Basic Formal Language Theory—Solutions 27

8

26.

27.

28.

Non-Deterministic Finite-State Automata (NFAs)

Give two distinct accepting computations of the NFA of the previous
example on the string ‘abab’.

(Solution)

({0, abab) , (1, baby , (3,ab), (3,b), (2, ¢))
({0, abab) , (3, bab) , (0, aby , (1,b),(0,¢))

Give two distinct non-accepting computations of the NFA of the previous
example on the string ‘abab’.

(Solution)

({0, abab) , (1, bab) , (1,ab) , (2,b))
({0, abab) , (1, bab) , (0, aby , (1,b),{1,¢))

Prove the claim: for all w € ©* and ¢ € Q, §'(¢, w) = 6(q, w).

(Solution)
First note that

e-Closure(AU B) = U [e-Closure(q)]

qeAUB

= U[S—Closure(q)] U U [e-Closure(q)]
geA gEeB
= ¢&-Closure(A) U e-Closure(B).
From which it follows
e-Closure(d(g, w)) = d(q, w)

since

e-Closure(d(q,)) = e-Closure(e-Closure(q)) = e-Closure(q) = 6(q,).

28

and

Basic FL'T—Finite and Regular Languages—Solutions

e-Closure(d(q, wo)) = e-Closure(U [e-Closure(4(q’, 0))])

¢'€8(q,w)
= U [e-Closure(e-Closure(d(q’, 0)))]
q'€d(g,w)
= U [e-Closure(d(q', 0))]
q'€d(g,w)

~

= (¢, wo).

Proceeding by induction on w.

(Basis:)

(Induction:)

~

8 (¢, wo)

d(g,0) = &'((g.¢€),0)
(g, 0)

A

= d(q,0).

U [6(¢,0)] by defof §

q' €¥' (q.w)

U #(d,0)] byH
q'€d(qw)

L [6(¢,0)] by def of &
q'€d(q,w)

U [U [eClosure(8(¢",0))]] by def of §

7' €d(qw) ¢'€d(q ¢)

Ul U [eClosure(é(¢”,)]l

q'€d(q,w) 9" €e-Closure(q')

U [e-Closure(6(¢", 0))]]

q’ Es_closuI‘G(s(Qaw))

Non-Deterministic Finite-State Automata (NFAs) 29
= |J [e-Closure(s(¢", 0))]]
q" €b(qw)
= §(q, wo).
29. Convert the following NFA to a DFA.
Jolo
383 w
(Solution)
q | d(g,a) | 6(q,b) | 0(g,¢) q || € — Closure q | 9'(g,a)|d'(g,b)
0 {2} {1} {3} 0 {0,3} 01 {2,3} | {1,4}
1| {o} 0 0 1 {1} 1 {0,3} 0
2 {0} [0 2 {2} 2] {0,3} 0
3) {3} | {4 | 0 3 {3} 3| {3} | {4}
41 {3} 0 0 4 {4} 4] {3} 0
F=1{0,3}
S| 6"(S,a) | §"(S,b)
{oy| {23} | {14}
{2,3} | {0,3} {4}
{1,4} || {0,3} 0
{0,3} || {2,3} {1,4}
{4}] {3} 0
0 0 0
{3r] {3} {4}

F= {{O}a {2’ 3}’ {0’ 3}{3}}

30

30.

31.

Basic FL'T—Finite and Regular Languages—Solutions

The Equivalence of DFAs and Regular Ex-
pressions

Give the formal definition of A if A; and A, are as in the previous case.

(Solution)

A = <Q1 U Q2 U {QOa Qf}a Ea qo, 55 {Qf}>
where for all ¢ € Q1 UQ2U {qo,¢s} and z € X U {e}:

(01(g, x) if g € @1\ ¢,
d2(g,) if ¢ € Q2\ ¢},
01(q, x) if ¢ = ¢} and x # ¢,
(g, 7) = q d2(g,) if ¢ = ¢} and = # ¢,
61(q,e) U{gs} ifg=gq;andz=c¢,
d2(q,€) U{qs} ifg=qfand z=c¢,
L {0, 9 ifg=¢qpand x =¢.

Why does this construction not simply use the initial and final states
of A; as the initial and final states of A, simply adding e-transitions
from ¢; to ¢ and from ¢} to ¢5? Give an example of an automaton
A; for which the simpler construction fails. This example will not be
an automaton which would be constructed from a regular expression.
The simpler construction will work in the context of the proof, but the
induction hypothesis needs to be strengthened slightly. How? Explain
why this suffices.

(Solution)

With the simpler construction we cannot (in general) guarantee that
every path from the initial state of the modified automaton to its final
state will be the concatenation of zero or more such paths through the
original automaton. If there is any w such that ¢ € 5(q(’),w) but ¢; ¢

~

d(qy, w), i.e., a path that re-enters the start state which is labeled with
a string that is not in L(A;) then adding an e-edge from ¢, to ¢ will,
effectively, add that string to language. For example, let A; be:

G OEOEIN)

The Equivalence of DFAs and Regular Expressions 31

32.

33.

34.

Here L(A;) = L((ab)*aa). But the simpler construction, in adding an
e-transition from ¢ to ¢} effectively adds L((ab)*) to this. The result is
that, rather than L(((ab)*aa)*), L(.A) will be L(((ab)* (¢ + aa))*). Note
that this would also fail if the edge from ¢} to g were an e-transition (we
would get L(a*) rather than L((aa)*)). The reason this would actually
be harmless, given the rest of the construction, is that we never have any
transitions into the initial state except for (in the modified construction)
possibly an e-transition from the final state. Thus an e-transition from
the initial to the final state will not add any strings other than ¢ to
the language. To account for this, the IH could be strengthened to say
something like: “has a single final state and for all strings w € rroif
@ € 0(go,w) then w € L(A).”

Construct an NFA accepting L((a + bc)*a + b).

@
a

o OO0 ‘OAOQ-O\
\—/
-~ ©

(All unlabeled transitions are e-transitions.)

(Solution)

Show that if P = {e} then every set that contains () as a subset is a
solution to R = @) + RP.

(Solution)
Suppose @ C R. Then, L(Q + R) = L(Q) U L(R) = L(R) and

R=Q+R{e} =R
Give an example of an R, P and @ such that R = Q+ RP but R # QP"*.

(Solution)
Let R ={a,b}, @ = {a}, and P = {e}. Then

{a, b} = {a} + {a,b}H{e} = {a, b}

32 Basic FL'T—Finite and Regular Languages—Solutions

but

{a}{e}” = {a} # {a,b}.

35. Construct a regular expression denoting the language accepted by the
following DFA.

grO.Comosy

(Solution)

RO = 8+R06L+R16L

Ry = Ry
R2 = R1b+R2(a+b)
R(] = £+ R()U, + Roba
= e+ Ry(a+ ba)
R() = (CL + ba)*
R1 = (CL + ba)*b
Ry = (a+ ba)*bb(a+ b)*

Since F' = {0}, L(A) = L((a+ba)*). Note that there is actually no need
to solve for either R, or Ry in this case.

