Basic Formal Language Theory—Solutions 33

10 The Pumping Lemma for Regular Languages

36. Prove that L; = {w € {a,b}" | |w|, < |wl|,} is not regular (where |w|, is
the number of ‘a’s occurring in w).

(Solution)
(The = as we used in proving L, non-regular works here as well.)

Suppose, by way of contradiction, Ls is regular.

Let n be the constant of the pumping lemma.

Let z = a™b™.

Since z € L5 and |z| > n, by the pumping lemma there must be some
u, v and w such that r = wvw, |uv|<n, |v|>1and uwv'w € Ly for
all 7.

Since |uv| < n, both u and v must fall within the first n symbols of x.
Thus, v and v must consist only of ‘a’s. Furthermore, v must include at
least one ‘a’, since |v| > 1. Thus, there must be some j, k and [such
that

u=a, v=a", w = ab", j+k+1l=mn, and k > 1.

But suppose i = 0. Then

ww = vw = a’d'b”

where j + [= n — k which is strictly less than n. Thus uv'w ¢ Ls for
1 = 0 and the pumping lemma does not hold for L;, contradicting our
assumption that it was regular.

37. Prove that the following language Lg is not regular.

Le & {w e {a,b}" | |w|, < |w|, if |w|, even, |w|, > |w|, otherwise }

(Solution)

Here our choice of x will depend on whether n is even or odd; we must
account for either possibility. One easy way to do this is to let z =
a?"b* 1. Then |z|, is even and less than |z|,, and z € Lg. As before u

34

Basic FL'T—Finite and Regular Languages—Solutions

and v must both fall within the block of ‘a’s. Thus, there must be some
7, k and [such that

u=d, v = aF, w = alp™ !, j+k+1=2n, and k > 1.

Our choice of counter-example for ¢ must depend on whether k is even
or odd. In the first case |uv'w|, will be even for all 7. In the second it
will be odd whenever 7 is even and v.wv..

Suppose k was even. Then |uv*w|, = 2n+k. Since k is even and greater
than zero, 2n + k is even and greater than 2n + 1. Thus |uvw|, is even
but |uv*w|, > [uv*wl, and uwv*w ¢ L.

Suppose, on the other hand, £ was odd. Then, since k£ > 1, |uv0w\a =
2n — k is odd and less than |uv®w|, = 2n. Therefore, uvw ¢ L.

In both cases there is some 7 for which the pumping lemma fails. Thus
Lg is not regular.

The Myhill-Nerode Theorem 35

11

The Myhill-Nerode Theorem

Lemma 1 Let A' =(Q', %, q,,d", F'), where Q', g, 6' and F' are as described
above. Then L = L(A').

38.

39.

40.

Prove that, for all w € ¥*, §'(g}, w) = [w]g, -

(Solution)

By induction on |w|.

(Basis:)

5 (ahye) = do = [¢]ry -

(Induction:)

8 (dh, wo) = &'(8' (45, w), 0) = 8'([w]r,, 0) = [wg,-
Use this to prove the lemma.

(Solution)

we LA < §(dw)eF
& (g, w) € {[w]n, |we L}
& weE L.

Consider, again, the problem of specifying schedules for a machine tool
(see Section 8.2). Suppose, in this instance, that there is just a single
type of part which requires two operations A; and A, to complete. These
can be done in any order, although we will assume that operations always
complete partially completed parts if they can. Thus, at any given time
the partially completed parts will all be waiting for the same operation
(although which operation can change over time). Assume, further, that
there is an unbounded amount of space to store partially completed parts;
the only constraint on a schedule is that every part gets completed.

(a) Describe this language.

(Solution)
This is the language over {A;, A;}* in which the number of ‘A;’s
and the number of ‘A,’s are equal.

36

Basic FL'T—Finite and Regular Languages—Solutions

(b) Use Myhill-Nerode to show that the set of feasible schedules, given
these constraints, is not regular.

(Solution)

Let’s call this language L;. We can use roughly the same sequence
of strings as we used in the example:

(A% A2 AL 0> 0).

We claim that every string in this sequence is distinct wrt Ry, from
every other string. To see this, consider A% and Aj for ¢ # j. Then
A AL € Ly, while AJ AL & Ly Thus, AL witnesses that A7 and A7
are not related by Rp,. Since ¢ and j are arbitrary, every string
in the sequence is distinct, wrt Ry, from every other string in the
sequence; no two share the same equivalence class. It follows that
there must be at least as many equivalence classes of Ry, as there
are strings in the sequence; Ry, cannot have finite index.

41. Using the Myhill-Nerode Theorem, prove the language L3 of Problem 25

is regular.

(Solution)

For all w € {mq, ma, a1, as,a;2}*, let Pending(w) be either the set of
messages left unacknowledged at the end of the sequence w or FAIL
if at some point during the sequence w the protocol is violated (either
more than one message of a given type is outstanding or an acknowledge
occurs without the corresponding message(s) being outstanding). Then
Pending(w) € {0, {m1}, {m2}, {m1, mso}, FAIL}.

Suppose Pending(w) # Pending(u). Without loss of generality, suppose
Pending(w) # FAIL. Let v be either €, ‘a;’, ‘as’ or ‘ajy’, as appropriate
to acknowledge exactly those messages in Pending(w). Then wv € Ls
but, uv either leaves some message unacknowledged or acknowledges
some non-outstanding message. On the other hand, if Pending(w) =
Pending(u) then either there is no string that extends either w or u
to become a string in Lj (i.e., if Pending(w) and Pending(u) are both
FAIL), or wv € Ls iff v acknowledges the messages in Pending(w) (along
with any additional messages in v) without violating the protocol iff
v acknowledges the messages in Pending(u) (along with any additional

The Myhill-Nerode Theorem 37

messages in v) without violating the protocol iff uv € Ls. Thus, for all
w e {mla ma, a1, Gz, a12}*:

[w]r,, = {u | Pending(u) = Pending(w)}.
Since Pending(w) can take only five values, there are no more than five

such equivalence classes. Thus, by the Myhill-Nerode Theorem, Ls is
regular.

42. Minimize the following DFA.

a
(Solution)

1| ba

2l a la

3| a |a

4| ¢ |e|e|e€

5|l e |elele

6| ¢ |e|e|e
012|345

States 2 and 3 are equivalent as are states 4, 5 and 6.

38

Basic FL'T—Finite and Regular Languages—Solutions

a
aE
/'K’

b

Closure Properties of the Class of Regular Languages 39

12

43.

44.

Closure Properties of the Class of Regular
Languages

Using this approach, show that the set of strings over {a, b} in which the
number of ‘a’s is divisible by three but not divisible by two is regular.

(Solution)

Let L denote this language. Let L; denote the language in which the
number of ‘a’s is divisible by three and L, the set in which the number
is not divisible by two. Then L = Ly N Ly, L; = L((b*ab*ab*ab*)*), and
L2 = L3 where Ly = L((b*ab*ab*)*). Thus, L is the intersection of a
regular language and the complement of a regular language. Since the
class of regular languages is closed under complement and intersection,
L is regular.

Starting with simple automata for your “obviously” regular languages
and using the constructions of the proofs of the closure properties, build
a DFA for this language.

(Solution)

40 Basic FL'T—VFinite and Regular Languages
A: (b b b
(o).),
B A N

B—g-E

45. Consider the two languages:

L,: The set of strings over {a, b} in which the last symbol is not ‘b’.

Ly: The set of strings over {a, b} in which the last symbol is not ‘a’.

Using the approach of the previous problem, construct a DFA accepting
the language of strings that satisfy both of these descriptions.

(Solution)

46. What is that language? Explain why it is not empty.

(Solution)

The language is {€}. It is not empty because the empty string has no
last symbol and, thus, does not end either with ‘a’ or ‘b’.

Closure Properties of the Class of Regular Languages 41

47.

48.

49.

20.

ol.

Let Ly = L(a*ba*) and Ly = L(b*a). What is L;/Ls?
(Solution)

If w € Li/Ly then there is some v € L(b*a) such that wv € L(a*ba*).
Thus wv = a’ba’ for some 7 and j and v = b*a for some k. Consequently,
both b and j must equal 1. Therefore wv = a’ba for arbitrary ¢ and
w = a*. Thus, L1/Ly = L(a*)

Let Ly = L(ba*b) and L; remain the same. What is L;/L3?

(Solution)

Here, w € L;/L3 implies that there is some v € L(ba*b) such that
wv € L(a*ba*). But, then, wv would contain a single ‘0’ while v, a

substring of w, contains two—a contradiction! Hence there is no such w
and L,/Ls = ().

Show that w € L(M') & w € Ly/Ls.

(Solution)

To show that w € L(M') = w € L,/L,, suppose w € L(M'). Then
6(qo, w) = ¢ for some ¢ such that (Jv € Ly)[6(q,v) € F]. Thus there is
some v € Ly such that 6(6(go, w),v) € F, which is to say, é(go, wv) € F.
Thus, there is some v € Lo such that wv € Lq, in other words, w €
Ll/LQ.

For the converse, w € L1/Ls implies there is some v € Ly sAu(A:h that wv €
Ly. Thus (g0, wv) € F and v is a string in Lo such that §(6(qo, w),v) €
F. Consequently, §(qy, w) € F', in other words, w € L(M’).

Suppose L is any nonempty language. What is ¥*/L?

(Solution)

¥*/L ={w | (Jv € L)[wv € £*]}. Since L is non-empty, there is such
a v for any w € ¥* (in fact, any string in L will do for all w). Thus
¥*/L=X*

What is L/(?

(Solution)

L/O) ={w | (v € O)[wv € L]}. But, as there are no strings at all in ()
there are no such v for any w. Thus L/() = .

42

52.

93.

54.

Basic FL'T—VFinite and Regular Languages

What is L/{e}?
(Solution)

L/{e} ={w | (v € {e})[wv € L]}. If there is any w € L then w-e € L
and L/{e} = L. On the other hand, if there is no w € L then there is
no such v and L/{e} = 0. But so does L. Therefore L/{c} = L.

Suppose Lq, Ly and L3 are arbitrary languages. Show that
Ll/(LZ U Lg) - (Ll/Lz) U (Ll/Lg)

and that
Ll/(LQ N L3) == (Ll/LQ) N (Ll/Lg)

(Solution)

Li/(LyULs) ={w | (Fv € Ly U Ls)[wv € Lq]}
= {w| (Fv € Ly)[wv € L1]} U{w | (3v € Ls)[wv € L]}
= (Ly/Ly) U (Ly/L3).

Li/(LyN Ls) ={w | (v € LyN Ly)[wv € Ly]}
= {w| (Fv € Ly)[wv € L1]} n{w | (v € Ls)[wv € L]}
= (Ll/LQ) N (Ll/Lg)

Suppose, again, that L;, Ly and L3 are arbitrary languages. What is
Ly/(Ly/L3)?

(Solution)

Ly/Ly ={v | (Ju € L3)[vu € Lo]}.
Ll/(LQ/Lg) = {’LU | (ElU € LQ/Lg)[’LUU € Ll]}
Li/(Ly/L3) ={w | (Fv,u)[u € Ly and vu € Ly and wv € L4]}.

Which is to say, the strings of L;/(Lo/Ls) are those prefixes of strings in
L, which are completed by prefixes of strings in Ly which are, themselves,
completed by strings in Ls.

Closure Properties of the Class of Regular Languages 43

55. What is (Ll/LQ)/L37

(Solution)

Ly/Ly ={z | (v € Lq)[zv € L1]}.

(L1/Lg)/Ls = {w | (3u € Ls)[wu € L/Ls]}.

(L1/Ly)/Ls = {w | (Ju € L3)[(Fv € Lq)[wuv € Ly]|} (x = wu).
(L1/Ly)/ Ly = {w | (Ju € Ls,v € Ly)[wuv € Ly]}.

Which is to say, (Ll/LQ)/Lg, = Ll/(L3 . LQ)
Ly

P —
w o u v
S~ N~

L3 Lo

56. Let L = L(((a + ba)*ba)*) and f = {a — L(ab*a),b — L(b*ab*)}. Give
a regular expression for the language f(L).

(Solution)
((ab*a + b*ab*ab*a)*b*ab*ab*a)*.

57. Why is A" an NFA rather than another DFA.
(Solution)

Since 0 is not one-to-one, it may be the case that 6(q1,0) = §(g2,0) = p
for 1 # qo. Then {q1,9.} C §'(p, 0).

58. Complete the proof by showing that
w € L(A) & w? e L(A).

(Solution)

First we prove the lemma: for all ¢,p € Q, S(g,w) =p < qed(pwh).
To show that 6(g,w) = p = ¢q € ¢'(p, w®) (induction on the structure of
w):

(Basis:)

3(q,€) = g and g € &'(q,eR).

(IH:)

Suppose that w = vo and that the claim is true of v.

44

Basic FL'T—VFinite and Regular Languages

(Ind:)

Suppose 5(q,v o) = p and 5((], v) = ¢;. Then §(q1,0) = p.
By the IH, q€5’(q1, Ry,
By the definition of ¢', ¢; € §'(p, o).

A

By an analog of Exercise 24, 0(¢, wv) = Uy ¢4 (g [6(q', v)].

Thus, &' (p, ov?) = Uyes pa)[g(R
Since 1 € ¢'(p,0) = 8'(p,o) and q € &'(q,vR), it follows that ¢ €
o' (p, ov™) = o'(p, w).

To show that ¢ € 5'(p, wl) = 3((], w) = p (induction on the structure of
w):

(Basis:)
Suppose w = £. Since p,q €) and there are no e-transitions in the

portion of A’ restricted to @, '(¢,¢) = {q}. Therefore, g € §'(p,eR) =
g=pand d(q,e) = q=p.

(IH:)
Suppose w = vo and the claim is true of v.
(Ind:)

To show that ¢ € 8'(p, (vo)®) = é(a, vo) = p:

qed(p, (UG)R) =qed(povt)=qe 5’((]1, vR) for some ¢, € §'(p, o).
By the definition of ¢, q1 € ¢'(p, o) implies §(q1,0) = p.

By the IH, q€(5(q1,):>(5(q,) =q1-

Then, 5(q,) = 6(q, vo) = 8(6(q,v),0) = p.

To prove the theorem:
w € L(A) 6(go, w) = p, for some p € F

p € &(gh,€) and gy € o' (p, w®)

go € 0'(gh, w™)

wl € L(A).

Tt 0

59. Prove that the class of regular languages is closed under Suffix.

Closure Properties of the Class of Regular Languages 45

(Solution)

Suffix(L) = {w | (Jv € E*)[vw € L]}
= {w]| (I € &) [wh' € LR]}
= {w® | w € Prefix(LR)}
= (Prefix(L®))®

60. Consider again a system of two processes (A and B) exchanging messages
as in Exercise 25. Again A sends either ‘m;’ or ‘my’ and B acknowledges
with ‘ai’, ‘ay’ or ‘aiy’, where ‘a;’ acknowledges ‘m;’, ‘as’ acknowledges
‘ms’ and ‘a;p’ acknowledges both. In contrast to Exercise 25, we will
now allow any number of ‘m;’s or ‘msy’s to be outstanding. We require
only that every message is eventually acknowledged and that no ac-
knowledgment is sent unless there is some outstanding message(s) of the
corresponding type. Show that the set of finite sequences of messages
that satisfy this protocol is not regular.

(Solution)

Call this language Lg. _

Let Ly = Lgo N L(mia}). Then Ly = {mia] | 0 <i=j}.

Let h = {my; — a,a; ~ b}. Then h(L;) = {a'¥’ | 0 < i = j}, our
canonical non-regular language.

Since the class of regular languages is closed under intersection and ho-
momorphism, if Lgy were regular then A(L;) would be also. Thus Lgg
cannot be regular.

46

13

61.

62.

Basic FL'T—VFinite and Regular Languages

Some Decision Problems for the Class of
Regular Languages

Why don’t the instances of these problems just include the languages
themselves rather than representations of the languages?

(Solution)
The languages are, in general, infinite but we require our instances to be

finite (otherwise even the process of reading them would not terminate).

Which of these properties are algorithmically decidable for the class of
finite languages?

(Solution)

All of them. Since these languages are finite we can assume they are
explicitly included in the instance. Finiteness is trivially true. The rest
are implemented by simply examining the language.

13.1 Membership

63.

64.

Which is to say, the length of the computation in transitions (steps) of
the DFA is |w|. What is the length of the computation in terms of its
representation as a sequence of IDs; how many IDs are in the sequence?

(Solution)

|w| + 1—including one initial ID and one successor for each transition.

Can we establish such a bound on the computations of NFAs without
e-transitions? With them?

(Solution)

Without e-transitions the same argument applies; each step consumes
exactly one symbol. Moreover, because of the way we defined directly
computes for NFAs with e-transitions, each step of the computation of
such an NFA also consumes exactly one symbol of the input. So, again,
the same argument applies regardles of the species of automaton we
employ.

Some Decision Problems for the Class of Regular Languages 47

This is not the case for acceptance in terms of paths in the transition
graph. The problem is, with e-transitions paths may contain loops of
arbitrary length that do not consume any input. However, no such loop
is essential in accepting the string. Thus, if there is any path including
such loops there is one without them. We can, therefore, limit ourselves
to paths in which no such loops occur. How long can these be? As an
upper bound, we might allow for each e-transition to be traversed once
between each o-transition. This bounds the number of edges to |w| + 1
times the number of e-transitions plus 1. So, with a little more effort,
we can get a finite bound on the length of the paths we need to check.

13.2 Finiteness

65. Give an algorithm for deciding finiteness that is based on known algo-
rithms for deciding problems for graphs.

(Solution)

The language will be infinite iff there is some path from ¢, to a final state
which includes a cycle. We can detect this by finding all the cycles in the
graph and all the acyclic paths from ¢q to a final state. The language is
infinite iff these have some state in common.

13.3 Equivalence
66. Sketch an algorithm to decide isomorphism of edge-labeled graphs.

(Solution)

Suppose the instance is A = (@, %, 4, g, F) and A" = (Q', X', ¢, ¢}, F').
First of all, these are not isomorphic if ¥ # ¥'. We will assume, then,
that the alphabets are the same. We will also assume that they are both
connected: every state in @) (respectively, @)') is reachable by some path
from gy (respectively, gj).

To show that these are isomorphic—that they are identical except, pos-
sibly, for the names of the nodes—we need to exhibit a mapping A of
the nodes in @ to those in Q' that shows how to relabel the nodes in)
to transform A into A’. This mapping must be functional: it must not
relabel any node in) with more than one node in ()’; it must be total: it
must relabel every node in @); it must be one-to-one: it must not relabel

48

67.

68.

69.

Basic FL'T—VFinite and Regular Languages

more than one node in) with the same node in)'; and it must be onto:
the result of relabeling Q must be all of @’. (All of which is to say that
h is a bijection from @ to @)'.) Moreover, it must preserve the edges: if
h(q) = ¢ then, for all o it must be the case that h(d(q,0)) = 6'(¢', 0).
Finally, it must map final states to final states: {h(q) | ¢ € F} = F".
(We will call this set h(F).)

We can build ~ inductively:

o Let h(q) = -

o If h(q) = ¢, for each o € X, let h(d(q,0)) = 6'(¢',0).

e Nothing else.
Implementing this as an algorithm we repeat the inductive step until
there is no change in h. To see that this terminates, note that since)
and @' are finite there are only finitely many pairs (g, h(q)). Thus, we
can add only finitely many values to h before it becomes all of Q x Q' at

which point it cannot get any larger. (In practice, it will, presumably,
usually converge sooner.)

It is clear that this map preserves the edge relation and, since A is
connected, it will be total. It is a simple matter to check if it is one-to-
one, if it is onto, and if A(F) = F'. The automata are isomorphic iff the
answer to all of these questions is ‘YES’.

Suppose L(A;) C L(Ay). What is L(A;) \ L(Az)?
(Solution)

0.

Suppose L(Ay) C L(A;). What is L(Az) \ L(A;)?
(Solution)

0.

Show that there is an effective construction that, given DFAs A; and
Aj, builds a DFA accepting L(A;) \ L(A2) U L(A3) \ L(A,).

(Solution)

Construct automata for L(A;)\ L(Ap), for L(A3)\ L(A;) and, finaly,

for thier union.

Some Decision Problems for the Class of Regular Languages 49

70.

71.

72.

Use this result, along with decidability of emptiness, to show that equiv-
alence of DFAs is decidable.

(Solution)
& L(A1)\ L(Ay) = L(Az) \ L(A) =0
& L(A))\ L(A3) U L(Ay) \ L(A;) = 0.

In this way we can combine the constructions for difference and union
and the decision procedure for emptiness to make a decision procedure
for equivalence.

Prove that the question of whether a given regular language is closed
under reversal is decidable.

(Solution)

L is closed under reversal iff L® C L. Note that A C B = AR C BR,
Hence, L® C L = (L®)® C LR, which is to say, L C LR

Thus, L is closed under reversal iff L = LR,

To decide this, construct the machine for the reversal of the given DFA
and use the equivalence algorithm to decide if the two machines accept
the same language.

Show that decidability of both emptiness and membership is a conse-
quence of decidability of equivalence.

(Solution)

Note that) is accepted by the one-state DFA with no final states. (There
is actually one of these for each alphabet.) To determine if a given DFA
accepts the empty language use the equivalence algorithm to decide if it
accepts the same language as the DFA for the empty language over the
same alphabet.

Deciding membership is only slightly more complicated. Given a DFA A
and a string w, construct a DFA A,, which accepts the singleton language

20

Basic FL'T—VFinite and Regular Languages

{w}. This can be done as follows:

Q = {v | v is a prefix of w} U {fail}
Go = ¢
F={w}
vo if vo is a prefix of w,

0(g,0) = { fail otherwise .

2 _Jw if v is a prefix of w,
Then d(z, v) = { fail otherwise .

and L(Ay) = {v | d(e,v) = w} = {w}.
Next, build the DFA that accepts AN A, and pass this to the algorithm

for deciding emptiness. w € L(A) iff AN A, # 0. Return ‘YES’ iff the
emptiness algorithm returns ‘NO’.

