.

If wy,wy € Ly then wywy € Lo.

If wy € Ly then awb, bwya € L.

Nothing else.

We could stop here to prove that this is a complete definition of Ly, but as we
are asked for a CFG we may as well postpone it. Note that the proofs will be
similar in structure.

Converting this to a CFG we get:

g22 S — ¢
S — SS
S — aSb | bSa

Closure Properties 129

(Note that the CFG and the inductive definition work in opposite directions,
so to speak.)
The fact that every string in L(Gy) is in L, is nearly immediate:

81. Carry this out; show that L(Gs) C Lo.
The proof that every string in Ly is in L(G,) follows the proof of Claim 6:
82. Carry this out; show that Ly, C L(Gy).

Note that this implies that this CFG and the CFG of Section 15.1 generate
the same language.

83. Show that the CFG of Section 15.1 can be converted to Gs.

84. Let Lp be the set of all strings of balanced parenthesis, i.e., ¥ = {(,)},
each left parenthesis has a matching right parenthesis and pairs of match-
ing parenthesis are properly nested. Examples of strings in this language:

0(0) 0 3 ((CO)))

Examples of strings not in this language:

((0 ()0) (00N0

Show that this is a CFL by first defining it inductively.

130 Basic FL'T—Context-Free Languages

17 Normal Forms for CFGs

We have defined the context-free languages by defining a class of phrase-
structure grammars in which the form of the productions was restricted: the
context-free grammars. It turns out that we can actually restrict the form
of CFGs much more severely without decreasing their power to generate lan-
guages. The advantage of doing this is that in constructing proofs for CFLs we
can assume the grammar that generates them has a much simpler structure,
thus reducing the complexity of the proofs significantly.

17.1 Useless Symbols

We start by noting that there are circumstances under which a non-terminal
is actually useless in the sense that it can play no role in any derivation of
a string in X* from S. Clearly, we can simplify any grammar in which such
useless non-terminals occur, without affecting the language it generates, by
eliminating all productions that involve them. While one might wonder why
such non-terminals would ever find their way into a grammar, it is, in fact,
not necessarily obvious that a given non-terminal is useless—one question we
will want to resolve is whether there is an effective procedure, an algorithm,
for eliminating them. We will show later that there are simplified forms for
certain classes of CFGs for which there is no algorithm for converting arbitrary
CFGs in the class to the simplified form.

Definition 57 Suppose G = (V, %, S, P) is a grammar. A symbol X € VUX
s useless in G if either

o (Unreachable) there is no sentential form a X such that S = aXf or
G

e (Unproductive) there is no string w € ¥* such that X = w.
G

In either case X can play no part in a derivation in G of any string in ¥* and
all productions in which X occurs can simply be eliminated from G.

Lemma 25 If L = L(G) for an CFG G then L = L(G") for a CFG G' in
which no useless symbols occur.

We can obtain an algorithm for constructing G’ from a G that possibly
includes useless symbols based on inductive definitions of the sets of reachable
and productive symbols.

Let Productive(G) be the set of productive symbols in G. Then

Normal Forms 131

e ¥ C Productive(G).
e If X — a € (PN (V x Productive(G)*)) then X € Productive(G).

e Nothing else.

The inductive clause says if there is a production in P in which X rewrites to

some string of productive symbols then X is productive.
Let Reachable(G) be the set of reachable symbols in G. Then

e S € Reachable(G).

e If X € Reachable(G) and X — aY 3 € P, for some o, € (V UX)*
and Y € VUZX, then Y € Reachable(G).

e Nothing else.

Here the inductive clause says that if there is some production in P in which
a reachable symbol X rewrites to a string including Y then Y is reachable as
well.

Any inductive definition of this sort defines an algorithm which builds the
set in stages starting with the base cases. Note that convergence (termination)
of the algorithm is insured by the fact that the set at each stage is at least as
large as it was in the previous stage. Since the set is limited to be a subset of
the set of all symbols in the grammar which is, of course, finite, there can only
be finitely many stages at which the set actually grows. But, if there is some
stage at which the set doesn’t grow, then it will never grow in any subsequent
stage. (Why?) Hence, the algorithm converges after finitely many stages.

We then construct G’ by first eliminating unproductive symbols and then
eliminating unreachable symbols:

P" = P N (Productive(G) x (Productive(G))*).
P' = P" N (Reachable(G") x (Reachable(G"))*).

Note that the order is critical. There may be some productive non-terminals
that are reachable only via productions that involve non-productive non-
terminals. If we calculate the set of reachable symbols prior to eliminating
the non-productive non-terminals these will be left as useless symbols in the
grammar. On the other hand, every symbol that is involved in producing
some string of terminals from a reachable symbol is, itself, reachable. Thus
no symbol will become non-productive when we eliminate the unreachable
symbols.

132 Basic FL'T—Context-Free Languages

85. Let G be the grammar in which P is:

S — aSb|aXY |¢
X — aX |aS

Y — Yb

Z — Xb

(a) What is Productive(G)?

(b) Let G, be the grammar in which P, = P N (Productive(G) x
(Productive(G))*). What is P;.?

(c) What is Reachable(G1)?

(d) Let Gy be the grammar in which P, = P; N (Reachable(G;) x
(Reachable(G1))*). What is Py?

(e) What is Reachable(G)?

(f) Let G5 be the grammar with Py = PN(Reachable(G) x (Reachable(G))*).
What is Pg?

(g) What is Productive(G3)?

(h) Let G4 be the grammar with P, = PsN(Productive(G3) x (Productive(G3))*).
What is P47

17.2 e-Productions

In Section 14 we defined a positive grammar as one that included no e-
productions. Clearly, the empty string can never be derived by a positive
CFG; the language it generates cannot include €.

86. Prove that if G is a positive CFG then there is no derivation of € from
any non-terminal in G.
[Hint: A derivation, of course, is just a sequence of strings in (V U X)*
that are related by the directly derives relation. What can you say about
the length of the strings making up such a sequence under the assumption
that G is positive.]

The converse, however, is not true. It may be the case that a grammar
cannot derive € even though it does contain e-productions.

Normal Forms 133

87. Give an example of a CFG that includes an e-production but cannot
derive the empty string.
[Hint: A nearly trivial grammar will do. Try one that generates the

language {a}.]

Definition 58 A language is positive if it does not include the empty string.

Lemma 26 If L = L(G) is a positive CFL then L = L(G') for a CFG G’
with no e-productions (i.e., is L(G") for a positive CFG G').

Again, we prove this by giving the construction of G' = (V,X, S, P') from
G = (V,%,S,P). Let Nullable(G) be the set of symbols X € V such that
X :;> . (This set is also know as the kernel of G, Ker(G).)

Inductively,
e ¢ € Nullable(G),

o If X — a € PN (V x (Nullable(G))*) then X € Nullable(G).

e Nothing else.

In other words, ¢ is nullable and every non-terminal that directly derives either
¢ of any string of nullable non-terminals is also nullable.

To remove the e-productions from G we ‘back them up’:
Let

Nulledg(A — a1 ---ay) =
{A— o) -, | o} € {a;,e} if o; € Nullable(G), o), = o; otherwise }.

The function Nulleds returns every variation of a production in which zero or
more nullable symbols have been deleted (replaced with €). (Note that this
always includes the original production as well.) Since the rhs of a production
is just a string, any symbol we replace with ewill simply disappear. (Unless,
of course, it is already the only symbol left.)

Then

P=|J [Nulledg(d — a;---0)]NV x (VU

A—ay--an€P

that is, P extended with every variation of its productions in which zero or
more nullable symbols have been ‘nulled” and with all e-productions removed.
It is easy to show that, under the assumption that L(G) is positive, L(G) =
L(G").

134 Basic FL'T—Context-Free Languages

88. What happens if L(G) is not positive?

Corollary 9 FEvery CFL can be generated by a CFG with no useless symbols
and no e-productions other than, possibly, S — €.

Since every non-positive language is the union of a positive language and {¢}.

17.3 Unit Productions

Definition 59 A production is a unit production if it is of the form X — Y,
i.e., if it is in (V x V).

Note that productions in (V' x X) are not unit productions.

Lemma 27 If L = L(G) for a CFG G without e-productions then L = L(G')
for a CFG G' without -, or unit productions.

Here again we ‘back up’ the unit productions and then eliminate them. If
G=(V,%,S,P)let G =G=(V,%,S, P'), where:

P':{A—)a\A:;>BandB—)aEP}\(VXV).

Since there are no e-productions in P, if A == B it must be through a sequence

of unit productions. This simply adds an 1G4 production that directly derives
everything directly derivable from B in this case. Note that this potentially
adds a great many unit productions, since it adds a unit production for A
for every one for B. These all get eliminated along with the original unit
productions when we subtract the set of all unit productions over V.

Putting these together, we get:

Lemma 28 If L = L(G) for any CFG G then L = L(G") for a CFG G" with-
out useless symbols, unit productions, or e-productions other than, possibly,
S—e.

The transformations must be applied in the order: remove e-productions, re-
move unit productions, remove non-productive symbols and finally remove
unreachable symbols.

89. Why can’t we remove useless symbols first?
[Hint: Can useless symbols be introduced in eliminating either e- or
unit productions?]

Normal Forms 135

17.4 Chomsky Normal Form (CNF)

Definition 60 A CFG is in Chomsky Normal Form (CNF) all productions
are of the form:

A— BC, for B,C eV or A—o, foroeX.

Theorem 10 FEvery positive CFL is generated by some CFG in CNF.

Proof (Sketch): Let L = L(G). Convert G to a grammar with no unit or
e-productions.

Add new non-terminals X, for each ¢ € ¥, replace every occurrence of ¢ in
productions in P with X, and add each production of the form X, — o.
Every production is now of the form X, —ocor A — X;--- X, for X; € V
and n > 1. It remains to convert each one of the rules in which n > 2 into a
sequence of binary branching rules. We do this in the same way one represents
n-branching trees as binary branching trees:

A A
Xl X2 te Xn Xl Al
X2 A2
An—l
anl Xn
where the A; are new non-terminals unique to each production. -
90. Convert the grammar
G: §S — T | S+T
T — z | (9)

to CNF.

136 Basic FL'T—Context-Free Languages

Thus (with Corollary 9) every CFL is generated by a CFG in CNF, with
the possible addition of the single production S — €. In doing proofs about
CFLs we will need only consider derivations in CNF grammars, and these are
very simple, indeed: every production of a grammar in CNF has one of two
simple forms—it rewrites a non-terminal either to exactly two non-terminals
or to a single terminal. Consequently, every derivation tree will be, in essence,
binary branching and every subtree in a derivation tree will yield a non-empty
string.

91. Suppose G is a CFG in CNF and S % w. Give an upper bound on the

length of derivations of w from S in G.
[Hint: Note that we are not concerned with the depth of the derivation
tree but, rather, (in essence) with how many nodes it has.]

92. Give a lower bound on the length of derivations of w from S in G under
the same assumptions.

93. Prove that the class of CFLs is closed under reversal:
IR = {w® |we L}

(w?® is defined in Definition 4 in Section 2.1.)

[Hint: Let G be a CFG in CNF that generates L. Show how to transform
G into G’ such that L® = L(G"). CNF is not actually necessary but
makes the proof somewhat simpler.]

17.5 Greibach Normal Form (GNF)

Another normal form for CFGs is due to Greibach.

Definition 61 (Greibach Normal Form (GNF)) A CFGG = (V,%, S, P)
1s 1n Greibach Normal Form iff each of its productions is of the form A — aa

where ‘a’ is a terminal and « is a (possibly empty) string of non-terminals.
(Thus P CV x ¥V*.)

Theorem 11 (Greibach) Every positive CFL is generated by a CFG that is
in GNF.

Normal Forms 137

As with the other normal forms we have encountered so far, the proof
consists of a construction reducing arbitrary CFGs to that normal form along
with a proof that the construction is correct. We will give the construction
along with an idea of why it works, but we will skip the actual proof of its
correctness. We will also give an example of the application of the construc-
tion but, because it is quite tedious and not very instructive, you will not be
expected to carry it out yourself. The important points you should get from
this section are the structure of GNF, the fact that there is an effective proce-
dure for reducing CFGs to GNF, and that, consequently, we can assume GNF
when building proofs or algorithms for arbitrary positive CFGs.

To convert an arbitrary CFG G (for a positive language) to GNF, convert
it first to G’ in CNF. Let the non-terminals of G’ be Vi, V5, ...V,, in arbitrary
order. Then apply the following algorithm:

For each V, € V, add a new non-terminal X; to V
for 1<k <m do
{ () for 1<j<k do
{ (a.1) for each V; — Vo do
{ (A.1.1) for each V; — (8 do
{ add V, — fa }
remove V, — Vo }
(A.2) for each V, — Vo do
{ add Xy — a and X; — aXj
remove Vi, — Via }
(A.3) for each Vy — 3 where [does not begin with V) do
{ add Vk — 5Xk }}}
(B) for m >k >1 (in decreasing order)
{ for each V, — V,,a do
{ for each V,, — 3 do
{ add Vy — fa }
remove Vi, — V,a }}

The effect of block A is to transform the grammar such that if the rhs
of a production for a non-terminal V' starts with a non-terminal V', then V'
properly precedes V' in the ordering. It does this by, in essence, rotating the
derivation trees of the grammar (See Figure 4.) Note that this implies that
the last non-terminal in the ordering, at least, does not rewrite to any string
that starts with a non-terminal. Block B then “backs-up” the productions
for those initial non-terminals in the same way that block A.1 backs-up the

138 Basic FL'T—Context-Free Languages

1 ﬂv VkN
AN / > A \.

B
Vi Xk
T /N /N
5 a g ¢
Block A.1: Block A.2:
Vk—>‘/}a,j<i Vk—>VkOZ

Figure 4: Converting to GNF

productions for V;. Since it works from the last non-terminal in the ordering
to the first the productions for the initial non-terminals will have already been
backed-up. Consequently, no production will start with a non-terminal.

Applying this to the example grammar (with the non-terminals ordered
S,81,8:,T,T1, A, L, R), we get, after the first for block:

S — LSy | x| LSX: | X,
X — 5 | S1X

Sl — AT

SQ — LSQR | TR | LS2X1R | .’EXlR
T — LT, | 2

T1 — LSQR | TR | LSQXlR | .’EXlR
A — +

L — (

R —)

Parsing CFGs 139

and after the second:

S — (S | =z | (S X7 | 22Xy
Xy, — 4T | 47X,

S — +T

SQ — (SQR | TR | (SQXlR | zX 1R
T — (T1 | x

T, — (SR | «R | (SSXiR | zXiR
A — +

L — (

R —)

94. Suppose G is a CFG in GNF and S =;> w. Give both an upper and a

lower bound on the length of derivations of w from S in G.

18 Deciding Membership

The strongest attribute of GNF is the fact that every production generates
at least one terminal symbol. Thus, as the exercise shows, given a CFG G in
GNF and a string w there is a length n, (which depends on |w|) such that
S =;> wiff § n=g’“> w. Consequently, we can check whether w € L(G) simply

by systematically generating all productions of G of length n, and checking
to see whether the last sentential form is w. Since every CFG for a positive
language can be converted to GNF, we can use this solution for any CFG that
generates a positive language. Moreover, it is simple to extend this to handle
any CFL.

95. Give an algorithm to test if € € L(G), where G is any CFG.
[Hint: Consider Section 17.2.]

96. Put this together with the ideas of this section to give a completely
general algorithm that decides membership for any CFG.

18.1 Recursive Descent Parsing

While the strategy of generating all productions of a given length and testing
to see if they derive w gives us an algorithm for deciding membership it leaves
open the question of how to systematically generate these productions. One

140 Basic FL'T—Context-Free Languages

simple approach is start with S and apply productions in P in some fixed
order, recursively applying the productions to the left-most non-terminal of
the result. This systematically carries out every left-most derivation of the
grammar.

We can implement this with a procedure which takes a sentential form «
and a string w and returns TRUE iff it finds a derivation of w from « in G:

Parse (o, w)

if o =w = ¢ then Return(TRUE)
if =0 and w = ov then Return(Parse(f3,v))
if o= X[then
{ for each X — v € P (in order)

{ if Parse(yf,w) then Return(TRUE)

¥
¥

Else Return(FALSE)

The idea is that w € L(G) iff Parse(S, w). Unfortunately, this doesn’t quite
work. The problem is that it is not guaranteed to terminate and and in the
case that it fails to terminate there may be derivations of w from S that have
not yet been explored.

97. Carry out the procedure for Parse(S, ab) for the grammar:
S — AB A — Sa A—¢ B —bS B —¢
with the productions ordered left to right as given.

Note that if the procedure does not terminate then there must be some
branch of a derivation tree that can be arbitrary long—the recursion is not
well-founded. What we need is a way of forcing the recursion to reach a base
case in finitely many steps. Here we can exploit the form of GNF grammars.
Note that every sentential form in a leftmost derivation of a grammar in GNF
consists of an initial string of terminals followed by a string of non-terminals.
Furthermore, the string of terminals in any sentential form is a strict prefix of
the string of terminals in every sentential form that follows it in the derivation.
Thus we are generating w in left-to-right order. The idea is to drop the portion
of w that has been already generated. When we apply a production X — o7y
to a sentential form X § with w = ov we can recur with just (87, v):

XB=o0y3==>0v & X — oyandyf=v.

Parsing CFGs 141

Note that there is no reason to try any production with a rhs that does not
start with o. So, if we assume GNF we can modify the procedure:

Parse (o, w) (Assuming GNF)
if o = w = ¢ then Return(TRUE)
if a =X and w = ov then
{ for each X — oy € P (in order)
{ if Parse(yf,v) then Return(TRUE)
}
}
Else Return(FALSE)
Now the length of the string we are testing is strictly decreasing as we

recur. Thus we can recur no more than |w| times before reach the base case
at €.

