Basic Formal Language Theory 95

8 Non-Deterministic Finite-State Automata (NFAs)

8.1 Basic NFAs

Our DFAs are required to have transition functions that are total (so there is a
next state for every current state and input symbol) and to return a single state
(so there is a unique state for every current state and input symbol). Thus,
the next state is fully determined by the current state and input symbol. As
we saw in the previous section, this simplifies the proof that the DFA accepts
a specific language. There are many circumstances, though, in which it w&ill
be simpler to define the automaton in the first place if we allow for there to
be any one of a number of next states or even no next state at all. We will
still require transitions to be defined by a function, but it will now return a
set of states rather than a single state.

Definition 33 (NFA without ¢-Transitions) A Non-deterministic Finite-
state Automaton (NFA) (without e-transitions) is a 5-tuple: (Q,%, 6, qo, F)

where:
Q, X, q and F' are as in a DFA,

§:Q xX — P(Q) is the transition function
(mapping a state and an input symbol to the set of choices of next state)

Here P(Q) denotes the powerset of Q—the set of all of its subsets. It should be
emphasized that the transition function #s still a function and is still total. We
have accommodated the possibilities of there being either more than one or no
potential next state by returning the set of next states: if card(d(g,0)) =1,
then the transition on (g,o) is deterministic; if it is zero then there is no
transition licensed for (g, o) and the NFA will “crash”—halt prior to scanning
the full input.
Instantaneous descriptions of NFAs are identical to those of DFAs.:

Definition 34 (Instantaneous Description (for both DFAs and NFAs))
An instantaneous description of A = (Q, %, d, qo, F'), either a DFA or an NFA,

is a pair (q,w) € Q x X*, where q the current state and w is the portion of the
input under and to the right of the read head.

The directly computes relation is nearly also the same—we need only to
account for the fact the transition function returns a set of states rather than
a unique next state.

56 Basic FL'T—VFinite and Regular Languages

Definition 35 (Directly Computes Relation (for NFAs without e-transitions))

(g, w) = (p,v) & w=ovandp € (g, 0).

Note that while this is defined essentially identically for both DFAs and NFAs,
in the case of NFAs it is no longer even partial functional; an ID may well have
many successors. Moreover, it is no longer true that then only IDs without
successors are those in which w = ¢.

The definition of computation is, again, identical for both NFAs and DFAs.
We do, however, need to amend our notion of closure under \—A to account for

the fact that, while there may now be more than one successor of an ID, only
one of those can actually follow it in a single computation.

Definition 36 (Computation (for both DFA and NFAs)) A computation
of a DFA A = (Q,%,0,q0, ') from state q; on input w is a sequence of IDs
({q1,w1),...) in which, for all i > 0, {gi—1,w;_1) |_A (gi, w;) and which is

closed under |—A .

Here closed under |—A means: for all 4, if (g;, w;) has any successor, than one

of those successors will be included in the sequence as (gj;1, w;+1). The fact
that |—A is no longer partial functional implies that we can no longer speak of

the computation of A on {(g;,w;). What’s more, while every computation is
finite, it is no longer true that they all take exactly |w| steps. Computations
end when they reach an ID with no successor; this can now be either because
the entire input was scanned or because an ID (g, o - w) was reached for which
d(g,0) = (. Only the first case represents successful processing of w; by A;
we need to be careful to distinguish “halting” computations from those that
“crash”.

Nevertheless, except for weakening “the computation” to “a computation”
there is no need to modify the definition of the computes relation:

Definition 37 (Computes Relation (for both DFAs and NFAs))
(g, w) \—; (p,v) (“{g, w) computes (p,v) in A”) iff (p,v) occurs in a compu-
tation of A on (q,w).

(g, w) \—Z (p,v) (“{qg,w) computes (p,v) in n steps in A”) iff (p,v) is the

(n + 1) element of a computation of A on {q,w). (Le., iff (p,v) is an n'®

successor of {q,w).)

Non-Deterministic Finite-State Automata (NFAs) 57
The definition of the language accepted by the automaton does not need be
modified at all:

Definition 38 (Language Accepted by a DFA or NFA) The language ac-
cepted by a DFA A= (Q, X%, 9, qo, F) is

L(A) = {w | {go,w) I {g,€),0 € F}
The fact that we require the final ID of the computation accepting w € L(.A)
to be of the form (g,) means that computations that crash before scanning

all of the input are ruled out.

Example: For example:

Q
) 0 1 2 3
¥ la|{1,3}] {2,3} [{3}| {3}
5| 0 [10,1,2,31] 0 |{0,2)
F=1{0,2}

The language accepted includes the string ‘abb’ as witnessed by the computa-
tion
({0, abd) , (1, bb) , (3,0) ,(0,¢e)).

There are also other accepting computations on ‘abb’:

({0, abb) , (1,bb) , (1,b),(0,¢&))
({0, abb) , (1,bb) ,(1,b),(2,¢))

as well as computations that fail to accept ‘abb’:

(0, abb) , (1,0b) , (1,b),

1,b (3,))
({0, abb) , (1, bbY, (2, b)

26. Give two distinct accepting computations of the NFA of the previous
example on the string ‘abab’.

27. Give two distinct non-accepting computations of the NFA of the previous
example on the string ‘abab’.

58 Basic FL'T—VFinite and Regular Languages

NFAs correspond to a kind of parallelism in the automata. We can think
of the same basic model of automaton: an input tape, a single read head
and an internal state, but when the transition function allows more than one
next state for a given state and input we keep an independent internal state for
each of the alternatives. In a sense we have a constantly growing and shrinking
set of automata all processing the same input synchronously. For example, a
computation of the NFA given above on ‘abaab’ could be interpreted as:

w: e a b a a b (b)

q:
3 0)
% 2 ()

s(0,w): {0} {1, 3} {0,1,2,3}{1,2,3} {2,3} {0,2} (0)

This string is accepted, since there is at least one computation from 0 to 0
or 2 on ‘abaab’. Similarly, each of ‘c’, ‘ab’, ‘aba’ and ‘abaa’ are accepted, but

a’ alone is not. Note that if the 1nput continues with ‘b’ as shown there will
be no states left; the automaton will crash. Clearly, it can accept no string
starting with ‘abaabb’ since the computations from 0 or ‘abaabb’ end either
in (0,b) or in (2,b) and, consequentially, so will all computations from 0 on
any string extending it. The fact that in this model there is not necessarily
a (non-crashing) computation from ¢, for each string complicates the proof
of the language accepted by the automaton—we can no longer assume that if
there is no (non-crashing) computation from gy to a final state on w then there
must be a (non-crashing) computation from gy to a non-final state on w. As
we shall see, however, we will never need to do such proofs for NFAs directly.

8.2 Transition Graphs of NFAs (without e-transitions)

In terms of the transition graph of the automaton, if 6(¢,0) = {q1, 2, .., @}
then there will be an edge labeled o from state ¢ to each of the ¢;,qo, ..., qx-
This means that if there is a path labeled w leading from some ¢y to ¢, then
there are paths labeled wo from ¢y to each of the ¢1,¢,...,q. In the case
that d(¢q, o) = (@ there is no edge labeled o from state g in the transition graph
and no path labeled wo that visits ¢ in its next-to-last state.

Example: The transition graph of the NFA of the example of the last section
is given in Figure 3.

Non-Deterministic Finite-State Automata (NFAs) 59

Q
s| 0 1 2 | 3

¥ la|{1,3}] {2,3} [{3}]| {3}
o [{0,1,2,3Y 0 |{0,2}
F =1{0,2}

Figure 3: An NFA and its transition graph.

Clearly, the path function also needs to return sets of states rather than
states:

Definition 39 (Path Function of a NFA (preliminary version)) The path
function 4 : Q x ©* — P(Q) is the extension of § to strings:

e Basis: 5(q,€) ={q}, for allq € Q.
o Induction: Ifqg € Q, w € ©* and o € ¥ then §(q, wo) = Uyesquml0(d o)l
e Nothing else.

This just says that the path labeled ¢ from any given state ¢ goes only to
q itself (or rather never leaves ¢) and that to find the set of states reached
by paths labeled wo from ¢ one first finds all the states ¢’ reached by paths
labeled w from ¢ and then takes the union of all the states reached by an edge
labeled o from any of those ¢'. Another way of expressing it is

8(g,wa) = {q" | (3¢' € b(g,w))[q" € 8(d',0)]}.

We will still accept a string w iff there is a path labeled w leading from
the initial state to a final state, but now there may be many paths labeled w

60 Basic FL'T—VFinite and Regular Languages

from the initial state, some of which reach final states and some of which do
not. In the context of transition graphs, we need to modify the definition of
the language accepted by A so it includes every string for which at least one
path ends at a final state.

Definition 40 (Language Accepted by a NFA) The language accepted by
a NFA A =(Q,%,0,q, F) is

A~

L(A) = {w e ¥ | §(qo,w) N F # 0}.

8.3 NFAs with e-Transitions

We now add an additional degree of non-determinism and allow transitions
that can be taken independent of the input—e-transitions.

RORRORO
VY

Here whenever the automaton is in state 1 it may make a transition to state
3 without consuming any input. Similarly, if it is in state 0 it may make such
a transition to state 2. The advantage of such transitions is that they allow
one to build NFAs in pieces, with each piece handling some portion of the
language, and then splice the pieces together to form an automaton handling
the entire language. To accommodate these transitions we need to modify the
type of the transition function to map pairs drawn from @ and X U {¢} to
subsets of ().

Example:

Definition 41 (NFA with e-Transitions) A Non-deterministic Finite-state
Automaton (NFA) (with e-transitions) is a 5-tuple: (Q,%, 9, qo, F') where Q,
Y, qo and F are as in a DFA and 6 is of the type Q@ x (XU {e}) — P(Q),
where P(Q) denotes the power set of Q, i.e., the set of all subsets of Q.

Non-Deterministic Finite-State Automata (NFAs) 61

We must also modify the definitions of the directly computes relation and
the path function to allow for the possibility that e-transitions may occur
anywhere in a computation or path. The e-transition from state 1 to state
3 in the example, for instance, allows the automaton on input ‘a’ to go from
state 0 not only to state 1 but also to immediately go to state 3. Similarly,
it allows the automaton, when in state 1 with input ‘6’, to move first to state
3 and then take the ‘b’ edge to state 0 or, when in state 0 with input ‘a’, to
move first to state 2 and then take the ‘a’ edge to state 3. Thus, on a given
input ‘o’, the automaton can take any sequence of e-transitions followed by
exactly one o-transition and then any sequence of e-transitions. To capture
this in the definition of we start by defining the function e-Closure which,
given a state, returns the set of all states reachable from it by any sequence of
e-transitions.

Definition 42 (e-Closure of a State) The e-Closure of a state q of an au-
tomaton A = (Q, %, 0, qo, F) is defined inductively as follows:

e Basis: q € e-Closure(q).
e Ind: If ¢’ € e-Closure(q) then 6(q',€) C e-Closure(q)
e Nothing else.

The e-Closure of a set of states S C @ is

e-Closure(S) & U [e-Closure(q)].

ges

With this we can modify the definitions of directly computes and the path
function.

Definition 43 (Directly Computes Relation (for NFAs in general))

(g, w) |_A (p,v) < w = ov and p € e-Closure(d(e-Closure(q), 0)).
Definition 44 (Path Function of a NFA (final version)) The path func-
tion 0 : Q X ¥* — P(Q) is the extension of 0 to strings:

e Basis: 6(q,¢) = e-Closure(q), for all ¢ € Q.

e Ind: If g€ Q, weX ando € X
then 6(q, wo) = | e-Closure(d(q’, 0))].

7 €8(q,w) [

62 Basic FLT—VFinite and Regular Languages

e Nothing else.

In essence, these say that the set of states that may reach from ID (g, o - w) are
those that can be reached by making any number of e-transitions and exactly
one ¢ transition, and that to find the set of states reachable by a path labeled
w from a state ¢ in an NFA with e-transitions start by finding the set of states
reachable from ¢ using only e-transitions and then, for each symbol ¢ of w (in
order) find the set of states reachable from those by an edge labeled o and
then the set of states reachable from those by any sequence of e-transitions,
etc.

Nothing else in the definitions need change. The automaton still accepts
w if there is any computation on {(gg, w) that terminates in a final state after
scanning the entire input. Equivalently, it accepts w if there is a path labeled
w from the initial state to a final state, which is to say, if 6 (g0, w) includes any
member of F. Note that the automaton of the example above will accept ‘c’
since state 2 is in e-Closure(0) and, therefore in §(0, ¢).

8.4 Equivalence of NFAs with and without e-transitions

It is not hard to see that e-transitions do not add to the accepting power of the
model. The effect of the e-transition from state 1 to state 3 in the example,
for instance, can be obtained by adding ‘a’ edges from 0 and 1 to 3 and a ‘b’
edge from 1 to 3. Similarly, most of the effect of the e-transition from 0 to
2 can be obtained by adding an ‘a’ transition from 0 to 3 and ‘b’ transitions
from 1 and 3 to 2. Note that in both these cases this corresponds to extending
§(q, o) to include all states in 6(q, o). The remaining effect of the e-transition
from 0 to 2 is the fact that the automaton accepts ‘c’. This can be obtained,
of course, by simply adding 0 to F'. Formalizing this we get a lemma.

Lemma 8 (Equivalence of NFAs with and without e-transitions) A lan-
guage L C X* is L(A) for an NFA with e-transitions A iff it is L(A’) for an
NFA without e-transitions A'.

Proof: Note, first, that every NFA without e-transitions is trivially an NFA
with (no) e-transitions as well. For the other direction we will show how,
given an NFA with e-transitions, to construct an NFA without e-transitions

Non-Deterministic Finite-State Automata (NFAs) 63

that accepts the same language.
For A =(Q,%,0,q0, F) let A'=(Q,%,¢', qo, F') where

~

d(g,0) = 6(q,0), forallge Q and o0 € &

and = 4 Fular if (qo,e) N F # 0,
F otherwise .

Note that ¢’ includes no e-transitions and, therefore, A’ is the appropriate
type of NFA. To show that L(A") = L(A) we need to establish that

& (go, w) N F' # 0 < §(go, w) N F # 0.

This would, of course, follow if we could show that ¢’ (¢, w) = 5((], w) for all ¢
and w, and it is not hard to see that for non-empty w this will be the case.
The problem, of course, is that it will not be the case for w = ¢ since, by
definition,

d'(g,€) = {q}

while

~

(g, €) = e-Closure(q).

But the ‘e’ case is handled by the fact that gy has been added to F’ if 5((]0, g)N
F # (. Thus,

& (go,€) N F' # 0
g € F' X
g0 € For §(go,e) NF #0)

A

0(qo,e) N F # since gy € 6(qo, ¢)
e € L(A).

g€ L(A)

te 00

What remains, then, is to establish the 6 and ¢’ coincide on all strings of length
at least one. This is left to you as an exercise.

28. Prove the claim: for all w € X1 and ¢ € Q, 5’((1, w) = 5((], w).

64 Basic FLT—VFinite and Regular Languages

8.5 Equivalence of NFAs and DFAs

In general non-determinism, by introducing a degree of parallelism, may in-
crease the accepting power of a model of computation. But if we subject NFAs
to the same sort of analysis as we have used in defining DFAs we shall see that
to simulate an NFA one needs only track finitely much information about each
string. Consider, again, the example in which we modeled the computation of
the NFA as a set of automata processing the input synchronously. In order to
determine if a string w is accepted by the NFA all we need to do is to track,
at each stage of the computation (i.e., at each prefix of the input), the states
of those automata. Since there is never any reason to include more than one
automaton for each state, this will just be some subset of ()—in fact, it is
easy to see that the set of states after processing w will be just 5 (go, w). Since
@ is finite, it has finitely many subsets. Thus we can simulate an NFA with
state set () with a DFA that has a state for each subset of (). The process of
constructing a deterministic analog of a non-deterministic machine is known
as determinization.

Lemma 9 (Equivalence of NFAs and DFAs) A language L C ¥* is L(.A)
for an NFA (with or without e-transitions) A iff it is L(A") for some DFA A'.

Proof (Subset Construction): Again, if L = L(A’) for a DFA it is easy to
see that it is also L(.A) for an NFA—one in which the transition function
always returns a singleton set of states. For the other direction we, again, will
give a construction, this time one that, given a NFA, builds a DFA accepting
the same language. Because the state set of the DFA will be the set of all
subsets of the state set of the NFA this construction is known as the Subset
(or Powerset) Construction.

For A =(Q,%,0,qo, F) an NFA (for ease of proof we will assume that it does
not have e-transitions) let A" = (Q', X, Qy, d', F'), where:

Q = P@Q)
Qo {a}
§(S,0) = U[é(q, o) for each 0 € ¥ and S € Q'(i.e., S C Q)

geS

F'= {SCQ|SNF #0}.

Non-Deterministic Finite-State Automata (NFAs) 65

We must prove for all w € ¥* that
§'(Qpyw) N F' # 0 & d(go, w) N F 0.
We will do this by proving the slightly strengthened claim:
for all w € ¥*, &'(Qh, w) = 6(go, w),

by induction on |w|.
(Basis)
Suppose |w| = 0. Then w = ¢ and

5’(@6,5) = {6]0} = 5(610,8)-

(Induction)

Suppose |w| = n + 1 and that the claim is true for all strings of length n.
Then w = vo for some o € ¥ and v € ¥* of length n. To show that the claim
is true for w as well:

8'(@Q),vo) = &(5(Q),v),0) by definition of &'
= ¢'(d(qo,v),0) by IH
= U [6(¢',0)] by definition of ¢’
' €5(q0,v)
= 0(go,v0) by definition of 4.

Then

weLA) & §Q),w) eF
e QL w)NF#0(
& 5(610,111) NF#£0)
-

w € L(A).

8.5.1 Applying Subset Construction

As defined the subset construction builds a DFA with many states that can
never be reached from (. Since they cannot be reached from @ there is

66 Basic FLT—VFinite and Regular Languages

no path from Qf to a state in F’ which passes through them and they can
be deleted from the automaton without changing the language it accepts. In
practice it is much easier to build Q' as needed, only including those state sets
that actually are needed.

To see how this works, lets carry out an example. For maximum generality,
let’s start with the NFA with -transitions given above, repeated here:

When given a transition graph of an NFA with e-transitions like this there are
6 steps required to reduce it to a DFA:

1. Write out the transition function and set of final states of the NFA.
2. Convert it to an NFA without e-transitions.

(a) Compute the e-Closure of each state in the NFA.
(b) Compute the transition function of the equivalent NFA without
e-transitions.

(c) Compute the set of final states of the equivalent NFA without e-
transitions.

3. Convert the equivalent NFA to a DFA.

(a) Starting with {go} and repeating for each state set encountered
in the construction compute the transition function for each input
symbol.

(b) Compute the set of final states of the equivalent DFA.
While it is tempting to work directly from the transition graph and to combine

steps there are two reasons to not do so. First, both shortcuts are prone
to error. It is easy to miss edges when referring repeatedly to the graph

Non-Deterministic Finite-State Automata (NFAs) 67

and it is, in particular, easy to miss relevant e-transitions when trying to
simultaneously remove them and determinize the result. The second reason
is that we have only proved the correctness of the constructions eliminating
e-transitions and determinizing the result separately. While it is not difficult
to define a construction combining them, if you use such a construction you
must prove its correctness.

The transition function:

g 0(g,a) | 9(g,b) | 3(g;¢)
o) {1} 0 {2}

1) {2} | {1} | {3}

2 {3} 0 0

31 {3} | {0} 0

F = {2}.

e-Closure:
g | e-Closure(q)

01][{0,2}
1[41,3}
2 {2}
31 {3}

The transition function of the equivalent NFA without e-transitions:

(q,0)E 6(g,0)E) [e-Closure(5(¢'0))l.

¢' €e-Closure(q)

q H e-Closure(q) H 8 (g, a) ‘ d'(q,b)
0 {0,2} {1,3} 0
1 {1,3} {2,3} {0,1,2,3}

2 {2} {3} 0
3 {3} {3} {0, 2}
F'={0,2} since e-Closure(0) = {0,2} N F # (.

To construct the transition function of the equivalent DFA start with S =
Qy = {9} = {0} and compute

5"(5,0) = | J16'(g, 0))-

geS

68 Basic FL'T—VFinite and Regular Languages

for each o € X.
S H 8"(S, a) ‘ 8"(S,b)

{0}“ {1,3} ‘@

Next introduce lines for each of these state sets
S H d"(S, a) \ d"(S,b)

{0} | {1,3} |0
1,3} | {2,3} [{0,1,2,3]
) 0|0

and repeat until no new lines are introduced

S | 6"(S,a) | 6(S,b)

{or | {13} |0
{1,3}] {2,3} [{0,1,2,3}
0 0 0
2,30 {3} [{0,2}
{0,1,2,3} [{1,2,3} [{0,1,2,3}
31| {3} 40,2}
{0,2} | {1,3} |0
{1,2,3}| {2,3} [{0,1,2,3}

The set of final state F” is then the set of state sets that include states of F':

F" = {{0},{2,3},{0,1,2,3},{0,2},{1,2,3}}.

29. Convert the following NFA to a DFA.

(1) ()
44

The Equivalence of DFAs and Regular Expressions 69

9 The Equivalence of DFAs and Regular Ex-
pressions

We have now looked at two ways of defining languages—as the denotation of
a regular expression and as the set accepted by a DFA or, equivalently, an
NFA. Surprisingly, the class of languages that can be defined in the one way
turns out to be exactly the class of languages definable in the other. This
theorem, originally due to Kleene, was one of the first dramatic theorems of
Formal Language Theory. We will establish it in two parts: first we will show
how to convert any regular expression to an equivalent NFA and then we will
show how to convert any DFA into an equivalent regular expression. Since we
have already shown the equivalence of NFAs and DFAs, this will suffice.

9.1 Constructing NFAs from Regular Expressions

Lemma 10 If L C X* is L(R) for a regular expression R then it is also L(A)
for an NFA.

Proof: Not surprisingly, we will prove this by induction on the structure of the
regular expression. To simplify the proof, we will strengthen the hypothesis
slightly: TF L = L(R) for a regular expression R then L = L(A) for an NFA
A which has a single final state.

(Basis:)

e Suppose R = (). Let A be

~()

Since there are no paths from the start state to the final state L(A) =
() = L(0). Furthermore, A has a single final state.

e Suppose R = ¢. Let A be

200

70 Basic FL'T—VFinite and Regular Languages

Here the empty string is in L(.A) since there is an e-transition from the
start state to the final state, but no other strings are in L(.A) since there
are no other transitions out of either state. Again, A has a single final
state.

e Suppose R = o for some o € ¥. Let A be

200

Essentially the same argument applies in this case.

(Induction:)

e Suppose R = S; - S, where S} and S, are regular expressions and that
L(S;) = L(A;) and (S3) = L(A3) for NFAs A; and Ay with single final
states. Let A be

T~ OO (D

Formally, if Al = <Q17 Ea Q(I)a 51: {q;‘}> and AQ = <Q27 Ea Q(I)I: 627 {QQ{}) we

let
A = <Q1 U QQa Ea q()a 61 {q‘lf{ >
where for all ¢ € Q; U@y and z € ¥ U {e}:

01(g,) if g € Q1\gqp,
5(g,) = d1(qy,) if g=q; and x #¢,
q, (51(q}, 8) U {(]6' if ¢ = q} and z = ¢,
52(Q7x lfq € QQ.

Clearly there is a path from g to qgﬁ labeled w iff w = u - v where there
is a path from ¢; to ¢} labeled u and one from ¢ to ¢ labeled v. Thus
L(A) = L(A;) - L(Az) = L(S1 - Sz). Furthermore, ¢} is the sole final
state of A.

e Suppose R = S + S5 where S| and S, are regular expressions and that
L(S1) = L(A;) and L(S;) = L(A5) for NFAs A; and A with single final
states. Let A be

The Equivalence of DFAs and Regular Expressions 71

o (oD
(&) ()

30. Give the formal definition of A if A; and A, are as in the previous
case.

Clearly there is a path from gy to gy labeled w iff there is a path labeled
w from g to ¢} or one from ¢f to ¢f. Thus L(A) = L(A;) U L(Ap) =
L(S1 + Ss).

e Suppose, finally, that R = ST and that L(S;) = L(A;), etc. Let A be

RN

O

A similar formal construction applies. Here any path from ¢y to g follows
either the e-transition directly from gy to gy or consists of the concatenation
of one or more paths from g; to g}.

31. Why does this construction not simply use the initial and final states
of A; as the initial and final states of A, simply adding e-transitions
from ¢, to ¢ and from ¢} to ¢;?7 Give an example of an automaton
A; for which the simpler construction fails. This example will not be
an automaton which would be constructed from a regular expression.
The simpler construction will work in the context of the proof, but the
induction hypothesis needs to be strengthened slightly. How? Explain
why this suffices.

32. Construct an NFA accepting L((a + bc)*a + b).

72 Basic FLT—VFinite and Regular Languages

9.2 Constructing Regular Expressions from DFAs

Lemma 11 If L C X* is L(A) for a DFA A then it is L(R) for a regular
expression R.

The approach we will use to proving the lemma involves constructing and
solving a system of simultaneous equations defining, for each state, the set of
strings labeling paths from the initial state to that state. For concreteness,
we will work an example, based on the following DFA, while we develop the
proof.

For each g € @ let

Rq d:ef {w ‘ 5(q0,w) = Q}

Let’s consider which strings are in R, for a given state ¢g. Clearly R, includes
e iff ¢ = go. Otherwise, every string in R, is of the form wo, where w is in R,
and there is a transition from state p to state ¢ on o (i.e., §(p,0) = ¢). Thus

{ 16} U Uspoy=q Bo - {03] if ¢ = g0,

Ha = Ua(p,g):q Ry - {o}] otherwise .

For the example automaton, we get a system of three equations:

R() = R()CL + RQCL +e
R, = Ryb+ Rib+ Rob
R2 = Rla

Here we have used, for instance, ‘Rga’ to denote the concatenation of the
languages Ry and {a} and ‘+’ to denote union. (Equations of this form are
known as Regular Equations.)

Our objective is to obtain a solution to the system of regular equations
in the form of regular expressions denoting each of the R,. Then, since the

The Equivalence of DFAs and Regular Expressions 73

language accepted by a DFA is the set of all strings labeling paths from the
initial state to some final state, which is to say

L(A) = IR,

qgeF

we can obtain a regular expression denoting L(.A) by combining (with ‘+’) the
regular expressions denoting R, for each ¢ € F'.

The question, then, is how to obtain the solution to the system of regular
equations. The crucial step, of course, is eliminating occurrences of R, from
the right hand side of the definition of R,. For this we employ the following
lemma.

Lemma 12 Let P, Q and R be sets of strings with € ¢ P. Then the equation
R=Q+RP

has a unique solution
R=QFP".

Proof: It is useful to consider what happens when we substitute) + RP into
itself for R:

R = Q+RP
= Q+(Q+RP)P=Q+ QP+ RP?
= Q+QP+(Q+RP)P>’=Q+ QP+ QP*+ RP?

Thus, QP" C R for all i > 0. Consequently, |J,5,[QP’] C R, which is to say,
QP* C R.

In fact, R = QP* is a solution to R = Q + RP, which we can verify by
substituting QP* for Rin R =(Q + RP:

QP* = Q+ QP*P = Q(c + PP*) = QP".

74 Basic FL'T—VFinite and Regular Languages

We now need to show that this solution is unique. We will do this by showing
that whenever R = S is a solution then S C QQP*. Then, since QP* C R and
R =S we will have § = QP*.

Suppose R =S and w € S. Then, from above, we have, for all ¢ > 0,

weE QR+ QP+ QP> +---+ QP + RP,
and, in particular,
Q+QP+QP?+---+ QP 4+ RPIIT,

Now, since ¢ ¢ P every string in RP™*! is strictly longer than |w|. Thus
w ¢ RPYIH1. Tt must be the case, then, that

wWEQR+QP +QP*+--- 4+ QP

and, therefore, w € QQP*. Since the choice of w was arbitrary, we have that
w e S = we QP*. In other words, S C QP*. o

The proof of the uniqueness of () P* as a solution depends on the fact that
e ¢ P (otherwise RP!”I*! may include strings that are not strictly longer than
|w|), but the proof that Q P* is a solution does not. Presumably if £ € P then,
while QP* will still be a solution, there may be other solutions.

33. Show that if P = {e} then every set that contains () as a subset is a
solution to R = @ + RP.

34. Give an example of an R, P and @) such that R = Q+ RP but R # QP"*.

To see how to use this result to solve the system of equations, consider
the equations we obtained for the example DFA. The idea is to focus on one
equation at a time, identifying Q and P such that the equation is of the form

R=Q+ RP:

R0:R00+RQG+EZR26L+€+R0 a .
Q P
Then

Ry = QP
(Rya +€)a”

= Rpaad® +a”.

The Equivalence of DFAs and Regular Expressions 75

Substituting R;a for R,
Ry = Riaaa™ + a™.

Substituting these into the equation for R

R, = Ryb+ Rib+ Ryb

= (Ryaaa™ + a*)b+ Rib+ Ryab

= Riaaa*b+a*b+ Rib+ Riab

= a'b+ Ri(b+ ab+ aaa™b)
a'b +Ry a*b, since b + ab + aaa™b = a*b.

Q P
Then
Ry = a"b(a™b)".

Finally, substituting this into the equations for Ry and Rs:

Ry = a"b(a"b)"aaa” + o™ and
Ry, = a*b(a*b)*a.
It follows, then, that
L(A) = Ry+ Ry
a*b(a*b)*aaa* + a* + a*b(a*b)*a
a* + a*b(a*b)*aa’.

35. Construct a regular expression denoting the language accepted by the
following DFA.

grO.Comosy

