PART II

Finite and Regular Languages

28

Basic FL'T—Finite and Regular Languages

29

Part II
Finite and Regular Languages

6 Finite Languages

We’ll start with the simplest class of languages: the Finite Languages—{finite
sets of strings over some alphabet. While this, in itself, is a perfectly precise
definition of the class, it will be useful to characterize it inductively as well.

Definition 18 (Finite Languages) For any alphabet X:
e () is a finite language over X,
e The singleton set {e} is a finite language over ¥,
e For each o € X, the singleton set {o} is a finite language over X,
e If Ly and Lo are finite languages over X then:

— L1 - Ly is a finite language over 3,

— Ly U Ly 1s a finite language over Y.

e Nothing else is a finite language over .

Which is to say, the finite languages are exactly those that can be constructed
using concatenation and union from the empty language and the languages
consisting of just the empty string or the unit strings of 3.

It remains to verify that this actually defines the class of all finite languages.
Typically, it is easiest to do this in two steps: show that every language con-
structed as in the definition is finite (the class contains only finite languages)
and show that every finite language can be so constructed (it contains all the
finite languages).

Lemma 1 Any language in the class of Definition 18 is finite.

Proof: As the class is defined inductively, we will prove this by structural
induction (i.e., induction on the construction of the language).

30 Basic FL'T—Finite and Regular Languages

(Basis:)

Clearly (, €, and all the singleton languages consisting of just a unit string
from ¥ are finite.
(IH:)

Suppose that L is obtained from L; and Ls, both in the class of Defini-
tion 18, by either concatenation or union. Assume, for induction, that L; and
Lo are finite.

(Ind:)

To show that L must also be finite: The strings in L - Ly are all strings

obtained by concatenating a string from L; and a string from L,. Thus,

card(L; - Ly) < card(L; x Lg) = card(L,) - card(L,).
9. Why is it < and not just =7
The strings in L; U Ly are all strings in either L; or Ly. Thus,
card(L; U Ly) < card(L;) + card(Ls).
10. Again, why is it < and not =7

Since both the product and the sum of finite numbers are finite, L is also of
finite. .

We now turn to establishing that every language over Y that contains
finitely many strings is constructible as in Definition 18. We’ll do this in
two steps: first we will establish that every singleton language over X is con-
structible, then we will use that result to establish that every finite language
over ¥ is constructible. (At this point it you should have a pretty good idea
how we are going to proceed.)

Lemma 2 Fuvery singleton language over X is constructible as in Definition 18.

Proof: Suppose L is a singleton language over ¥. Then L consists of just a
single string; let w denote that string. We will proceed by induction on the
length of w. (Note that this is the same as induction on the structure of w
given the inductive definition of strings of Definition 1.)
(Basis:)

If w = ¢ then w is constructed by one of the base cases of the definition.

Finite Languages 31

(IH:)
Suppose that w = vo for some v € ¥* and o € Y. Assume, for induction
that v is constructible as in Definition 18.

(Ind:)
The language {o} is constructible by one of the base cases of the definition.
L is then constructible as {v} - {o}. -

Lemma 3 Fwvery finite language over % is constructible as in Definition 18.

Proof: Suppose L is a finite language. We proceed by induction on the car-
dinality of L.
(Basis:)

Suppose card(L) = 0. Then L = () and is constructible by a base case of
the definition.
(TH:)

Suppose all sets of cardinality n are constructible and that card(L) = n+1.
(Ind:)

Let w be any string in L. Then {w} is constructible by Lemma 2 and
L\{w} has cardinality n and hence, by IH, is constructible. Since L is the
union of these two constructible languages, it is constructible as well. -

11. Why does this proof not work for infinite languages as well?
[Hint: Why does the induction fail?

Putting these together, we get:

Claim 3 The class of languages defined in Definition 18 includes all and only
the finite languages.

12. Recall that we require alphabets to be finite. What happens to this
definition if ¥ is infinite—does it still define the class of finite languages?
[Hint: Surely the fact that ¥ is infinite does not make the class of
languages that can be constructed any smaller: all finite languages over
> will still be constructible. The question hinges only on Lemma 1,
which claims that only finite languages are constructible. Does the proof
of Lemma 1 depend on the finiteness of X.7]

32 Basic FL'T—Finite and Regular Languages

7 Regular Languages and Regular Expressions

The Regular Languages are those obtainable by extending our descriptive
mechanism with the Kleene closure, in some sense the simplest means of defin-
ing infinite languages.

Definition 19 (Regular Languages (Kleene)) The regular languages are
those obtainable from the finite languages by union, concatenation, or Kleene
closure.

Since the finite languages are those obtainable from the empty language and
the singleton languages consisting of just the empty string or a unit string
we can define the regular languages inductively simply by adding the Kleene
closure to Definition 18.

Definition 20 (Regular Languages) For any alphabet ¥:
e () is a reqular language over X,
e The singleton set {e} is a regular language over X,
e For each o € X, the singleton set {o} is a regular language over ¥,
e If Ly and Lo are regular languages over Y then:

— L1 - Ly s a regular language over X,
— L1 U Ly 1s a reqular language over X.

— Li* is a reqular language over X.

e Nothing else is a reqular language over X.

To facilitate reasoning about the regular languages, Kleene introduced the
algebra of Regular Expressions.

Definition 21 (Regular Expressions) For any alphabet X.:
e () is a reqular expression over X,
® ¢ is a reqular expression over Y,

e For each o € X, 0 is a reqular erpression over X,

Regular Languages and Regular Expressions 33

o If R and S are regular expressions over Y. then:

— (R-S) is a regular expression over X,
— (R+S) is a reqular expression over X,

— (R*) is a regular expression over 3.

e Nothing else is a reqular expression over Y.

Note that, by this definition, all regular expressions must be fully paren-
thesized. This is generally relaxed, adopting precedence for the operators
with “*’ binding most tightly, followed by ‘-’ and then ‘+’. Also, ‘-’ is usually
dropped, with the concatenation of two expressions being indicated simply by
their juxtaposition.

Each regular expression stands for a particular regular language, its deno-
tation. We will use the notation L(R) for the language denoted by R.

Definition 22 (Denotation of a regular expression) For any reqular ex-
pression R over an alphabet X:

(0 if R=10,
{e} if R=c¢,
L(R)d:ef< {0} ifR=0€},

L(S1) - L(S2) if R=(S1-5),
L(S1)UL(S:) if R=(S1+5),
L(S)" if R = (5.

It should be clear that a language is regular iff it is the denotation of a reg-
ular expression. (One can prove this by induction on the structure of the set—
for the only if direction—and induction on the structure of the expression—for
the if direction.)

You should verify for yourself that the denotation is well defined: that
each regular expression denotes exactly one language. This follows from the
fact that the definition of the denotation includes a case for each case of the
definition of the class of expressions and that each of the set building operations
‘U, and 7 are well defined.

\

13. What about the converse of this? Is it possible for a given language to be
the denotation of more than one regular expression? If so, give a simple
example.

[Hint: This is, in essence, asking if there are any regular languages that
can be constructed in more than one way.|

34 Basic FL'T—Finite and Regular Languages

14. Show that the basis expression ‘¢’ is redundant; every set that can be
defined using it can also be defined without it.
[Hint: Find a regular expression in which ‘¢’ does not occur but which
denotes {¢}.]

It should be emphasized that there is never any question about the meaning
of a regular expression—its meaning is exactly as defined in Definition 22. One
simply carries out the definition recursively.

Example: What is the denotation of ‘(b*a + b)*’?
Proceeding in excruciating detail:

L((b*a+b)*) = a+b))*

b*a) U L(b))*

(0*) - L(a)) U L(b))*

()" -{a}) U {b})”
b})*-{a}) U{b})"

You may wish to simplify somewhat you are not required to (and be careful
if you do—it’s easy to corrupt an otherwise correct answer).

|

15. What is the denotation of ‘(b*((ab*)*a + €))*’? Write out the each step
of the translation following Definition 22.

7.1 The Algebra of Regular Expressions

The idea that there may be many distinct expressions with the same meaning
should be familiar from the algebra of numbers. Just as we say that two
algebraic expressions are equal if the denote the same number, we will say that
two regular expressions are equivalent iff they denote the same set. And, just as
we can establish such equivalences in the algebra of numbers by applying the
familiar laws of addition, multiplication, etc., we can establish equivalences
between regular expressions by applying algebraic properties of the regular
operations on sets:

Definition 23 (Properties of the Regular Operations) If R and S are
reqular expressions (over any alphabet), we will say

R=258<L L(R) = L(9).

Regular Languages and Regular Expressions 35

For all reqular expressions R, S, and T':

Rl) R+S=S+R (+ commutative)
R2) R+0=0+R=R (0 is unit for +)
R3) R+R=R (idempotency of +)
R4) (R+S)+T=R+(S+T) (+ associative)
R5) RO=0R=10 (0 is zero for -)
R6) Re=¢R=R (¢ is unit for)
R7) (RS)T = R(ST) (- associative)
R8) R(S+T)=RS+RT
R9) (R+S)T =RT + ST (- distributes over +)
R10) (0)* =e.
R11) R*=(R+¢)"
R12) R*=R'R+e.

Each of these laws (or axioms) is justified by the properties of the correspond-
ing operations on sets:

Rl) R+S=S+R since L(R) U L(S) = L(S) U L(R)

R2) R+0=0+R=R since L(R)UD=0UL(R)=L(R)

R10) () = since L((0)7) = Upso[0] = 0° U Ujo, [0
= (e} UU 0] = {e} U0 = {] = L(e)

These axioms, along with uniform substitution of expressions for variables
(i.e., replacing each R in an equation with the same expression) and an infer-
ence rule that says, “if P = PQ+ R and Q +¢ # @ then P = RQ*” derive all
true equations in the algebra of regular expressions. (We will see more of this
last inference rule shortly.) They are somewhat easier to apply with the help
of some additional identities (which are, of course, redundant in that they are
implied by the axioms):

I1 R*=RR'=(R)=R+R*

I2 RR=e+R+R*+R3+---+ RFR*, for any k > 0
I3 R*R=RR*

4 (R+S5) =(R+S5) =(RS) = (RS)R"

I5 R(SR)* = (RS)*R

Example: To show that the regular expressions of Exercise 7 and Example 7

36 Basic FL'T—Finite and Regular Languages

denote the same language:

(0*((ab*)*a +€))*

= (b*(ab*)*a + b*e)* R8 (R=10*, S = (ab*)*a, T =¢)
= (b*(ab*)*a + b*)* R6 (R = b%)

= (b*a(b*a)* +b)* I5(R=a, S=10b")

= ((b*a)*b*a + b*)* I3 (R =b*a)

= ((b*a)*d*a + b*b+e)* R12 (R =)

= ((b*a)*b*a+bb+c+¢e)* R3(R=¢)

= ((b*a)*b*a+ec+bb+¢e)* R1(R=10, S=¢)

= ((b*a)* +b*)* R12 (twice) (R = b*a, Ry = b)
= (b*a+0b)* I4 (R=1b%a, S=0)

In practice it is almost always easier to appeal to the properties of the de-
notations of the regular expressions, particularly when establishing identities.

Example: To show that (R*)* = R* it suffices to show that (L*)* = L* for
all languages L. We can establish this by showing inclusion each way:

To show that L* C (L*)*: Suppose w € L*. Then w € J;5,[L'] and, in
particular, w € L* for some k > 0. Then -

w E Lk: Lk C U[U[Lz *)*

7>0 >0

To show that (L*)* € L*: Suppose w € (L*)*. Then w € Uj;so[(UizolL'])]
and, in particular, w € (L¥)! for some k,1 > 0. Then

e =1m*c =1

>0

Example: To show that R(SR)* = (RS)*R it suffices to show that L(ML)* =
(LM)*L, which we do, again, by showing inclusion both ways.
To show that L(ML)* C (LM)*L: Suppose that w € L(ML)*. Then w €
L -U;sol (ML) and, in particular, w € L(ML)* for some k > 0. We proceed
by induction on k.
(Basis)

If £ =0 then

L(ML)’ = L{e} = L = {e}L = (LM)°L.

Regular Languages and Regular Expressions 37

(TH)

Suppose k > 0 and L(ML)* = (LM)*~'L.
(Ind:)

Then,

L(ML)* = LML(ML)*' = LM(LM)*'L = (LM)*L.
Hence, L(ML)* = (LM)*L for all k > 0 and

w € LML = (LM)*L C | JI(LM)]- L = (LM)*L.

i>0
The other direction is similar.

16. Show that R* = R + R*.
17. Show that (R + S)* = (R*S*)*.

18. Show that R* = R* + ¢
[Hint: This one is easier using the axioms and identities. Look at the
last example again.|

7.2 Defining Languages with Regular Expressions

The characteristic operation of regular languages is iteration. When attempt-
ing to capture a language with a regular expression one good way to start is
to look for a way to split strings in the language up into blocks that repeat.
This will not always be enough, but it is usually a good start.

Example: Give a regular expression for the set of strings over {a, b} in which
every pair of adjacent ‘a’s appears before any pair of adjacent ‘b’s. Prove that
the the language denoted by your regular expression is exactly the language
described.

Let’s call this language L;. We can start by noting that strings in this
language will always have two parts (either or both of which may be empty):
one in which no ‘bb’ occurs followed by one in which no ‘aa’ occurs. Thus, it
is the concatenation of Ly, (the language over {a,b} in which no ‘bb’ occurs)
and Lgg (the similar language for ‘aa’). To be complete, we should prove this
assertion.

38 Basic FL'T—Finite and Regular Languages

Lemma 4 L, = Ly - Lgg.

Proof:
(LgzLaz C L)

Let w € Ly;Laz. Then w = wyw, where wy € Ly; and wy € Lgz. If any bb
occurs in w it must occur in wy and, similarly, any ae must occur in w;. Thus
every such aa must precede any such bb.

(L C LgsLaa?)

Suppose w € L. If no aa occurs in w then w € {e} - Lgz which is a subset of
Ly Lz Similarly for the case in which no bb occurs in w. Suppose, then, that
at least one aa and one bb occur in w. Let w = wiaaws where no aa occurs
in wy (i.e., the aa is the last aa in w). Then wy € Lgg and, since any bb must
follow the aa, wiaa € L. =
We can now develop a regular expressions for Ly and Lazz. We'll do Lg; the
expression for Lz is, of course, similar.

The insight here is that ‘b’s only ever occur singly. Any string in the
language, then, can be broken up into segments as follows:

As a regular expression: ri = a*(baa*)*(e +b).
(Note that this is not the simplest expression that denotes the language, but
it is one that will facilitate the proof of its correctness.)

Proof:
(L(ry) € L)

If w € L(ry) then w = zyz where z € L(a*), y € L((baa*)*) and z €
L(e + b). Then no ‘b’s at all occur in z and at most a single ‘b’ occurs in z.
To show that no ‘bb’ occurs in any string in y we’ll prove, by induction on the
number of iterations of (baa*), the strengthened hypothesis: no ‘bb’ occurs in
any string in L((baa*)*) and no string in L((baa*)*) ends in ‘b’. This is trivially
true for €, the base case. For the inductive step we note that if the claim is
true for all 21 € L((baa*)™) then it is also true for

1179 € L((baa*)") - L(baa*) = L((baa*)"")

Deterministic Finite-State Automata (DFAs) 39

for every xzo € L(baa*), since the ‘b’ in x5 is neither preceded or followed by
a ‘b’ and x5 ends in ‘a’. Finally we note that, if no ‘bb’ occurs in any of x, vy,
or z and neither x nor y ends in ‘0’, then no ‘bb’ occurs in their concatenation
either.
(L € L(rg):)

Let w € L. Split w into substrings immediately before each ‘b’. Then

W =Wy W1 --""- wk,

for some k£ > 0, where no ‘b’ occurs in wy and each of the w;, 1 < i < k
starts with ‘0’ and contains no other ‘b’. Since w contains no ‘bb’, each of the
w;, 1 <1 < k must contain at least one ‘a’. Moreover wy, is either a single b
or is a b followed by one or more ‘a’s. One of two cases holds, then; either

wo € L(a"), w; € L(baa™), 1 <i <k, and wy = b,

or
wy € L(a"), w; € L(baa™), 1 <i < k.

In either case w € L(r). =

Finally, we put these together and get
Ly = L(ry - 7aa) = L(a*(baa™)* (e + b)b* (abb*)* (e + a)).

19. Write a regular expression for the language over {a, b} in which no string
contains the sequence ‘bab’ as a substring. Prove that the regular ex-
pression denotes exactly that language.

8 Deterministic Finite-State Automata (DFAs)

The most restricted model of computation we will consider is very nearly the
simplest possible model. We will assume that there is a finite bound on the
amount of information the machine can store. We can model this in abstract
terms by thinking of the internal state of the machine as being a representation
of all the information it has stored. Since there is a finite bound on the amount
it can store, the machine will have but finitely many states. Schematically,
such a machine looks something like this:

40 Basic FL'T—Finite and Regular Languages

aababbcccbh\gaa
i

Internal State

Y N
Here the input is on a read-only tape which is scanned left to right by the
machine. Each time the machine reads a symbol of the input it updates its
internal state and moves the head to the right. It halts when it moves off the
right end of the tape. We can fully specify the behavior of the machine by
specifying its initial state, how it passes from one state to the next in response

to the input, and in which states it should light the ‘Y’ lamp. The machine
accepts the input, of course, iff it halts with the ‘Y’ lamp on.

Definition 24 A Deterministic Finite-state Automaton (DFA) is a 5-tuple:
(@Q,%,6,q, F), where:
@ is the set of states,
>, s the input alphabet,
0:Q xX — @ is the transition function
(mapping a state and an input symbol to the next state),
go € QQ is the start (or initial) state,
F C @ s the set of final states (or accepting states).

Note that the set () can be anything we like. It will often be useful to
take it to be a set of names with the name of a state being chosen to indicate
the significance of that state in the computation. The transition function of a
DFA will always be total, i.e., defined for every ¢ € Q and ¢ € ¥. Thus the
DFA never crashes—it will always have a next state to go to so long as there
is more input to read. The only way for the DFA to halt is for it to reach
the end of the tape. Since this allows the state set and input alphabet to be
inferred from ¢, it will generally suffice to specify only §, the start state and
the set of final states.

8.1 Computations of DFAs

In order to carry out formal proofs about the computations of such a machine
we will need a precise definition of what these computations are. The way we

Deterministic Finite-State Automata (DFAs) 41

will approach this is identify a computation of the DFA with a formalized rep-
resentation of a trace of that computation: a sequence of tuples in which each
tuple represents the status of the machine one step of the computation. To
fully characterize the status of the DFA at any given point in the computation
we need to specify the input, the position of the read head and state of the
machine at that point. Since the read head moves only towards the right, the
input that has already been scanned can play no further role in the computa-
tion. Thus, we can represent both the input and the position of the read head
within it using a string representing the portion of the input that remains to
be read. We will refer such representations as Instantaneous Descriptions.

Definition 25 (Instantaneous Description of a DFA) An instantaneous
description of a DFA A = (Q, %, 9, qo, F) is a pair {g,w) € Q x ¥*, where q
the current state and w is the portion of the input under and to the right of
the read head.

The symbol being currently being read by the DFA is the first symbol of w. If
w is empty then the entire input has been scanned and the DFA has halted.

Definition 26 (Directly Computes Relation for DFAs)
(@ 0) |, (p,v) €5 w=0v and p=6(q,0).

Note that this implies that (g,¢) has no successor for any ¢. IDs in which
w = ¢ are terminal (or halted) IDs; they represent the fact that the DFA has
halted in state ¢q. Note also that, because § is a total function, every ID in
which w # ¢ has a successor and that successor is unique. (Thus, |—A is partial

functional.)

Definition 27 (Computation of a DFA) A computation of a DFA A =
(@Q,%,6,q, F) from state q; on input wy is a sequence of IDs ({g1,w1),...) in
which, for all i > 0, (¢;_1,w; 1) \—A (gi, w;) and which is closed under |—A : for

all i, if w; # & and {g;, w;) |—A (Git1, wit1) then {gi11,w;11) is included in the
sequence.

Since \—A is partial functional there is exactly one computation of A from each

ID in @ x X. Since each step of a computation of a DFA consumes exactly one
symbol of the input, the length of the computation from (g, w;) will be |w|.

42 Basic FL'T—Finite and Regular Languages

Moreover, wy,,| will be €. Thus, all computations of a DFA halt and they all
take exactly |w;| steps.
The ‘|—A " relation captures single steps of the computations of A. The

relation |—:‘ holds between two IDs iff the second can be reached from the first

in zero or more steps:

Definition 28 (Computes Relation for DFAs)

*

(g, w) \—A (p,v) ({g,w) computes (p,v) in A) iff (p,v) occurs in the computa-
tion of A on (g, w).

(g, w) \—Z (p,v) ({(g,w) computes (p,v) in n steps in A) iff (p,v) is the
(n+ 1) element of the computation of A on (g, w). (Le., iff (p,v) is the n'®
successor of (g, w).)

Then (g, w) |—ft (p, v) iff (¢, w) = (p,v) and (g, w) |—; {p, v) iff (g, w) \—Z (p,v)
for some n.

Lemma 5 |—; is the reflexive, transitive closure of |—A .

Proof: (& extends |- :)
1 i _
() = (p,v) iff (g w) = (p,u).
(FF is reflexive:)
0
(g, w) |5 (g, w).
(s transitive:)

If {p,u) occurs in the computation of A on (g, w) then the computation of

A on (p, u) is a suffix of the computation of A on (g, w). Thus, (g, w) |—; (p,v)
and (p,v) \—; (0,u) iff (0, u) occurs in the computation of A on (g, w), i.e., iff
(aw) (0.0, -

The language accepted by a DFA A (which we will denote L(.A)) is the set
of strings w for which A, when run from the start state with w on the tape,
halts in an accepting state.

Deterministic Finite-State Automata (DFAs) 43

Definition 29 (Language Accepted by a DFA) The language accepted by
a DFA A=(Q,%,4,q0,F) is

L(A) = {w [{qo,w) |- {g:€),q € F}

Definition 30 (Recognizable Language) A language is recognizable iff it
s accepted by some DFA.

8.2 Transition Graphs

It turns out to generally be simpler to prove things about a DFA if we think
of it as a labeled, directed graph (know as its transition graph):' @ is the
set of nodes with F' being a distinguished subset (conventionally indicated by
circling them), the transition function determines the edge relation with the
edge between two states being labeled with the input that causes the transition,
and the initial state is indicated by an in-edge with no source. For example:

Q@ = {0,1,2,3}

Y o= {a'ab}

d = {{0,a) — 1, (0,b) — 3,
(1,a) — 1, (1,b) — 2,
(2,a) — 1, (2,b) — 3,
(3,a) — 3, (3,b) — 3}

o0 = 0

F = {0,2}.

In these terms, as the automaton scans an input string it traces out a path
in the graph, starting with ¢, in which the labels of the edges form the same
string. Note that the requirement that § be total corresponds to a requirement
that every node in the graph has an out-edge for each symbol in X. It follows
that every string over X labels some path from ¢o. A string is accepted iff the
corresponding path ends at a final state.

In this context it is easy to see that the requirement that § be total does
not effect the class of languages accepted by DFAs; we can always extend a
partial transition function to a total one by adding a sink state (such as state 3

'Indeed, it is more common to present DFAs in this way. We have chosen to present
them in terms of IDs and computations in order to emphasize a consistent pattern from
DFAs through PDAs and beyond.

44 Basic FL'T—Finite and Regular Languages

in the example) which is non-final and from which no path ever leaves. Any
edges with no place else to go can simply fall into the sink.

It should be reasonably clear that computations of a DFA correspond, in a
very close way, to paths through its transition graph. Thus, if we are to prove
lemmas about the set of strings accepted by a DFA, and hence about the set
of paths through its transition graph, we will need a precise definition of the
path function—the function that, given a starting node and a string, returns
the ending node of the path from that starting node that is labeled with that
string . This, as should come as no surprise, is defined inductively from 4, the
“edge” function.

Definition 31 (Path Function of a DFA) The path function : Qx$* —
Q 1s the extension of § to strings:

e Basis: 5(q, g)=gq, for all g € Q.
e Induction: If g € Q, w € ¥* and 0 € X then S(q, wo) = 5(5((], w),0).

This just says that from any node the path of zero length (labeled ¢) never
leaves that node and that the ending node of the path from state ¢ labeled
‘wo’ can be found by first following the path from state ¢ labeled ‘w’ and then
following the edge labeled ‘o’.

You should note that 5(q, o) = p (interpreting ¢ as a unit string) iff
d(g,0) = p (interpreting o as a symbol).

Just as the directly computes relation captures, in essence, the meaning of
0, we can think of 5 as expressing the computes relation:

~

6(q,w) =piff (g,w) = (p,e).

We can use this to formalize what it means for an automaton to accept a
string purely in terms of §.

Definition 32 (Language Accepted by a DFA (in terms of paths)) The
language accepted by a DFA A= {Q,%,d,q, F) is

~

L(A) = {w € ¥* | §(qo,w) € F}.

This gives us a purely declarative definition of what it means for a given
DFA to accept a given string. While we have motivated it in terms of the
behavior of a particular sort of machine and in terms of certain graphs, it

Deterministic Finite-State Automata (DFAs) 45

does not in any way depend on those interpretations. L(.A) is defined purely
in terms of 4, gy and F, and ¢ is defined purely in terms of §. This is the
definition we will use in proving claims about L(.A). While, again, we may
motivate our proofs by appealing to machines or graphs, the actual proof itself
will be in terms of the definitions of L(A) and 4.

20. Sketch a proof that if w € L(A) according to Definition 29 then w €
L(A) according to Definition 32. (Just give the base case(s), the IH, and
an outline of the inductive step.)

[Hint: Start out by proving that (g, w) |—:'; (p,€) only if 5((], w) = p.]

21. Sketch a proof of the converse: that if w € L(A) according to Defini-
tion 32 then w € L(A) according to Definition 29.
[Hint: Start with a lemma similar to that of the previous hint.]

22. Prove for all DFAs A, that € € L(A) < ¢go € F. (Do not forget that you
must prove both directions of the ‘<’.)

23. Our interest, in defining DFAs, is in defining L(A). But L(A) is defined
in terms of 4 rather than 6. Why, then, don’t we define DFAs in terms
of ¢ instead of 67

24. Suppose A =(Q, %, 6, qo, F) is a DFA and that § is defined accordingly.
Prove that, for any strings x and y in 3%,

~

0(q,y) = 6(6(g,),).

[Hint: use induction on |y|.]

8.3 Defining Languages with DFAs

In this section we will develop a methodology for defining DFAs in a way that
makes proving their correctness nearly automatic (although still somewhat
tedious). There will usually be ways in which the proofs can be simplified,
this methodology will always work. More importantly, in successfully defining
a DFA you will inevitably have to carry out the first few steps of the method,
even though you might do so implicitly. Thus the methodology is, in any case,
a reasonable way to organize your attack on the problem.

46 Basic FL'T—Finite and Regular Languages

Example: [Scheduling a machine tool] Consider the problem of specifying
schedules for a machine tool which is used to manufacture a number of distinct
types of parts (e.g., A, B, ...) and where each type of part may require a
number of distinct operations (e.g., Aj, Ay, Aj, By, Bg, ...). Given a set of
such operations, a schedule for the tool is a finite sequence of operations, i.e., a
string in which the alphabet is just the set of operations. In general, there will
be various constraints, such as restrictions on the order in which the operations
are completed, etc. A feasible schedule, given some set of constraints, is a
finite sequence of operations in which all the constraints are met and all parts
are completed—the sequence has the same number of each of the operations
required to complete a given type of part. We will return to variations of this
problem later. For now, let us assume that there are two types of parts: A
and B. Both require two operations: parts of type A require A; and A, and
parts of type B require B; and B,. These can be completed in any order,
but, in a passing nod to realism, no more than two partially completed parts
that can be stored. We will assume that whenever a part can be completed
it will be, thus if the schedule calls for operation A, for instance, and there
is any part which for which A, has been completed (but A; has not) then the
operation will complete that part. A feasible schedule for this instance, then,
is any string over {A;, Ay, By, By} in which

e the number of occurrences of A; is equal to the number of occurrences
of AQ,

e the number of occurrences of B; is equal to the number of occurrences
of BQ,

e in any initial segment of the sequence the difference between the number
of ‘Ay’s and ‘Ay’s plus the difference between the number of ‘B;’s and
‘By’s is never more than two.

Let Ly be the language consisting of the set of such strings. Show that this is
a regular set by providing an automaton and showing that it accepts all and
only the strings in L,.

A good way to attack a problem like this is to think of a DFA as a classifier
of strings—all strings that label paths (from the start state) leading to the same
state are lumped together. This is certainly true for the DFA, since all that it
remembers about the portion of the input it has scanned is the state that it

Deterministic Finite-State Automata (DFAs) 47

has reached. If two strings lead to the same state then, from the DFA’s point
of view, they are indistinguishable.

The question for us is to figure out what information about the initial
portion of a given string we need to keep track of in order to tell if the remainder
of the string completes it in the sense of making it a feasible schedule. The
key insight here is that all that we need to track is the type of any partially
completed parts and whether at any point in the string there have ever been
more than two parts pending. The remainder of the string will complete a
feasible schedule iff it completes each of those outstanding parts without ever
leaving more than two parts pending. Since the feasibility constraint is violated
whenever more than two parts are pending, we never need to keep track of
more than two partially completed parts. This is what bounds the amount of
memory needed to recognize the language and is what makes it regular.

The state set, then, will include a state for each possible combination of
two or fewer partially completed parts, plus a sink state for the case in which
more than two are encountered at some point in the schedule. We will label
these with the operations that have been completed on the pending parts:

Q = {E, Ala A2: Bla B?a AlAla AlBla A1B25 AZAQ, A2B17 A2B2, BlBl, B2B25 Fall}

Note how we have obtained this state set: we start by identifying what
characteristics of the strings we need to remember while scanning them and
then define a state for each value those characteristics can take. The path from
the start state labeled by any given string will lead to the state that encodes
the distinguishing characteristics of that string. This is the only phase of this
methodology that is not essentially automatic. It may well take a great deal of
insight to be able to identify a set of characteristics that will work. Moreover,
there will often be many ways one might do this for a given language and it will
often be easier to prove that one state set properly characterizes the strings in
a language than it will be to prove the same thing for another. Nonetheless, it
is almost always harmless to distinguish more states than necessary—so long
as you only distinguish finitely many of them—the only cost will be to make
the rest of your proof longer.

In settling on a set of states and an interpretation of them in terms of
the information they encode about the input strings we have fully determined
the structure of the automaton. Transitions between states must preserve the
interpretation of the states. If we are in some state ‘g’ and see some input,
‘Ay’, for instance, the state we enter is determined by what happens if we

48 Basic FL'T—Finite and Regular Languages

perform operation A; given the status of pending parts encoded by q. If ¢ is
‘B;’ we must enter state ‘A;B;’. If ¢ is ‘A3B;’, on the other hand, we will
complete the pending ‘A’—we go to state ‘B;’. And if ¢ is ‘A;A;’ we must
fail. Furthermore, the start state must be that state encoding the status of
the empty string—mno partially completed parts in this case, state ‘c’. Final
states will be all states that encode strings that meet the specification of the
language. Here this is all feasible schedules—those that complete every part
without entering fail. These, then, will all end up in state ‘c’; the set of final
states is just {¢}.

So our choice of state sets yields the following automaton (call it Aj):

We must now prove that L(Ay) = L. To prove that every string accepted
by the automaton is in Lo, i.e., that L(As) C Lo, we must prove that every
string labeling a path from ‘e’ that ends in a final state (i.e., in ‘¢’) is in L,.
We actually do this by induction on the length of the path but, since there is
a direct correspondence between paths in strings, this is the same as proving

Deterministic Finite-State Automata (DFAs) 49

it by induction on the length of the string. To prove that every string in L,
is accepted by Ay (that Ly C L(Ay)) we must prove that every such string
labels a path from ‘¢’ back to ‘¢’. One way to do this would be by induction
on the length of the string but this is very tedious. The approach we will take
exploits the fact that our DFAs are total. Since every string labels a path from
the start state to some state, if a string is not in the language accepted by the
automaton it must label a path that ends at a non-final state. We can then
argue that

w € Ly = w € L(A)

by the contrapositive
w ¢ L(Ay) = w ¢ Lo,

which we can establish by showing that all strings that label paths from the
start state that do not end in a final state are not in L.

What we need, then, is a characterization, for each state, of the strings
that label paths to those states that is in terms that will allow us to show
those strings are or are not in Ly. That is to say, we are looking to establish a
system of invariants, one for each state, which suffice to prove the correctness
of the automaton. These have the form:

~

0(go, w) = ¢ = (Some characterization of w),

for each ¢ € Q. (Note that, because we are arguing the backwards direction
using the contrapositive, we need only prove the forward implication.)

We state the invariants in a compact form. Because of the way we have
named the states, for all states other than the fail state the unmatched symbols
in the string labeling the path to that state are exactly the symbols in the name
of the state. Thus |w[,, — |w|,, = [¢|4, — lal4,,” i-e., the difference between
the number of ‘A;’s and ‘Ay’s is the same for both the string and the name of
the state. The same is true for ‘B’s.

Lemma 6 (Invariants) For all w € ¥*:
(Fail:) é(e, w) = Fail = w = uv for some u,v such that:

||U|A1 - |U|A2| + HU"Bl - |U|B2| > 2.

%|w|, is the number of occurrences of the symbol o in the string w.

50 Basic FL'T—Finite and Regular Languages

(q # Fail:) (e, w) = q # Fail =

|w|A1 - |w|A2 = |Q|A1 - |(I|A2
‘w‘Bl - |w|Bz = |q‘Bl - ‘q|Bz

and for all prefives u of w

HU\AI - ‘U‘Az‘ + ““|31 - ‘U‘Bz‘ <2

Proof: [by induction on |wl|]
(Basis:) A
Suppose |w| =0. Then w =¢, d(g,¢) = ¢ and

|€‘A1 = ‘8|A2 = |€‘Bl = |6|BQ = 0'

One can verify that this satisfies the invariants, since d(e,w) = & # Fail and
w = ¢ (and, thus, have equal numbers of ‘A;’s and ‘B;’s).

(Inductive Step:)

Suppose that |w| > 0 and that the lemma is true for all strictly shorter
strings. Then w = w'c for some ¢ € ¥ and w' € ¥* for which the lemma is
true. To show that the lemma is true of w as well:

To conserve space we will work with a table. (See Figure 1.)

The way the table should be read is:

If the entry in the first column is true then one of the associated
rows must be the case, where the second column s the state after
reading w' and the third is the value of o, the fourth and fifth record
excess parts after w' the sizth whether there are have been more
than two parts pending after any (not necessarily proper) prefiz of
w'. and the seventh, eighth and ninth record the same information

for w.

The second and third column are taken from the definition of 4, the fourth
through sixth from the induction hypothesis, and the seventh through ninth
from combining the previous entries in the rows.

Note that the inductive step for any one of the invariants depends on the
induction hypothesis for one or more of the other invariants. Thus, they all
must be proved together. Such a proof of a number of interdependent claims

Deterministic Finite-State Automata (DFAs) 51
w' w
(e, w) | 6(e,w") | o | [w'y, = |w'y, | [W']p, —|w'|p, | Ovr | |w|y, — W], | [w]p, —|w|p, | Ovr
3 A1 A2 1 0 X 0 0 X
A2 A]_ -1 0 X 0 0 X
B]_ 32 0 1 X 0 0 X
Bz Bl 0 -1 X 0 0 X
Aq € Aq 0 0 X 1 0 X
A1A1 A2 2 0 X 1 0 X
AlBl BQ 1 1 X 1 0 X
AlBQ B1 1 -1 X 1 0 X
A,y € Ao 0 0 X -1 0 X
A2A2 A]_ —2 0 X -1 0 X
A231 32 -1 1 X -1 0 X
A232 Bl -1 -1 X -1 0 X
By € By 0 0 X 0 1 X
AlB1 AQ 1 1 X 0 1 X
AQB1 A1 -1 1 X 0 1 X
BlBl 32 0 2 X 0 1 X
B, € B, 0 0 X 0 -1 X
AlBQ A2 1 -1 X 0 -1 X
A232 A1 -1 -1 X 0 -1 X
3232 Bl 0 -2 X 0 -1 X
A]_Al A]_ A]_ 1 0 X 2 0 X
AlBl Al Bl 1 0 X 1 1 X
Bl Al 0 1 X 1 1 X
AlBQ A1 BQ 1 0 X 1 -1 X
Bg Al 0 -1 X 1 -1 X
A2A2 AQ A2 -1 0 X —2 0 X
AgBl A2 Bl -1 0 X -1 1 X
Bl A2 0 1 X -1 1 X
AQBQ A2 32 -1 0 X -1 -1 X
32 A2 0 -1 X -1 -1 X
BlBl Bl B1 0 1 X 0 2 X
BQBQ 32 32 0 -1 X 0 -2 X
Fail A1A1 A1 2 0 X 3 0 v
B, 2 0 X 2 1 v
B, 2 0 X 2 -1 v
AlBl A1 1 1 X 2 1 v
B, 1 1 X 1 2 v
A132 A]_ 1 -1 X 2 -1 v
B, 1 1 X 1) Vg
A2A2 A2 -2 0 X -3 0 v
B, -2 0 X -2 1 v
B, -2 0 X -2 -1 v
A2B1 A2 -1 1 X -2 1 v
By -1 1 X -1 2 v
AQBQ A2 -1 -1 X -2 -1 v
B, -1 -1 X -1 -2 v
BlBl A1 0 2 X 1 2 v
A,y 0 2 X -1 2 v
By 0 2 X 0 3 v
3232 A1 0 —2 X 1 -2 v
A,y 0 -2 X -1 -2 v
B, 0 —2 X 0 -3 v
Fail D) — — v — — v

52 Basic FL'T—Finite and Regular Languages

is called proof by simultaneous induction. Note also that even if all we wanted
to establish was the invariant for ‘c’, we would need the invariants for ‘A;’,
..., ‘B’ in order to carry out the inductive step of that proof and would, in
turn, need the invariants for the other states (with the exception of ‘Fail’) in
order to carry out those proofs. Thus, an invariant for each (non-sink) state
is required in any event.

It is easy to verify from the table, by taking ¢ from the first column and
the excess ‘A;’s and ‘B;’s in w from the seventh and eighth, that the invariants
hold in all cases. .

There is nothing magical about the table, it simply is an essentially auto-
matic way of organizing the tedious task of carrying out the proof exhaustively.
Again, the argument can almost always be made in a more compact—read
cleverer—fashion. But by working exhaustively you minimize the chance of
overlooking cases.

It remains now to prove that the invariants imply that the automaton
accepts a string iff it is a feasible schedule. This is nearly trivial. If w € L(A)
then 0(e,w) = & which implies, by the invariant, that the number of ‘A;’s
and ‘Ay’s and the number of ‘B;’s and ‘By’s are equal and that there is no
prefix of w in which the sum of the absolute differences between these ever
exceeded two. Conversely, if w ¢ L(A) then é(¢,w) € Q \{e} (because § and,
consequently 5, is total). Again, from the invariants, it is easy to verify that
this implies that there is either a partially completed part left at the end of
the schedule or that the number of partially completed parts exceeded two at
some point in the schedule.

25. Consider a system consisting of two processes (A and B) exchanging
messages. Process A sends two types of messages to process B: m; and
mso. Process B sends three types of acknowledgment to process A: aq,
ag, and aq9, which acknowledge my, ms, and m; and msy simultaneously,
respectively. The processes are required to follow the following protocol:
Process A can send either message type at any time, but only if every
prior message of that type has been acknowledged. Process B may send
any acknowledge at any time, but only if it has received a message(s) of
the appropriate type(s) which it has not yet acknowledged. Process B is

required to eventually acknowledge every message received from Process
A.

Finite sequences of messages exchanged within this system are just strings

Deterministic Finite-State Automata (DFAs) 53

over the alphabet {mj,my, a1, as,a12}. Let L3 be the language consist-
ing of the set of such strings in which the protocol sketched above is
followed. Show that this is a regular set by providing an automaton and
showing that it accepts all and only the strings in Lj.

e.g.,
moMm1a2MaGaG1M1M20A12

moMmiaeM1G201M1M2012

maoMmia2Ma02G1M1 0201

N AR A M
=~
@

mMaM1A2M2A2G1711 12

54 Basic FL'T—Finite and Regular Languages

9 Non-Deterministic Finite-State Automata (NFAs)

9.1 Basic NFAs

Our DFAs are required to have transition functions that are total (so there is a
next state for every current state and input symbol) and to return a single state
(so there is a unique state for every current state and input symbol). Thus,
the next state is fully determined by the current state and input symbol. As
we saw in the previous section, this simplifies the proof that the DFA accepts
a specific language. There are many circumstances, though, in which it will
be simpler to define the automaton in the first place if we allow a choice of
next state or even no next state. We will still require transitions to be defined
by a function, but it will now return a set of states rather than a single state.

Definition 33 (NFA without ¢-Transitions) A Non-deterministic Finite-
state Automaton (NFA) (without e-transitions) is a J-tuple: (Q, %, 46, qo, F)

where:
Q, >, q and F' are as in a DFA,

0:Q xX —P(Q) is the transition function
(mapping a state and an input symbol to the set of choices of next state)

Here P(Q) denotes the powerset of @Q—the set of all of its subsets. It should be
emphasized that the transition function #s still a function and is still total. We
have accommodated the possibilities of there being either more than one or no
potential next state by returning the set of next states: if card(d(q,0)) = 1,
then the transition on (g,o) is deterministic; if it is zero then there is no
transition licensed for (g, o) and the NFA will “crash”—halt prior to scanning
the full input.
Instantaneous descriptions of NFAs are identical to those of DFAs.:

Definition 34 (Instantaneous Description (for both DFAs and NFAs))
An instantaneous description of A = (Q, %, 9, qo, F'), either a DFA or an NFA,

is a pair (q,w) € Q x X*, where q the current state and w is the portion of the
input under and to the right of the read head.

The directly computes relation is nearly also the same—we need only to
account for the fact the transition function returns a set of states rather than
a unique next state.

Non-Deterministic Finite-State Automata (NFAs) 55
Definition 35 (Directly Computes Relation (for NFAs without e-transitions))

(g, w) |—A (p,v) & w=o0v and p € 6(q,0).

Note that while this is defined essentially identically for both DFAs and NFAs,
in the case of NFAs it is no longer even partial functional; an ID may well have
many successors. Moreover, it is no longer true that then only IDs without
successors are those in which w = €.

The definition of computation is, again, identical for both NFAs and DFAs.
We do, however, need to amend our notion of closure under \—A to account for

the fact that, while there may now be more than one successor of an ID, only
one of those can actually follow it in a single computation.

Definition 36 (Computation (for both DFA and NFAs)) A computation
of a DFA A = (Q,%,0,qo, F') from state q; on input w, is a sequence of IDs
({q1,w1),...) in which, for all i > 0, (Gi—1,wi—1) |—A (gi, w;) and which is

closed under |—A .

Here closed under \—A means: for all 4, if (¢;, w;) has any successor, than one

of those successors will be included in the sequence as (gi;+1, wi+1). The fact
that \—A is no longer partial functional implies that we can no longer speak of

the computation of A on (g, w;). What’s more, while every computation is
finite, it is no longer true that they all take exactly |w;| steps. Computations
end when they reach an ID with no successor; this can now be either because
the entire input was scanned or because an ID (g, o - w) was reached for which
d(g,0) = (. Only the first case represents successful processing of w; by A;
we need to be careful to distinguish “halting” computations from those that
“crash”.

Nevertheless, neither the computes relation nor the definition of the lan-
guage accepted by the automaton need be modified:

Definition 37 (Computes Relation (for both DFAs and NFAs)) \—; is

the reflexive, transitive closure of |—A .

Definition 38 (Language Accepted by a DFA or NFA) The language ac-
cepted by a DFA A= (Q,%, 4, qo, F) is

L(A) = {w | {q,w) ¥ (g,€),q€ F}

‘_*
A

56 Basic FL'T—Finite and Regular Languages

The fact that we require the final ID of the computation accepting w € L(.A)
to be of the form (g,¢) means that computations that crash before scanning
all of the input are ruled out.

Example: For example:

Q
5| 0 1 2 3
¥ la|{1,3}| {2,3} |{3}| {3}
0 [{0,1,2,3}] 0 |{0,2}
F=10,2}

The language accepted includes the string ‘abb’ as witnessed by the computa-
tion
({0, abd) , (1, bb) , (3,0) , (0, ¢e)).

There are also other accepting computations on ‘abb’:

({0, abby , (1,bb),(1,b),
({0, abby , (1,bb),(1,b),(2,¢))

as well as computations that fail to accept ‘abb’:

((0,abb) , (1,bb), (1,b),
{

1 (3,¢))
({0, abby , (1,bb) ,(2,b)

26. Give two distinct accepting computations of the NFA of the previous
example on the string ‘abab’.

27. Give two distinct non-accepting computations of the NFA of the previous
example on the string ‘abab’.

NFAs correspond to a kind of parallelism in the automata. We can think
of the same basic model of automaton: an input tape, a single read head
and an internal state, but when the transition function allows more than one
next state for a given state and input we keep an independent internal state for
each of the alternatives. In a sense we have a constantly growing and shrinking
set, of automata all processing the same input synchronously. For example, a
computation of the NFA given above on ‘abaab’ could be interpreted as:

Non-Deterministic Finite-State Automata (NFAs) 57

w: € a b a a b (b)

0 1

3 0 ()
1 % 2 ()
2

s500,w): {0} {1, 3}{0 ,2,31{1,2,3}{2,3} {0,2} ()

rQ

This string is accepted, since there is at least one computation from 0 to 0
or 2 on ‘abaab’. Similarly, each of ‘c’, ‘ab’, ‘aba’ and ‘abaa’ are accepted, but
a’ alone is not. Note that if the input continues with ‘6’ as shown there will
be no states left; the automaton will crash. Clearly, it can accept no string
starting with ‘abaabb’ since the computations from 0 or ‘abaabb’ end either
in (0,b) or in (2,b) and, consequentially, so will all computations from 0 on
any string extending it. The fact that in this model there is not necessarily
a (non-crashing) computation from ¢, for each string complicates the proof
of the language accepted by the automaton—we can no longer assume that if
there is no (non-crashing) computation from gy to a final state on w then there
must be a (non-crashing) computation from ¢ to a non-final state on w. As
we shall see, however, we will never need to do such proofs for NFAs directly.

9.2 Transition Graphs of NFAs (without e-transitions)

In terms of the transition graph of the automaton, if 6(q,0) = {q1, G2, .-, @}
then there will be an edge labeled o from state ¢ to each of the ¢;,qo, ..., qg-
This means that if there is a path labeled w leading from some ¢y to ¢, then
there are paths labeled wo from ¢y to each of the ¢i,¢s,...,qr. In the case
that 6(q, o) =) there is no edge labeled o from state g in the transition graph
and no path labeled wo that visits ¢ in its next-to-last state.

Example: The transition graph of the NFA of the example of the last section
is given in Figure 2.

58 Basic FL'T—Finite and Regular Languages

0 0 1 2 3

Y ola{1,3}] {23} |{3}] {3}
0 1{0,1,2,3}] 0 [{0,2}
F=1{0,2}

Figure 2: An NFA and its transition graph.

Clearly, the path function also needs to return sets of states rather than
states:

Definition 39 (Path Function of a NFA (preliminary version)) The path
function d : Q x £* — P(Q) is the extension of § to strings:

e Basis: 5((1,5) ={q}, for allq € Q.
o Induction: Ifg € Q, w € ¥* and o € ¥ then 6(q, wo) = Uyesiqum(0(d’, o)l
e Nothing else.

This just says that the path labeled £ from any given state ¢ goes only to
q itself (or rather never leaves ¢) and that to find the set of states reached
by paths labeled wo from ¢ one first finds all the states ¢’ reached by paths
labeled w from ¢ and then takes the union of all the states reached by an edge
labeled o from any of those ¢'. Another way of expressing it is

d(g,wo) = {q" | 3q' € 4(q,w))[q" € (¢, 0)]}-

We will still accept a string w iff there is a path labeled w leading from
the initial state to a final state, but now there may be many paths labeled w

Non-Deterministic Finite-State Automata (NFAs) 59

from the initial state, some of which reach final states and some of which do
not. In the context of transition graphs, we need to modify the definition of
the language accepted by A so it includes every string for which at least one
path ends at a final state.

Definition 40 (Language Accepted by a NFA) The language accepted by
a NFA A=(Q,%,0,q, F) is

L(A) = {w € * | §(qo, w) N F # 0}.

9.3 NFAs with e-Transitions

We now add an additional degree of non-determinism and allow transitions
that can be taken independent of the input—e-transitions.

Example:

Here whenever the automaton is in state 1 it may make a transition to state
3 without consuming any input. Similarly, if it is in state 0 it may make such
a transition to state 2. The advantage of such transitions is that they allow
one to build NFAs in pieces, with each piece handling some portion of the
language, and then splice the pieces together to form an automaton handling
the entire language. To accommodate these transitions we need to modify the
type of the transition function to map pairs drawn from @ and ¥ U {¢} to
subsets of ().

Definition 41 (NFA with e-Transitions) A Non-deterministic Finite-state
Automaton (NFA) (with e-transitions) is a 5-tuple: (Q,%, 6, qo, F') where Q,
Y, qo and F are as in a DFA and 6 is of the type Q@ x (XU {e}) — P(Q),
where P(Q) denotes the power set of Q, i.e., the set of all subsets of Q.

60 Basic FL'T—Finite and Regular Languages

We must also modify the definitions of the directly computes relation and
the path function to allow for the possibility that e-transitions may occur
anywhere in a computation or path. The e-transition from state 1 to state
3 in the example, for instance, allows the automaton on input ‘a’ to go from
state 0 not only to state 1 but also to immediately go to state 3. Similarly,
it allows the automaton, when in state 1 with input ‘6’, to move first to state
3 and then take the ‘b’ edge to state 0 or, when in state 0 with input ‘a’, to
move first to state 2 and then take the ‘a’ edge to state 3. Thus, on a given
input ‘o’, the automaton can take any sequence of e-transitions followed by
exactly one o-transition and then any sequence of e-transitions. To capture
this in the definition of § we start by defining the function e-Closure which,
given a state, returns the set of all states reachable from it by any sequence of
e-transitions.

Definition 42 (e-Closure of a State) The e-Closure of a state g of an au-
tomaton A = (Q,%, 0, qo, F) is defined inductively as follows:

e Basis: q € e-Closure(q).
e Ind: If ¢’ € e-Closure(q) then 6(q',e) C e-Closure(q)
e Nothing else.

The e-Closure of a set of states S C @ is

e-Closure(S) & U [e-Closure(q)].

qeSs

With this we can modify the definitions of directly computes and the path
function.

Definition 43 (Directly Computes Relation (for NFAs in general))

(g, w) |_A (p,v) < w = ov and p € e-Closure(d(e-Closure(q), 0)).
Definition 44 (Path Function of a NFA (final version)) The path func-
tion 0 : Q X X* — P(Q) is the extension of 0 to strings:

e Basis: 6(q,¢) = e-Closure(q), for all ¢ € Q.

e Ind: If g€ Q, weX ando € X
then 6(q, wo) = | y[e-Closure(d(¢', 0))]-

7 €d(qw

Non-Deterministic Finite-State Automata (NFAs) 61

e Nothing else.

In essence, these say that the set of states that may reach from ID (g, o - w) are
those that can be reached by making any number of e-transitions and exactly
one ¢ transition, and that to find the set of states reachable by a path labeled
w from a state ¢ in an NFA with e-transitions start by finding the set of states
reachable from ¢ using only e-transitions and then, for each symbol ¢ of w (in
order) find the set of states reachable from those by an edge labeled o and
then the set of states reachable from those by any sequence of e-transitions,
etc.

Nothing else in the definitions need change. The automaton still accepts
w if there is any computation on {(gg, w) that terminates in a final state after
scanning the entire input. Equivalently, it accepts w if there is a path labeled
w from the initial state to a final state, which is to say, if 6 (go, w) includes any
member of F'. Note that the automaton of Example 9.3 will accept ‘e’ since
state 2 is in e-Closure(0) and, therefore in (0,).

9.4 Equivalence of NFAs with and without e-transitions

It is not hard to see that e-transitions do not add to the accepting power of the
model. The effect of the e-transition from state 1 to state 3 in the example,
for instance, can be obtained by adding ‘a’ edges from 0 and 1 to 3 and a ‘b’
edge from 1 to 3. Similarly, most of the effect of the e-transition from 0 to
2 can be obtained by adding an ‘a’ transition from 0 to 3 and ‘b’ transitions
from 1 and 3 to 2. Note that in both these cases this corresponds to extending
8(q,0) to include all states in §(¢, o). The remaining effect of the e-transition
from 0 to 2 is the fact that the automaton accepts ‘c’. This can be obtained,
of course, by simply adding 0 to F'. Formalizing this we get a lemma.

Lemma 7 (Equivalence of NFAs with and without e-transitions) A lan-
guage L C X* is L(A) for an NFA with e-transitions A iff it is L(A’) for an
NFA without e-transitions A'.

Proof: Note, first, that every NFA without e-transitions is trivially an NFA
with (no) e-transitions as well. For the other direction we will show how,
given an NFA with e-transitions, to construct an NFA without e-transitions

62 Basic FL'T—Finite and Regular Languages

that accepts the same language.
For A =(Q,%,0,q, F) let A'=(Q,%,¢', g0, F') where

~

d(g,0) = 6(q,0), forallg e @Q and o € &

and = 4 FUlar if (qo,e) N F # 0,
F otherwise .

Note that ¢’ includes no e-transitions and, therefore, A’ is the appropriate
type of NFA. To show that L(A") = L(A) we need to establish that

& (qo, w) N F' # 0 < d(go, w) N F # 0.

This would, of course, follow if we could show that ¢’ (¢, w) =) (g, w) for all ¢
and w, and it is not hard to see that for non-empty w this will be the case.
The problem, of course, is that it will not be the case for w = ¢ since, by
definition,

d'(g,€) = {q}

while

~

(g, €) = e-Closure(q).

But the ‘e’ case is handled by the fact that gy has been added to F’ if 5(q0, g)N
F # (. Thus,

&' (qo,e) N F' # 0

q € F'

g € Foré(g,e)NF#0

(g0,) NF # 0 since ¢y € 0(q, €)

e € L(A).

e € L(A)

teo0e

What remains, then, is to establish the 6 and ¢’ coincide on all strings of length
at least one. This is left to you as an exercise.

28. Prove the claim: for all w € X1 and ¢ € Q, 5’((], w) = 5((], w).

Non-Deterministic Finite-State Automata (NFAs) 63

9.5 Equivalence of NFAs and DFAs

In general non-determinism, by introducing a degree of parallelism, may in-
crease the accepting power of a model of computation. But if we subject NFAs
to the same sort of analysis as we have used in defining DFAs we shall see that
to simulate an NFA one needs only track finitely much information about each
string. Consider, again, the example in which we modeled the computation of
the NFA as a set of automata processing the input synchronously. In order to
determine if a string w is accepted by the NFA all we need to do is to track,
at each stage of the computation (i.e., at each prefix of the input), the states
of those automata. Since there is never any reason to include more than one
automaton for each state, this will just be some subset of ()—in fact, it is
easy to see that the set of states after processing w will be just 5 (go, w). Since
@ is finite, it has finitely many subsets. Thus we can simulate an NFA with
state set with a DFA that has a state for each subset of (). The process of
constructing a deterministic analog of a non-deterministic machine is known
as determinization.

Lemma 8 (Equivalence of NFAs and DFAs) A language L C ¥* is L(.A)
for an NFA (with or without e-transitions) A iff it is L(A") for some DFA A'.

Proof (Subset Construction): Again, if L = L(A’) for a DFA it is easy to see
that it is also L(.A) for an NFA—one in which the transition function always
returns a singleton set of states. For the other direction we, again, will give
a construction, this time one that, given a NFA, builds a DFA accepting the
same language. Because the state set of the DFA will be the set of all subsets of
the state set of the NFA this construction is known as the subset construction.
For A =(Q,%,0,qo, F) an NFA (for ease of proof we will assume that it does
not have e-transitions) let A’ = (Q', 3, @y, 0', F'), where:

Q = PQ)
Q = {a}
§(S,0) = U[(S(q, o) for each o € ¥ and S € Q'(i.e., S C Q)
qgeSs

F' = {SCQ|SNF #0}.
We must prove for all w € ¥X* that
8(Qh, w) N F' # 0 & 6(go, w) N F # 0.

64 Basic FL'T—Finite and Regular Languages

We will do this by proving the slightly strengthened claim:
for all w € X%, 8'(Qh, w) = 6(go, w),

by induction on |w|.
(Basis)
Suppose |w| = 0. Then w = ¢ and

8'(Qp,e) = {0} = 80, €)-

(Induction)

Suppose |w| = n + 1 and that the claim is true for all strings of length n.
Then w = vo for some o € ¥ and v € X* of length n. To show that the claim
is true for w as well:

0(Qh,vo) = §'(0"(Qh,v),0) by definition of &'

= 8'(0(go,v),0) by IH
= U [0(¢",0)] by definition of ¢’
q'€5(go,v)

= 5((]0, Vo) by definition of 4.
Then

weLA) < §Q,),w) eF
e §Qh,w)NF £
& (g, w)NF £
<~

w € L(A).

9.5.1 Applying Subset Construction

As defined the subset construction builds a DFA with many states that can
never be reached from Q). Since they cannot be reached from @ there is
no path from @) to a state in F' which passes through them and they can
be deleted from the automaton without changing the language it accepts. In

Non-Deterministic Finite-State Automata (NFAs) 65

practice it is much easier to build Q)" as needed, only including those state sets
that actually are needed.

To see how this works, lets carry out an example. For maximum generality,
let’s start with the NFA with e-transitions given above, repeated here:

When given a transition graph of an NFA with e-transitions like this there are
6 steps required to reduce it to a DFA:

1. Write out the transition function and set of final states of the NFA.
2. Convert it to an NFA without e-transitions.

(a) Compute the e-Closure of each state in the NFA.

(b) Compute the transition function of the equivalent NFA without
e-transitions.

(c) Compute the set of final states of the equivalent NFA without e-
transitions.

3. Convert the equivalent NFA to a DFA.

(a) Starting with {go} and repeating for each state set encountered
in the construction compute the transition function for each input
symbol.

(b) Compute the set of final states of the equivalent DFA.

While it is tempting to work directly from the transition graph and to combine
steps there are two reasons to not do so. First, both shortcuts are prone
to error. It is easy to miss edges when referring repeatedly to the graph
and it is, in particular, easy to miss relevant e-transitions when trying to
simultaneously remove them and determinize the result. The second reason

66 Basic FL'T—Finite and Regular Languages

is that we have only proved the correctness of the constructions eliminating
e-transitions and determinizing the result separately. While it is not difficult
to define a construction combining them, if you use such a construction you
must prove its correctness.

The transition function:

q||9(g,0) | 5(gb) | (g.¢)

o {1y | 0 | {2}

L) {23 | {1} | {3}
0 0

2| {3}
3] {3 [{o} | 0
F={2}.
e-Closure:
q | e-Closure(q)
01 {0,2}
1]{1,3}
2 {2}
3] {3}

The transition function of the equivalent NFA without e-transitions:

7(q,0) = 6(g,0) = |J [e-Closure(5(¢'0))].

¢’ €e-Closure(q)

q || e-Closure(q) | 6'(q,a) | d'(q,b)
0 {0,2} {1,3} 0

1 {1,3} {2,3} {0,1,2,3}
2 {2} {3} 0

3 {3} {3} {0, 2}

F"={0,2} since e-Closure(0) = {0,2} N F' # ().
To construct the transition function of the equivalent DFA start with S =
Qy = {9} = {0} and compute
§"(S,0) = |J[0'(g, 0)].
qeSs

for each o € X.
S H 6"(S, a) ‘ 8"(S,b)

{0}“ {1,3} ‘@

Non-Deterministic Finite-State Automata (NFAs) 67

Next introduce lines for each of these state sets

S| 6”(S,a) | 6”(S,b)

{oy | {1,3} |0
{1,3}| {2,3} [{0,1,2,3}
0 0 0

and repeat until no new lines are introduced

S || 6"(S,a) | 6(S, b)

{o} | {13} [0
{1,3} || {2,3} |{0,1,2,3}
1] 0 0
{2,3}] {3+ [{0,2}
{0,1,2,3} | {1,2,3} | {0,1,2,3}
{3t {3+ 1{0,2}
{0,2} || {1,3} |0
{1,2,3} || {2,3} [{0,1,2,3}

The set of final state I is then the set of state sets that include states of F’:

F" = {{0},{2,3},{0,1,2,3},{0,2},{1,2,3}}.

29. Convert the following NFA to a DFA.

68 Basic FL'T—Finite and Regular Languages

10 The Equivalence of DFAs and Regular Ex-
pressions

We have now looked at two ways of defining languages—as the denotation of
a regular expression and as the set accepted by a DFA or, equivalently, an
NFA. Surprisingly, the class of languages that can be defined in the one way
turns out to be exactly the class of languages definable in the other. This
theorem, originally due to Kleene, was one of the first dramatic theorems of
Formal Language Theory. We will establish it in two parts: first we will show
how to convert any regular expression to an equivalent NFA and then we will
show how to convert any DFA into an equivalent regular expression. Since we
have already shown the equivalence of NFAs and DFAs, this will suffice.

10.1 Constructing NFAs from Regular Expressions

Lemma 9 If L C X* is L(R) for a regular expression R then it is also L(.A)
for an NFA.

Proof: Not surprisingly, we will prove this by induction on the structure of the
regular expression. To simplify the proof, we will strengthen the hypothesis
slightly: IF L = L(R) for a regular expression R then L = L(A) for an NFA
A which has a single final state.

(Basis:)

e Suppose R = (). Let A be

Since there are no paths from the start state to the final state L(A) =
0 = L(0). Furthermore, A has a single final state.

e Suppose R = ¢. Let A be

The Equivalence of DFAs and Regular Expressions 69

Here the empty string is in L(.A) since there is an e-transition from the
start state to the final state, but no other strings are in L(.A) since there
are no other transitions out of either state. Again, A has a single final
state.

e Suppose R = o for some o € X. Let A be

e .

Essentially the same argument applies in this case.

(Induction:)

e Suppose R = S; - S, where S; and S, are regular expressions and that
L(S;) = L(A;) and (S3) = L(A3) for NFAs A; and A, with single final
states. Let A be

A TN

Formally, if Al = <Q17 27 Q(I)a 51: {q}}> and A2 = <Q27 27 Q(I)I: 627 {Q¥}> we
let

A = <Q1 U Q27 qué)a 5: {q}, >
where for all ¢ € Q; U@, and z € L U {e}:

51(Q7x) if q € Ql \q‘lf,
5(g,2) d1(q},) if g=q} and = #£e,
v b1(q)e) UL} ifg=¢) and s =¢,
52(qa$) 1fq S QQ.

Clearly there is a path from g to qgﬁ labeled w iff w = u - v where there
is a path from ¢; to ¢} labeled u and one from ¢ to ¢ labeled v. Thus
L(A) = L(A;) - L(Az) = L(S; - Sz). Furthermore, ¢} is the sole final
state of A.

e Suppose R = S; + Sy where S; and S, are regular expressions and that
L(S;) = L(A;) and L(S;) = L(A;) for NFAs A; and A, with single final
states. Let A be

70 Basic FL'T—Finite and Regular Languages

Do~

30. Give the formal definition of A if A; and A, are as in the previous
case.

Clearly there is a path from g, to ¢y labeled w iff there is a path labeled
w from ¢j to ¢} or one from gg to ¢f. Thus L(A) = L(A;) U L(Az) =
L(S; + Ss).

e Suppose, finally, that R = S} and that L(S;) = L(A,), etc. Let A be

RN

OO
ff

A similar formal construction applies. Here any path from gy to gy follows
either the e-transition directly from gy to ¢y or consists of the concatenation
of one or more paths from g; to g}.

31. Why does this construction not simply use the initial and final states
of A; as the initial and final states of A, simply adding e-transitions
from ¢, to ¢ and from ¢} to ¢;? Give an example of an automaton
A; for which the simpler construction fails. This example will not be
an automaton which would be constructed from a regular expression.
The simpler construction will work in the context of the proof, but the
induction hypothesis needs to be strengthened slightly. How? Explain
why this suffices.

32. Construct an NFA accepting L((a + bc)*a + b).

The Equivalence of DFAs and Regular Expressions 71

10.2 Constructing Regular Expressions from DFAs

Lemma 10 If L C X* is L(A) for a DFA A then it is L(R) for a regular
expression R.

The approach we will use to proving the lemma involves constructing and
solving a system of simultaneous equations defining, for each state, the set of
strings labeling paths from the initial state to that state. For concreteness,
we will work an example, based on the following DFA, while we develop the
proof.

For each g € @ let

R, {w | §(go, w) = ¢}

Let’s consider which strings are in R, for a given state ¢g. Clearly R, includes
e iff ¢ = go. Otherwise, every string in R, is of the form wo, where w is in R,
and there is a transition from state p to state ¢ on o (i.e., §(p, o) = ¢). Thus

R, = {e}U Ué(p,0)=q[RP Ao}l if g =,
o Ué(p,a):q [Rp : {U}] otherwise .

For the example automaton, we get a system of three equations:

R() = Roa + RQG +e
Ry, = Rob+ Rib+ Rob
R2 = Rla

Here we have used, for instance, ‘Rga’ to denote the concatenation of the
languages Ry and {a} and ‘+’ to denote union. (Equations of this form are
known as Regular Equations.)

Our objective is to obtain a solution to the system of regular equations
in the form of regular expressions denoting each of the R,. Then, since the

72 Basic FL'T—Finite and Regular Languages

language accepted by a DFA is the set of all strings labeling paths from the
initial state to some final state, which is to say

L(A) = IR,

qeF

we can obtain a regular expression denoting L(.A) by combining (with ‘+’) the
regular expressions denoting R, for each ¢ € F'.

The question, then, is how to obtain the solution to the system of regular
equations. The crucial step, of course, is eliminating occurrences of R, from
the right hand side of the definition of R,. For this we employ the following
lemma.

Lemma 11 Let P, Q and R be sets of strings with € ¢ P. Then the equation
R=Q+RP

has a unique solution
R=QFP".

Proof: It is useful to consider what happens when we substitute () + RP into
itself for R:

R = Q+RP
= Q+(Q+RP)P=Q+ QP+ RP?
Q+QP+(Q+RP)P*=Q+QP+QP*+ RP?

Thus, QP* C R for all 7 > 0. Consequently, |J;5,[QP] C R, which is to say,
QP* C R.

In fact, R = QP* is a solution to R = Q + RP, which we can verify by
substituting QP* for Rin R =Q + RP:

QP* = Q+ QP*P = Q(c + PP*) = QP*.

The Equivalence of DFAs and Regular Expressions 73

We now need to show that this solution is unique. We will do this by showing
that whenever R = S is a solution then S C @QP*. Then, since QP* C R and
R =S we will have § = QP*.

Suppose R =S and w € S. Then, from above, we have, for all ¢ > 0,

weQ+QP+ QP>+ ---+ QP+ RP™,
and, in particular,
Q+QP+QP?+---+ QP 4+ RPIIT,

Now, since ¢ ¢ P every string in RPI"*! is strictly longer than |w|. Thus
w ¢ RPYIH1. Tt must be the case, then, that

wER+QP+QP*+---+ QP

and, therefore, w € QQP*. Since the choice of w was arbitrary, we have that
w e S = we QP*. In other words, S C QP*. o

The proof of the uniqueness of () P* as a solution depends on the fact that
e ¢ P (otherwise RPI+1 may include strings that are not strictly longer than
|w|), but the proof that QP* is a solution does not. Presumably if £ € P then,
while QQP* will still be a solution, there may be other solutions.

33. Show that if P = {e} then every set that contains () as a subset is a
solution to R = @ + RP.

34. Give an example of an R, P and () such that R = Q+ RP but R # QP"*.

To see how to use this result to solve the system of equations, consider
the equations we obtained for the example DFA. The idea is to focus on one
equation at a time, identifying Q and P such that the equation is of the form

R=Q+ RP:

R0=R0a+R2a+£=R2a+8+R0 a .
Q P

Then
Ry, = QP
(Rya +¢€)a”

= Ryaa™ +a*.

74 Basic FL'T—Finite and Regular Languages

Substituting R;a for R,
Ry = Riaaa™ + a™.

Substituting these into the equation for R,

R, = Ryb+ Rib+ Ryb

(Riaaa™ + a*)b+ Rib+ Ryab
Riaaa™b + a*b+ Rib+ Riab
a*b + R1(b+ ab + aaa™b)

= a'b+R; a’b, since b+ ab + aaa™b = a*b.
Q P

Then
Ry = a"b(a™b)".

Finally, substituting this into the equations for Ry and Rs:
Ry = a"b(a"b)"aaa” + o™ and
Ry, = a'b(a"b)"a.
It follows, then, that
L(.A) = R() + RQ
a*b(a*b)*aaa* + a* + a*b(a*b)*a
a* + a*b(a*b)*aa’.

35. Construct a regular expression denoting the language accepted by the

following DFA.
b b ab
00 08
al

The Pumping Lemma for Regular Languages 75

11 The Pumping Lemma for Regular Languages

We know now how to prove that a language is regular; we have at least two
ways—exhibit a DFA and prove that it accepts the language or exhibit a
regular expression and prove that it denotes it. We know also that every
regular language can be accepted by a DFA, which is to say that there is
a finite bound (independent of the length of the input) on the amount of
memory needed to recognized the strings in the language. But this is not a
very powerful model. It seems likely that there are languages that cannot be
recognized using a finitely bounded amount of memory. One example, from
the informal examples we explored at the start of the tutorial, is the language

Loy = {a'b" | i > 0}.

Here our intuition was that we can put no bound on number of ‘a’s we have to
count in order to recognize the language. Consequently, it appears that this
is not a regular language. The question is how to prove that a language is not
regular.

Potentially, this is a much more difficult problem. To establish that a lan-
guage is regular we need only exhibit a DFA that accepts it; to establish it is
not regular we need to prove that it is not accepted by any DFA. Fortunately,
by looking at the nature of DFAs we can identify properties that are charac-
teristic of the languages they accept. Thus, the fact that regular languages are
all accepted by DFAs implies that they share these properties. The approach
we will use to prove non-regularity of a language is to show that it does not
share at least one of these properties. Consequently, it cannot be accepted by
a DFA. In this section, we will explore a closure property of the following sort:
if a regular language includes strings of a certain type, then it includes all
strings of a related type. We will be able to establish non-regularity of a given
language, then, by exhibiting a string of the first type that is in the language
along with a string of the related type that is not.

Lets start by considering what it means for a string to be accepted by a
DFA. Suppose A = (@, %, q, d, F) is a DFA and that Q@ = {q0,¢1,---,Gn 1}
includes n states. Thinking of the automaton in terms of its transition graph,
a string x is accepted by the automaton iff there is a path through the graph
from g to some ¢y € F that is labeled z, i.e., if §(go, z) € F. Suppose z € L(A)
and |z| = [. Then there is a path [edges long from ¢, to g;. Since the path
traverses [edges, it must visit [+ 1 states.

76 Basic FL'T—Finite and Regular Languages

r =01092---0]

)--..>-~-. :: o.l

Suppose, now, that [> n. Then the path must visit at least n + 1 states. But
there are only n states in @; thus, the path must visit at least one state at
least twice. (This is an application of the pigeon hole principle: If one places
k objects into n bins, where k > n, then at least one bin must contain at least
two objects.)

2O OSO g

Thus, whenever |z| > n the path labeled w will have a cycle. We can break
the path into three segments: x = uvw, where

e there is a path (perhaps empty) from g¢q to p labeled u (i.e., S(qo, u) = p),

e there is a (non-empty) path from p to p (a cycle) labeled v (i.e., 5(p,v) =
D),

e there is a path (again, possibly empty) from p to ¢; labeled w (i.e.,
6(p,w) = az).

But if there is a path from gy to p labeled u and one from p to g labeled
w then there is a path from gy to ¢; labeled uw in which we do not take the
loop labeled v, which is to say uw € L(A). Formally

A

5(qo,uw) = (5(5(q0,u),w) = S(p, w) =gqy € F.

Similarly, we can take the v loop more than once:

(5(q0,um)w) = (E((?((E((S(qo,)’)7U)’w)
= 5(66(p,v),v),w)
= 0(0(p,v), w)
= d(p,w)=gqs € F

In fact, we can take it as many times as we like. Thus, uv'w € L(A) for all i.

The Pumping Lemma for Regular Languages 77

This implies, then, that if the language accepted by a DFA with n states
includes a string of length at least n then it contains infinitely many closely
related strings as well. We can strengthen this by noting (as a consequence
of the pigeon hole principle again) that the length of the path from ¢y to the
first time a state repeats (i.e., the second occurrence of p) must be less than
n. Thus |uv| < n.

Now suppose L is an arbitrary regular language. Then there is some DFA
accepting it and that DFA has some fixed number of states. Thus there is
a constant n (the number of states in a DFA accepting L) such that if L
includes any string of length greater than or equal to n then there is a non-
empty segment of that string falling somewhere in its first n positions that
can be repeated (or pumped) any number of times (including zero) always
producing strings in L. This result is known as the Pumping Lemma for
regular languages.

Lemma 12 (Pumping Lemma) For every regular language L there is a
constant n depending only on L such that, for all strings © € L if |x| > n
then there are strings u, v and w such that

1. z = uwvw,

2. |luv| < n,

3. v >1,

4. foralli>0, wv'w € L.

What this says is that if there is any string in L “long enough” then there
is some family of strings of related from that are all in L, that is, that there is
some way of breaking the string into segments uvw for which uv‘w is in L for
all 7. It does not say that every family of strings of related form is in L, that
uv'w will be in L for every way of breaking the string into three segments uvw.
It also does not say that every long string in L is of form uviw for some i > 1
(i.e., it does not say that every long string in L has some part that repeats).
It does not, in fact, say anything about individual strings at all, it simply lets
us identify families of strings all of which must be in L. The way we will use
this is to identify such a family that should be in L if L is regular for which
we can show at least one string in the family is not in L.

Note that this lemma talks only about the strings in the language. While
we justified it by appealing to the fact that a language is regular iff there is a

78 Basic FL'T—Finite and Regular Languages

DFA that accepts it, we don’t need to actually come up with such a DFA to
apply it. On the other hand, if we actually have a DFA for the language we
can fix a concrete upper bound on the constant of the lemma—n is no larger
than the number of states in (). Thus we can strengthen the pumping lemma
slightly, by adding;:

Lemma 13 Suppose A = (Q,%,9,q, F) is a DFA witnessing the fact that
L is reqular. Then the constant n of the pumping lemma is no greater than

card(Q®).

11.1 Applying the Pumping Lemma

To establish that a language L is not regular using the pumping lemma we
need to show that the pumping lemma is not true for that language, i.e., for
any n there is some x € L with |z| > n such that for all u, v and w where
wow =z, |uv| <n and |v| > 1 there is some i for which uv'w ¢ L.

A useful way to think of this is as a game between you, who are trying to
prove that the pumping lemma fails for L, and an adversary that is trying to
prove that it holds. Expressed formally, the lemma says (‘V’ and ‘3’ should be
read “for all” and “there exists”, respectively):

(VL)[L regular =
@n)|
(Vz)[x € L and |z| > n =
(Fu, v, w)[x = vvw and
luv| < n and
lv| > 1 and
(Vi > 0)[uv'w € L]]]]].

Every V' is your choice—the lemma should be true for any value you choose.
Every ‘3’ is your opponent’s choice—they need only exhibit some value for
which the lemma is true. Each move can depend on all the choices made prior
to it. The game starts with your choice of the L you wish to prove to be
non-regular. You opponent then chooses some n, you choose a string z € L of
length at least n, etc. You win if, at the end of this process, you can choose i
such that uv'w ¢ L. To establish that the lemma is not satisfied by L you have
to show that no matter which choices your adversary makes, you can always
have a winning choice of x and 7, that is, you must give a strategy, accounting
for all possible choices of your opponent, that always leads to a win for you.

The Pumping Lemma for Regular Languages 79

Of course, your strategy at each step will depend on the choices your opponent,
has made.
What we end up with is a proof by contradiction. For instance:

To show that Ly, = {a’®’ | j > 0} is not regular.

Proof: Suppose, by way of contradiction, L, is regular. (Your choice of L.)

Let n be the constant of the pumping lemma. (Your adversary chooses n. You
can make no assumptions about n but you will base your subsequent choices
on its value.)

Let x = a™b". (Your choice of z. Note that it depends on n. In fact, if your
choice does not depend n, if n is not a parameter of your definition of z, then
the proof will almost certainly fail.)

Since x € Ly and |z| > n, by the pumping lemma there must be some u,
v and w such that x = wvw, |uv| < mn, |v] > 1 and uww'w € Ly for all i.
(You opponent chooses how to split = into uvw subject only to the conditions
that |uv| < n and |v| > 1. Your strategy must account for all ways of doing
this—all you can assume about u, v and w is that they meet the conditions of
the lemma.)

Since |uv| < n, both u and v must fall within the first n symbols of z. Thus,
u and v must consist only of ‘a’s. Furthermore, v must include at least one
‘a’, since |v| > 1. Thus, there must be some j, k and [such that

u=d, v=a", w = alb”, j+k+1l=n, and k > 1.

But suppose i = 0. (Your choice of i.) Then

w'w = uvw = a’ald”
where j 4+ | = n — k which is strictly less than n. Thus uviw ¢ Lg, for i = 0

and the pumping lemma does not hold for L, contradicting our assumption
that L., was regular. .

In this case our choice of x restricted the adversary’s choice of uvw enough
that all choices can be treated with a single argument. In general this will not
be the case and, even if we can use the same ¢ in all choices, we will have to
account separately for each alternative way of dividing .

80 Basic FL'T—Finite and Regular Languages

Example: Let L, C {a,b}*{c,d}* be the language in which a string w is in
L, iff the number of occurrences of the substring ab in w is greater than or
equal to the number of occurrences of the substring cd in w. Prove that L, is
non-regular using the pumping lemma.

Proof: Suppose, for contradiction, that L, is regular. Let n be the constant
of the pumping lemma. Let x = (ab)"(cd)". Let |w|,, denote the number of
occurrences of the substring ab in w. Similarly for |w|,,. Then z € Ly, |z| > n,
and |$|ab = |x|cd =n.

By the pumping lemma, x = wvw, where |uv| < n, [v| > 1 and uw € Ly.
Consequently, uv is a prefix of (ab)™.
We must now account for every way in which a prefix of (ab)™ can be divided
into wv with |v| > 1. Any way of dividing these possibilities into cases is
acceptable, as long as it is erhaustive. One way that works well for this
language is to note that v must start with either an ‘e’ or a ‘0’ and, similarly,
must end with one or the other. Thus, there are four cases:

v = a(ba)’ v=a(ba)’b v =>b(ab)’a or v = b(ab)’, j>0.

By cases, then:

u=(ab)’ wv=ua(ba)) w=0b(ab)*(cd)® = |uw|, = n—1-|v|,
u=(ab)* v=ualba)’b w=(ab)*(cd)® = |uw|, = n-|v|, and |v|, > 0.
u=(ab)la v="0b(ab)ya w="b(ab)*(cd)® = |uw|, = n—1-|v|,
u=(ab)la v=">b(ab)y w=(ab)f(cd)® = |uw|, = n—1-|v|,

Thus in all cases |uw|,, < |[uw|,, =n, vw & Ly and L, is not regular. -

36. Prove that Ly & {w € {a,b}* | |w|, < |wl|,} is not regular (where |w|,

is the number of ‘a’s occurring in w).

37. Prove that the following language Lg is not regular.

Le & {w e {a,b}" | |w|, < |w|, if |w|, even, |w|, > |w|, otherwise }

The Myhill-Nerode Theorem 81

12 The Myhill-Nerode Theorem

As we have defined them, in every DFA there is a path from the start state to
some state of the DFA for every string in ¥*. Since there are infinitely many
strings but only finitely many states many strings must lead to the same state.
Recall that the state represents all the information that the DFA has about
the string leading to that state, so, in a strong sense it is the nature of DFAs
that they are forgetful—they are unable to remember a complete description
of the strings they scan and must, inevitably, fail to distinguish some strings.
The content of the Myhill-Nerode Theorem, the topic of this section, is that
this partitioning of ¥* into finitely many classes of indistinguishable strings is
characteristic of the regular languages.

Suppose L is regular. Then there is some DFA A that accepts it, L = L(.A).
The approach we have taken to proving that a DFA accepts a language is to
identify each state with an invariant, a property that is characteristic of the
strings that label paths from the start state to that state. These invariants
define a relation on strings: two strings are related iff they satisfy the same
invariant, which is to say iff they lead to the same state. We will refer to this

relation as R 4:

def

Ry = {(w,v) | (g0, w) = 6(g0,v)}

and will use R4 as an ‘infix’ relation symbol:
wR v < (w,v) € Ry.

Two strings are equivalent, from the point of view of A, iff they are related by
R 4. We can verify that R4 is an equivalence relation—it is reflexive: wR w
for all w; it is symmetric: if wR v then vR w as well; and it is transitive:
uR 4 v and vR 4w implies uRR 4w; so it is consistent with this interpretation.

Let

def
[w]r, = {v|wRav}.

This is the equivalence class of w wrt R4, the set of all strings equivalent to
w in the R4 sense. Note that, as with all equivalence classes, every string
w € ¥* is in some class (namely [w]g,) and no string is in more than one
(w € [u]r, and w € [v]g, implies [u]r, = [v]r,). Thus the equivalence classes
of R4 partition ¥*—they are disjoint and their union is ¥*.

Now, we potentially have many names for each equivalence class since if
wR4v then [w]|g, = [v]r,. We can capture the set of all classes by choosing an

82 Basic FL'T—Finite and Regular Languages

(arbitrary) canonical representative for each class. This set of representatives
is referred to as an index set or spanning set (we will denote it with I) and

2 = J [wlral-

wel

Given that R4 is defined by the automaton A, how big is its index set? Cer-
tainly, there can be no more equivalence classes than there are states of A
(there can be fewer, since some states of .4 may be inaccessible from ¢q). Thus
the number of equivalence classes wrt R4 is finite; we say that R4 has finite
indez (or is spanned by a finite set).

Since the finiteness of the number of equivalence classes of R4 is a conse-
quence of the key characteristic of DFAs—the finiteness of their state sets—it
should seem plausible that the existence of some relation R4 with finite index
is a key property of regular sets. To pin this down we need to look a little
more closely at the nature of R4 and its relationship to L.

First, note that, since two strings w and u are related by R4 iff the paths
(from the start state) they label lead to the same state, it must be the case that
if we extend them both with the same string we will obtain, again, equivalent
strings, i.e.,

wR A u = (Yv)[wvR 4uv].

We say that R4 is right tnvariant wrt concatenation.
Finally, we note that

L= {J [z,

3(‘10 aw)EF

which is to say, L is the union of some of the equivalence classes of ¥* wrt R 4.
When we put these all together, we get a lemma.

Lemma 14 If a language L C ¥* is reqular then it is the union of some of
the equivalence classes of a right invariant equivalence relation on X* which is
of finite index.

Note that, while given A accepting L we can immediately produce R4, the
lemma is actually independent of A. If we know that L is regular then we know
that some relation with the properties we have established for R 4 exists, since
some A does. Intuitively, the converse ought to be true as well—if such an
equivalence relation exists then we ought to be able to construct a DFA using

The Myhill-Nerode Theorem 83

the equivalence classes of the relation as states; the existence of such a relation
ought to imply that L is regular. And, in fact, it does but it is useful to prove
this in a somewhat round-about way.

The fact that R4 is right invariant wrt concatenation implies that

wRu = (Yv)[wv € L < uv € L.

Let’s consider the relation

R ¥ {{w, u) | (Vv)[wv € L & wv € L]}.

Note that, although this is also an equivalence relation, it is not the same
relation as R4 because it may be the case that A distinguishes two strings
w and u even though wRyu—w and u may lead to different states of A,
even though A behaves the same (in the sense of accepting or not) on all
strings extending them. However, as we just saw, if wR4u then wRpu, thus
every equivalence class wrt R4 is a subset of an equivalence class wrt Ry; the
equivalence classes of R4 do not break the equivalence classes of R, rather
they partition them. We say that R4 is a refinement of R;—every equivalence
class wrt Ry, is the union of the equivalence classes of R4 it intersects. Thus,
the number of equivalence classes of Ry, can be no greater than the number of
equivalence classes of R 4. Consequently, the number of equivalence classes of
¥* wrt Ry is also finite. Ry, has finite index. This leads to our second lemma.

Lemma 15 Suppose L C $*. Let R, & {{w,u) | (Vv)[wv € L < uv € L]}.
If L s regular then Ry, has finite indez.

This follows from the previous lemma and the fact that right invariance of R 4
implies that R 4 refines Ry.

We are close, now, to having characterizations of the regular languages
in terms of both R4 and R;. If we can show that whenever R; has finite
index then L is regular we will get not only that this characterizes the regular
sets but also that being the union of some of the classes of a right invariant
equivalence relation of finite index does, since it is implied by regularity and
implies finiteness of index of Ry.

To obtain this result, we will follow the idea we sketched for R —we will
construct a DFA accepting L using the equivalence classes of ¥* wrt Rj as
our state set.

Let Q" = {[w]g, | w € £*}. (Note that while each of these states is
a potentially infinite set, the number of states is finite. To avoid even this

84 Basic FL'T—Finite and Regular Languages

vestigial infiniteness, we could take @' to be any index set for Ry, but this
definition is slightly simpler.)

Let §'([w]g,,0) = [wolg, -

We need to verify that this is, in fact, well defined. In particular, we need
to show that for all u and o, if u € [w]g, then uo € [wo]g,. (In other words,
we need to show that Ry is right invariant, but this does not follow from right
invariance of R4 since uR;w does not imply uR4w.) To see that this is the
case, suppose uRypw. Then, for all v, uv € L <& wv € L. And, in particular
(letting v = ov'), for all v, uov' € L < wov' € L. Thus, ucRpwo.

Finally, let ¢} = [¢]g, and F' = {[w]g, | w € L}.

Lemma 16 Let A' = (Q', %, ¢, ¢, F'), where @', g}, 6' and F' are as described
above. Then L = L(A’).

38. Prove that, for all w € ©*, §'(¢), w) = [w]g, -

39. Use this to prove the lemma.

Putting the three lemmas together we get:
Theorem 2 (Myhill-Nerode) The following are equivalent:
e L is reqular.

e L is the union of some of the equivalence classes of a right invariant
equivalence relation of finite index.

e The relation R, < {{w,u) | (Vv)[wv € L < uv € L]} has finite indez.

Note that with R, we have abandoned the notion of DFA entirely. This
is a relation that is defined directly in terms of the strings that are and are
not in the language, independent of any particular mechanism for defining or
accepting it.

12.1 Using Myhill-Nerode to Prove Non-Regularity

The fact that a language L is regular iff R;, has finite index gives us another
approach to proving languages are not regular. If we can show that there must
be infinitely many equivalence classes of ¥* wrt Ry, then L cannot be regular.
This is often simpler than using the Pumping Lemma.

The Myhill-Nerode Theorem 85

The most direct approach to doing this is to give an infinite sequence of
strings in X* all of which are distinct wrt to Ry. Since they each must be in
a distinct equivalence class and since there are infinitely many of them, R,
cannot have finite index.

Example: To show that
Loy = {a'b" | i > 0}.
is not regular, consider the sequence of strings
(a,a?, ...,d", ... |i>0).

We claim that every string in this sequence is distinct wrt Ry from every
other string in the sequence. To see this, consider a* and a’ for i # j. Then
a'b’ € Lg, while a/b* & Lg,. Thus, b° witnesses that a* and o/ are not related
by Ry. Since ¢ and j are arbitrary, every string in the sequence is distinct, wrt
Ry, from every other string in the sequence; no two share the same equivalence
class. It follows that there must be at least as many equivalence classes of R,
as there are strings in the sequence; Ry cannot have finite index.

40. Consider, again, the problem of specifying schedules for a machine tool
(see Section 8.3). Suppose, in this instance, that there is just a single
type of part which requires two operations A; and A, to complete. These
can be done in any order, although we will assume that operations always
complete partially completed parts if they can. Thus, at any given time
the partially completed parts will all be waiting for the same operation
(although which operation can change over time). Assume, further, that
there is an unbounded amount of space to store partially completed parts;
the only constraint on a schedule is that every part gets completed.

(a) Describe this language.

(b) Use Myhill-Nerode to show that the set of feasible schedules, given
these constraints, is not regular.

12.2 Using Myhill-Nerode to Prove Regularity

The Myhill-Nerode theorem gives us a characterization of the regular languages—
a language is regular iff the second and third part of theorem are satisfied.

86 Basic FL'T—Finite and Regular Languages

Thus, in contrast to the Pumping Lemma, we can use Myhill-Nerode not only
to prove languages are not regular, but also to prove that languages are reg-
ular. In fact, one of the attractive features of this approach is the fact that if
one’s attempt to prove a language is not regular fails then one is likely to be
well along the way to proving that the language is regular.

While it is possible to use either R4 or R; to prove a language is regular,
using Ry, is usually much simpler. The idea is to consider the way in which :*
is partitioned by Ry and argue that there are only finitely many partitions.

Example: Consider, again, the example of Section 8.3. Let L, be the set
of feasible schedules under the constraints given there. Following the Myhill-
Nerode Theorem, let

wRyp,u PN (Vv)[wv € Ly & uv € Ly).

Now, for any strings w,v € {A;, As, B1, Bo}*, it will be the case that wv € Lo
iff

e v completes w:
|w|A1 - |w‘A2 = ‘U|A2 - |U|A1 and ‘w‘Bl - ‘w‘Bz = ‘U‘Bz - ‘U‘Bl .
e wv does not satisfy:
FAIL(z) <% 7 = 2'2" where 12" 4, = 12| 0, | + 125, = |2'|5,] > 2,

The first condition says that every part pending at the end of the schedule w
will be completed during the schedule v. The second says that there will never
be more than two pending parts during this process.

Consider, now, an arbitrary strings in w,u € {A;, A, By, By}*. Under
what circumstances will it be the case that wRp,u? Well, if FAIL(w) is true,
then there will be no v for which wv € Ly. On the other hand, if FAIL(u)
is not true, then there is at least one v for which uv € Lo,—the one that
simply completes the parts outstanding at the end of w. Thus, if FAIL(w)
and FAIL(u) then wRp,u, but if FAIL(w) and not FAIL(u) or vice versa then
not wRp,u. It follows that the class of all strings that satisfy FAIL is one of
the equivalence classes of {A;, Ay, By, Bo}* wrt Rp,. (This should not be a
surprise, the class corresponds to the state Fail of the DFA we constructed for
this language.)

The Myhill-Nerode Theorem 87

It remains to consider what determines if two strings neither of which
satisfy FAIL are related by Ry,. First of all, it should be clear that a schedule
v will complete both w and u iff the set of parts outstanding at the end of w
is the same as the set outstanding at the end of u. For example,

(|w‘A1_|w‘A2 = ‘U|A2_|U‘A1 and |U"A1_|U"A2 = ‘U|A2_|U‘A1) And |w|A1_|w‘A2 = |U|A2_|U|A1 .

Moreover, if the set of parts outstanding at the end of w is the same as the set
outstanding at the end of u then, for all v, wv will satisfy FAIL iff uv satisfies
FAIL. Conversely, it is not hard to see that if the set of parts outstanding at
the end of w and w are not the same then there will be a schedule v which
completes one while FAILing on the other.

Thus, for w,u € {A;, Ag, By, Bo}*, wRp,u iff

e FAIL(w) and FAIL(u), or

e Not FAIL(w) and not FAIL(u) and
]y, = lwly, = luly, = luly, and |wlg, —|wlp, = |ulg, = |ulg, -

It remains, to count how many equivalence classes this relation generates.
There will be one for strings that satisfy fail plus one for each pair of values of
lw|,, — |wly, and |w|g — [w|g, for w that do not satisfy FAIL. Clearly, since
w does not satisfy FAIL,

—2< |w‘A1 - ‘U’|A2) ‘U’|B1 - |w‘B2 <2

It follows that there can be no more than 5-5 = 25 such pairs and 25+ 1 = 26
classes altogether. (There are actually just 14.) Thus, Ry, has finite index
and, by the Myhill-Nerode Theorem, L, is regular.

41. Using the Myhill-Nerode Theorem, prove the language L3 of Problem 25
is regular.

12.3 Minimization of DFAs

Recall that we showed above that R4 was a refinement of Ry ; if two strings
are related by R4 they are necessarily related by R;. The converse of this is
not true—it may be the case that A distinguishes two strings, that the paths
from the initial state labeled with the strings lead to distinct states in A, even
though any string labeling a path to some final state from one of those states

88 Basic FL'T—Finite and Regular Languages

also labels a path to some final state from the other and wice versa. But,
certainly, there is no need to distinguish these states. Since the behavior of
the automaton is the same from both states, it should be possible to merge
them into a single state. (This is not as immediate as it seems. The fact that
a path labeled with some string leads to a final state from the one if and only
if it leads to some final state from the other does not imply that they lead to
the same final state. We may, in general, have to merge a number of states in
order to preserve a deterministic transition function.)

Thus, if there is more than a single equivalence class wrt R4 partition-
ing any equivalence class wrt Ry the automaton A includes more states than
necessary; there is a simpler automaton that accepts the same language. Con-
sider, now, whether any of the classes wrt R, are redundant. These are, after
all, the classes we chose as the state set of the automaton we constructed in
the proof of the Myhill-Nerode Theorem. (For that DFA, in fact, R4 = Ry.)
Is it possible to merge any of these states, to construct a simpler automaton
that accepts the same language?

Suppose [w]g, # [u|g,- Then, by the definition of Ry, there must be some
string v such that wv € L while uv ¢ L or vice versa. But if we were to merge
these two states the automaton would have to either accept both wv and wuw
or reject them both. Thus, if [w]|g, # [u]r, then every DFA that accepts L
will need to distinguish them. It follows that the DFA we constructed on the
equivalence classes wrt Ry, is, in fact, minimal—there is no DFA with fewer
states that accepts L. Moreover, while there will be other DFAs with the same
number of states that accept L (since we could take any finite set of the same
size to be @), every one of these will have to distinguish exactly the same
sets of strings; necessarily R4 = Ry, for all of them. It follows, then, that the
only distinction between the minimal DFAs accepting L is the labeling of the
states. We say that they are isomorphic.

Lemma 17 The DFA constructed on Ry is minimal in the size of its state
set among DFAs accepting L. Moreover, up to isomorphism, it is the unique
minimal DFA accepting L.

This gives us a technique for minimizing DFAs, for eliminating redundant
states. As DFAs employed in applications can get quite large, such minimal-
ization can have a significant effect on efficiency. The idea is to identify classes
of Ry, states of A, that are indistinguishable wrt Ry, where a pair of states
q,p € Q are distinguished wrt Ry iff there is a string v which leads to a final

The Myhill-Nerode Theorem

state from one and to a non-final state from the other, i.e., iff §(¢,v) € F and
d(p,v) € F, or vice versa. As we noted above, whether such a string exists
is not necessarily obvious. The length of the string v could, potentially, be
quite long. The approach we will take to identifying pairs of states that are
distinguished wrt Ry, is to iterate through 7 > 0 identifying all those pairs that
are distinguished by strings of length ¢ and then using those to identify those
pairs distinguished by strings of length ¢ 4+ 1, etc. This leads to a dynamic
programming algorithm, which we will lay out by example.

Let A be the DFA:

We will construct a table relating pairs of states in which the entry in the
g row and the p column will be non-empty iff we have distinguished states ¢
and p. Since the relation of being distinguished is symmetric, we need only

the lower triangular of this table.

=W N

0

In the first iteration ¢+ = 0. We will mark each pair of states that are
distinguished by a string of length 0, which is to say we will mark the entry
for (p,q) iff S(p, g) € F and 5((], e) € F or vice versa. In other words, we
distinguish every state in F' from every state not in F.

1

2

3

1|e¢

2 €

3¢ €

4 € €
011123

90 Basic FL'T—Finite and Regular Languages

(We have marked them with the string that distinguishes them.)

In the subsequent iterations we identify states that are distinguished by
increasingly long strings. A pair of states (p,q) will be distinguished by a
string of length 7+ 1 iff there is some o € ¥ for which the state reached from p
on ¢ and the state reached from ¢ on o are distinguished by a path of length
i, i.e., if §(p,0) and 0(q,0) were distinguished in iteration i. Thus, in each
iteration, we work our way through the table marking each entry (p,q) for
which the entry (§(p, o), (g, 0)) (or vice versa) is already marked.

1]|e¢
1| ¢
2lale
2|1 a |¢
3| ¢ €
3| € €
4 €] a €
AR 5 4| bale|a| e
0 ([1]2 3

5(0,6) =2 6(4,b) =0

We repeat this until some iteration fails to distinguish any new pairs of
states. It should be clear that from that point on no more pairs will be
distinguished. That all distinguishable pairs will have been marked at that
point follows from the invariant:

An entry (p,q) will be marked in the table at iteration ¢ iff there
is a string v of length no greater than ¢ for which J(p,v) € F while
d(q,v) & F or vice versa

which can be easily established by induction on . That the algorithm always
terminates follows from the fact that the table is finite—one cannot distinguish
any more pairs than there are entries in the table, thus, the algorithm converges
after no more than that many iterations.

In the example, the pair (3,1) is left unmarked, thus, these states are
indistinguishable wrt R; and can be merged. Note, also, that, while state 4
is distinguished from every other state it is unreachable from the initial state
and is, therefore, useless. We can simply eliminate it.

The Myhill-Nerode Theorem 91

Note that, in merging state p and ¢ the new transition function will be well
defined iff 6(p,0) and 6(q, o) are equivalent states. The algorithm guarantees
this will be the case (why?).

42. Minimize the following DFA.

92

Basic FL'T—Finite and Regular Languages

Closure Properties of the Class of Regular Languages 93

13 Closure Properties of the Class of Regular
Languages

The pumping lemma gives a kind of closure property for individual regular
languages: if the language includes a string of a particular form then it includes
all strings of a related form. In this section we will look at some of the
closure properties of the class of regular languages—properties of the form: if
Ly,...,Lg are in that class (are regular) then the languages formed from the
L; by some particular operation are all in the class as well.

13.1 Boolean Operations

Theorem 3 The class of reqular languages is closed under union, concatena-
tion, and Kleene closure.

Proof: This follows immediately from the definition of regular languages. -
Note that we actually gave constructive proofs of these closure results as part
of the proof that every regular language is accepted by some DFA.

Theorem 4 The class of reqular languages is closed under intersection.

Proof (sketch): Suppose L; and L, are regular. Then there are DFAs M; =

(Q,%,01,q0, F1) and My = (P, 3, 83, po, F5) such that L; = L(M;) and Ly =

L(My;). We construct M’ such that L(M') = Ly N Ly. The idea is to have M’

run M; and M, in parallel—keeping track of the state of both machines. It

will accept a string, then, iff both machines reach a final state on that string.
Let M'={(Q x P,%,0",{qo, po) , F1 X Fy), where

5I(<Qap>) U) = <(51 (Qa 0)7 52(p7 U)) -
Then 3’(<q,p>,w) = <(§1(q, w), 32(;0, w)> (You should prove this; it is an

easy induction on the structure of w.) It follows then that

w e L(MI) = 5'((Q0,p0> ,’U)) € F1 X FQ
& 6,(qo,w) € Fy and by(po, w) € Fy
& welLandw e Ly
=< we L1 N LQ.

94 Basic FL'T—Finite and Regular Languages

Corollary 1 The class or reqular languages is closed under relative comple-
ment.

Since w € L; \ Ly iff w € L; and w & Ly iff Sl(qo,w) € F, and 52(p0,w) g F,
iff &' ({qo, o) , w) € Fy x (P \ Fy), we can use essentially the same construction
changing only F' to Fy x (P \ F3).

Theorem 5 The class of regular languages is closed under complement.

Proof (sketch): Following the insight of the corollary, w € L, if w ¢ L, iff
01(qo, w) ¢ Fi. Thus we can let M' = (Q, %, 61, q, @\ F1), that is M with
the set of final states complemented wrt Q). o

Note that if we had proved closure under complement first we could have
gotten closure under intersection using DeMorgan’s Theorem.

Ly, Ly reg. = Ly, Ly reg. = L1 U Ly reg. = Ly U Ly reg. = Ly N Ly teg..

Definition 45 A class of languages is closed under Boolean Operations iff it
1s closed under union, intersection, and relative complement.

Corollary 2 Any class of languages closed under relative complement and
either union or intersection is closed under Boolean operations.

Corollary 3 The class of reqular languages is closed under Boolean opera-
tions.

13.2 Using Closure Properties to Prove Regularity

The fact that regular languages are closed under Boolean operations simplifies
the process of establishing regularity of languages; in essence we can augment
the regular operations with intersection and complement (as well as any other
operations we can show preserve regularity). All one need do to prove a
language is regular, then, is to show how to construct it from “obviously”
regular languages using any of these operations. (A little care is needed about
what constitutes “obvious”. The safest thing to do is to take the language
back all the way to 0, {¢}, and the singleton languages of unit strings.)

Example: Let L C {a,b}* such that

Closure Properties of the Class of Regular Languages 95

e ‘ga’ never occurs in any string in L,

e if ‘ab’ occurs anywhere in a string in L then ‘ba’ also occurs somewhere
in that string.

To show that L is regular, note first that L is the intersection of two languages:
one in which only the first property (no ‘aa’) is enforced and one in which only
the second (‘ab’ implies ‘ba’) is.

L:LlﬂLQ,

where Ly is the set of strings over {a, b} in which ‘aa’ never occurs and L is
the set in which ‘ba’ occurs whenever ‘ab’ does.

Ll = L_?n
where Lj is the set of strings over {a, b} in which ‘aa’ does occur.
Ls = L((a + b)*aa(a + b)*).

L, is the set of strings over {a,b} in which either ‘ab’ does not occur or ‘ba’
does (P = Q =-PV Q).
LQ - L4 U L5,

where Ly is the set of strings over {a,b} in which ‘ab’ never occurs and Lj is
the set in which ‘ba’ does.

Ly = L, Ls = L((a + b)*ab(a + b)*).
and
Ls = L((a + b)*ba(a + b)¥).

Thus -
L:L3ﬂ(L6UL5)

and each of L3, Lg and Lj are regular. Hence L is regular as well.

43. Using this approach, show that the set of strings over {a, b} in which the
number of ‘a’s is divisible by three but not divisible by two is regular.

44. Starting with simple automata for your “obviously” regular languages
and using the constructions of the proofs of the closure properties, build
a DFA for this language.

96 Basic FL'T—Finite and Regular Languages

45. Consider the two languages:

L,: The set of strings over {a, b} in which the last symbol is not ‘b’.

Ly: The set of strings over {a, b} in which the last symbol is not ‘a’.

Using the approach of the previous problem, construct a DFA accepting
the language of strings that satisfy both of these descriptions.

46. What is that language? Explain why it is not empty.

13.3 Quotient and Prefix
Definition 46 The (right) quotient of a language Ly wrt Ly (both over X) is

Li/L, % {w e ¥ | (v € Ly)[wv € Ly]}.

So the quotient of L; wrt Lo is the set of prefixes one is left with when one
removes suffixes of strings in L; that are found in Ls.

Example: Let L; = L(a*(bc)*) and Ly = L((cb*)"). Then
Li/Ly ={w € {a,b,c}* | (v € L((cb*)"))[wv € L(a*(bc)*)]}.

If wv € Ly then wv = a’(bc)’ for some 1,5 € N.
If v € Ly then v = (cb*)(cb*?) - - - (cb™) for some ky, ky,..., ki €N, [> 0.
It follows that

wv = a'b(ch)™c = a*(cb)™ (b)) (eb?) and w = a’b(ch)™ ', m—1—-1 > 0.

Thus
Ll/LQ = L(a*b(cb)*)

47. Let Ly = L(a*ba*) and Ly = L(b*a). What is L;/Ly?
48. Let Lz = L(ba*b) and L; remain the same. What is L;/L3?

Theorem 6 The class of reqular languages is closed under quotient with ar-
bitrary languages.

Closure Properties of the Class of Regular Languages 97

That is, as long as L is regular, Ly can be any language whatsoever and L /L,
will be regular. (It is not required that it even be possible to effectively decide
if a given word is in L.)

Proof (sketch): Let L; = L(M;) and M; = (Q, %, 9, qo, F).
Let M'=(Q, %, d, q, F') where

F'={qe Q]| (Jve Ly)[d(q,v) € F]}.

It is easy to show, then, that w € L(M') & w € Ly /L. =

49. Show it.

Note that if it is not possible to effectively decide if v € L, then we will not be
able to effectively decide if ¢ € F’. But there are only 2°24®@) subsets of Q.
One of these is the right one. Thus there is some DFA that recognizes L/ Lo,
although we may not be able to effectively decide which one. Of course, if Ly
is regular we can tell if w € Ly and the construction is effective.

Corollary 4 The class of regular languages is closed under the operation
Suffix(L) ¥ {w € =* | (v € ©*)[wv € L]}.
Since Suffix(L) = L/¥*.
50. Suppose L is any nonempty language. What is ¥*/L?
51. What is L/0?
52. What is L/{e}?
53. Suppose L, Lo and L3 are arbitrary languages. Show that
L1/(Lz U Ls) = (L1/L2) U (L1/Ls)

and that
Li/(LyN L3) = (L1/Ly) N (Ly1/Ls).

54. Suppose, again, that L;, L, and L3 are arbitrary languages. What is
Ly/(Ly/L3)?

55. What is (Ll/LQ)/Lg?

98 Basic FL'T—Finite and Regular Languages

13.4 Substitution and Homomorphism

Let f be a function that maps each o0 € ¥ to some regular language L,. In
general, each L, may be over its own alphabet I, distinct from the others, but
we can understand all of the L, to be languages over I' = |, .x[I';]. So while
the function may map symbols in ¥ to languages over some other alphabet I,
we can take the range of f to be languages over that single alphabet:

f:X—=P().
f is a substitution of reqular languages for 2.

Definition 47 If w € ¥X* then

wt [{2} ifw=c,
flw) = { F') - flo) ifw=1u'-o.

Definition 48 If L C X* then

FL) < {f(w) |we L}.

Note that if f(o) includes € then f may erase ‘o’s occurring in strings in L,
while if f(o) = () then f has the effect of deleting every string in L in which
‘o’ occurs.

Example: Let f(a) = L(aTca®) and f(b) = (b*cb'). Let L = ((ab + ba)*).
Then abab € L and

acaaab\bbfc_@aaacaab\cbfbf} € f(w).
€f(a) €f(b) €f(a) €f(b)
And
((ab+ ba)*))
({ab} U {ba}))"
E{ab}) U f({ba}))"
(

) - f(O)Uf(b) - f(a))®
atca™)L(bTeb) U L(bTeb™)L(aTca™))*
(aTcatbtebt + btebTatcat)*).

f(L
(f
(f
(f
(L

L(

Theorem 7 The class of reqular languages is closed under substitution by
reqular languages.

Closure Properties of the Class of Regular Languages 99

Proof (sketch): If L is regular then L = L(r) for some regular expression 7.
Then f(L) = L(f(r)) where f(r) is, in essence, the result of applying f to r. -

56. Let L = L(((a + ba)*ba)*) and f = {a — L(ab*a),b — L(b*ab*)}. Give
a regular expression for the language f(L).

Definition 49 Let h : X — I'* map symbols of ¥ to strings over some alphabet
. We say that h is a homomorphism of ¥ to I'*, the homomorphic image of
w € X* (under h) is

def | € ifw=c¢
h(w) = { h(w')-h(o) fw=w""-0o

and the homomorphic image of L C ¥* (under h) is

L) ¥ {h(w) |w e L}.

Corollary 5 The class of reqular languages is closed under homomorphisms.

This is because a homomorphism is, in essence, a substitution in which card(f (o)) =
1 for all o € ¥. Thus closure under substitution implies closure under homo-
morphism.

13.5 Reversal

Theorem 8 The class of regular languages is closed under reversal.

Proof (sketch): Let L = L(r) for some regular expression r. Let

(0 ifr=20
€ ifr=ce¢
eréf< o ifr=o0

(sR4+tR) ifr = (s+1)
(tR.s®) ifr=(s-t)
(s%%) if r = (s%).

\

It follows by an easy induction on the structure of w that w € L(r) < w® €
L(rR®). Thus

100 Basic FL'T—Finite and Regular Languages

Proof (sketch, alternate): Let L = L(A) for some DFA A = (Q, %, , qo, F).
Let A =(Q',%, ¢, g, F') be an NFA with:

Q' = QU{g}
&'(q0,6) = F
§'(q,0) = {p|d(p,o)=4q}
F' = {QO}-

So A’ is, in essence, the NFA one gets by reversing the edges of A.
57. Why is A" an NFA rather than another DFA.

58. Complete the proof by showing that
w € L(A) & wl € L(A").

[Hint: Prove first that 6(q, w) = p < ¢ € &' (p, w™).]

59. Prove that the class of regular languages is closed under Suffix.
[Hint: Why is this question here rather than in Section 13.37]

13.6 Using Closure Results to Prove Languages are Non-
regular

Let Lo, = {a'® | i > 0}. We will take L, to be our canonical non-regular
language. We can then use the known closure results for the class of regular
languages to prove, by contradiction, that some language L is not regular by
showing how to reduce L to L., using operations that preserve regularity.

Example: Let L = {w € {a,b,¢c,d}* | |w|, > |w|,}. To show that L is not
regular.
Let Ly = LN L((ab)*(cd)*). Then

Ly = {(ab)'(cd)? | 0 < j < i}
Let Ly = hy(L;) where hy = {a — a,b+— &,¢+— b,d — ¢}. Then

Ly ={a'¥ | 0 < j <i}.

Closure Properties of the Class of Regular Languages 101

Let Ly = ho(L;) where hy = {a — b,b+— e,¢— a,d — ¢}. Then
Ly = {b*a' | 0 <1 < k}.
Then
LynLs® ={a'¥ [0<j <y n{at* [0 <1<k} ={a'V | 0<j =i} = La.

As the class of regular languages is closed under intersection, homomorphism
and reversal if L were regular L., would be regular as well. But L, is our
canonical non-regular language and, consequently, L cannot be regular.

60. Consider again a system of two processes (A and B) exchanging messages
as in Exercise 25. Again A sends either ‘m;’ or ‘my’ and B acknowledges
with ‘a;’, ‘ay’ or ‘ay’, where ‘a;’ acknowledges ‘m;’, ‘ay’ acknowledges
‘my’ and ‘a;s’ acknowledges both. In contrast to Exercise 25, we will
now allow any number of ‘m;’s or ‘ms’s to be outstanding. We require
only that every message is eventually acknowledged and that no ac-
knowledgment is sent unless there is some outstanding message(s) of the
corresponding type. Show that the set of finite sequences of messages
that satisfy this protocol is not regular.

[Hint: Start by taking an intersection with a regular set to simplify the
language. (Get rid of all the ‘my’s, ‘as’s, and ‘ay5’s.)]

102 Basic FL'T—Finite and Regular Languages

14 Some Decision Problems for the Class of
Regular Languages

We’ll close this study of the regular languages by considering whether certain
questions concerning given regular languages can be decided algorithmically.
We will focus on a few questions, with you doing a couple more as exercises.

Membership: Given a string and a finite representation of regular lan-
guage, is the string in the language?

Emptiness: Given a finite representation of a regular language, is that
language empty?

Finiteness: Given a finite representation of a regular language, is that
language finite?

Equivalence: Given finite representations of two regular languages, do
they represent the same language?

We will generally assume that the representation used in the instances of
these problems are DFAs. This is usually the easiest form to handle and, as
we have already established that there are algorithms for translating other
representations into the form of DFAs, if the problem can be decided given
DFAs it can be decided given any other representation.

61. Why don’t the instances of these problems just include the languages
themselves rather than representations of the languages?

62. Which of these properties are algorithmically decidable for the class of
finite languages?

These problems are all of the type we called “checking problems” in Sec-
tion I. They are more properly known as decision problems: given some in-
stance decide if it satisfies some property. If such a problem can be solved
algorithmically the corresponding property is said to be decidable.

14.1 Membership
Given a string and a DFA, is the string in the language accepted by the DFA?

Some Decision Problems for the Class of Regular Languages 103

The question here is whether the computation of the DFA on the string
terminates in an accepting state. The obvious way of approaching this is
to simply simulate the DFA: start with the initial ID, calculate its successor
(using the transition function), repeat until a terminal ID is reached, and
answer yes iff the terminal ID includes an accepting state. This is an effective
procedure—each step can actually be carried out—and it will certainly give
the right answer when it finishes. The issue we need to address is whether
it will always finish-—is it an algorithm? Here we can appeal to our initial
discussion of computations in Section 8. If an ID has a successor the length
of the remaining input in that successor is exactly one less than the length of
the remaining input in the ID. Thus, there are exactly |w| successors in the
computation of any DFA on w.

63. Which is to say, the length of the computation in transitions (steps) of
the DFA is |w|. What is the length of the computation in terms of its
representation as a sequence of IDs; how many IDs are in the sequence?

64. Can we establish such a bound on the computations of NFAs without
e-transitions? With them?

Consequently, in simulating the DFA, the process of computing the successor
will be repeated exactly |w| times. Since strings have finite length, we are
guaranteed to reach a terminal ID in a finite number of steps.

Theorem 9 Membership is decidable for the class of reqular languages.

It is useful to consider this approach from the perspective of transition
graphs as well. In exploring the computation of the DFA on w we are simply
following the path labeled w in the transition graph of the DFA that starts at
go- For DFAs there is only one such path and it consists of exactly |w| edges.

14.2 Emptiness

Given a DFA, is the language accepted by that DFA empty? Membership
asks us to decide whether there is an accepting computation on a given input.
Emptiness asks us to decide whether there is a accepting computation on
any input. Since there are infinitely many strings that might be accepted,
this is, in general, more difficult: there are systems of computation for which
membership (or its equivalent) is decidable but emptiness is not. While we
might approach this by applying our algorithm for membership systematically

104 Basic FL'T—Finite and Regular Languages

to all strings over the alphabet of the DFA—starting with the empty string,
say, and then all strings of length one, then two, etc.—we cannot check all such
strings in finitely much time. For this approach to work we need to identify a
finite subset of the strings that suffices: a set we can check exhaustively which
is guaranteed to include some string in the language if the language includes
any string.

We can identify such a subset by thinking back to the Pumping Lemma
(Section 11, Lemma 12). This says that there is number n that depends only
on the DFA, such that if some string x with length n or more is in the language
accepted by the DFA then there is some string shorter than z in the language
(the string in which v is pumped zero times). Moreover, the length of that
string is no less than |z| — n (since, |uv| < n, and a fortiori |uv| < n).

Suppose, then, that there is some string of length n or more in the language.
Let wy be such a string with minimal length, i.e. wy is in the language, |wy| > n
and every string with length n or more that is in the language is at least as
long as wy. How long is wy with v pumped zero times? Since this is strictly
shorter than wy and is in the language, and, by choice of wy, every string in
the language shorter than wy is shorter than n, it must be the case that wy
with v pumped zero times is shorter than n. Thus, we can limit our search to
strings of length strictly less than n.

All that remains is to figure out what n is for the given DFA. In proving
the pumping lemma we used a pigeon hole principle argument to show that the
computation of a DFA on any string longer than the number of states (that
is card(Q))) must include a loop. Cutting out this loop is what gave us the
accepting computation of the DFA on the string with v pumped zero times.
Thus, n can be taken to be equal to card(Q).

The algorithm, then, consists of applying the membership algorithm to all
strings over the alphabet of the DFA that are no longer than the size of its
state set. If any of these strings are in the language they witness the fact
that it is non-empty. If, on the other hand, none of them are, we know as a
consequence of the pumping lemma that no longer string is in the language
either.

This is even simpler if we think in terms of the transition graph. In that
context the emptiness problem is simply asking if there is any path in the
graph from the start state to an accepting state. Algorithms for solving this
problem (on finite graphs) should be well-known to you (e.g., Dijkstra’s or
Floyd’s algorithms). One of the attractions of representing DFAs as transition
graphs is the fact that known graph algorithms can be employed to solve their

Some Decision Problems for the Class of Regular Languages 105

decision problems.

14.3 Finiteness

Given a DFA, is the language accepted by that DFA finite? Just as the empti-
ness problem can be seen as a (potentially more difficult) generalization of
the membership problem, the finiteness problem is, in a particular sense, a
generalization of the emptiness problem. Here we need to determine not only
if any string is in the language accepted by the DFA but how many of them
there are, in particular, if there are only finitely many of them.

Thinking, again, in terms of the pumping lemma, if there are any strings
in the language of length n or greater then there will be infinitely many of
them (since we can pump v any number of times). Conversely, if there is no
string in the language of length greater than n then there are but finitely many
strings in the language (since the number of strings over a given alphabet of
length less than n is finite). So again, we can use the membership algorithm,
now searching for strings of length n or greater. And again, our problem is to
establish an upper bound on the length of the strings we test.

Consider, again, wy, a string of minimal length among those of length n or
greater in the language. How long is wy? We have established that, by choice
of wy, the length of wy with v pumped zero times is strictly less than n, and,
by the hypothesis of the pumping lemma, the length of v is no greater than
n, we can simply calculate that n < |wg| < 2n. Thus we need only search for
some string in the language of length between n and 2n.

65. Give an algorithm for deciding finiteness that is based on known algo-
rithms for deciding problems for graphs.

14.4 Equivalence

Given two DFAs, do they accept the same language? Here, again, we have
a sort of generalization of the emptiness problem. We need not only to es-
tablish whether there is any string in the language accepted by a DFA, but
whether the set of such strings for one DFA is the same as those accepted
by another. In this case the pumping lemma is not much help. Instead, we
will appeal to the Myhill-Nerode Theorem (Section 12) and, in particular, the
result of Lemma 17 (Section 12.3). This tells us that the result of minimizing
a DFA using the construction of Section 12.3 is unique up to isomorphism,

106

Basic FL'T—Finite and Regular Languages

that is to say, is identical to all other minimal size DFAs accepting the same
language except, possibly, for the actual names of the states. Isomorphism of
edge-labeled graphs isomorphism is another problem for which an algorithm is
known (although perhaps not as familiar). We can solve equivalence of DFAs,
then, by minimizing them and using the graph algorithm to test isomorphism.

66.

Sketch an algorithm to decide isomorphism of DFAs.

We can establish decidability of emptiness even more easily if we combine
the closure results of the previous section with earlier results of this section.

67.
68.
69.

70.

Suppose L(A;) C L(Ay). What is L(A;) \ L(Az)?
Suppose L(Ay) C L(A;). What is L(Ag) \ L(A;)?

Show that there is an effective construction that, given DFAs A; and As,
builds a DFA accepting L(A;) \ L(Az) U L(A3) \ L(A;). (This is known
as the symmetric difference of the languages.) You do not need to give
the actual construction, simply show how the constructions of Section 13
can be combined to make such a construction.

Use this result, along with decidability of emptiness, to show that equiv-
alence of DFAs is decidable.

We close with a couple of exercises.

71.

72.

In Section 13 we established that the class of regular languages was
closed under reversal: L regular implies LR regular. Let us say that a
language L is closed under reversal iff w € L implies w® € L. Prove that
the question of whether a given regular language is closed under reversal
is decidable.

[Hint: Use the closure properties and decision procedures we have al-
ready established.]

Show that decidability of both emptiness and membership is a conse-
quence of decidability of equivalence, i.e., show how an algorithm for
equivalence can be used (as a subroutine) to build an algorithm for empti-
ness or an algorithm for membership.

[Hint: For emptiness start out by giving a DFA that accepts the empty
language. For membership start out by sketching and algorithm that,
given w, constructs a DFA accepting {w}.]

