Lecture 8

COT4210 DISCRETE STRUCTURES
DR. MATTHEW B. GERBER
6/16/2016
PORTIONS FROM SIPSER, INTRODUCTION TO THE THEORY OF COMPUTATION, 3RD ED., 2013

Context-Free Grammars: Chomsky Normal Form

A simplified form for context-free grammars

- Useful for working with CFGs using algorithms

A CFG is in Chomsky Normal Form if:

- Every rule is of one of the following forms:
- $A \rightarrow B C$
- $A \rightarrow \mathrm{a}$
- $S \rightarrow \varepsilon$
- Where A, B and C are variables, \mathbf{a} is a terminal, and:
$\circ S$ is the starting variable
- Neither B nor C are S (A can be)

Converting to CNF: 4-Step Process

1. Add a new start variable. It rewrites only to the old start variable:
$S_{0} \rightarrow s$
2. Get rid of rewrites to the empty string. For every rewrite of variable $X \rightarrow \varepsilon$:

- Remove the rule $X \rightarrow \varepsilon$
- Find every instance of a variable Y being rewritten to anything involving X
- Add a new rule rewriting Y to the same thing, but with X removed

3. Get rid of unit rules.

For every rewrite of variables $X \rightarrow Y$:

- Remove the rule $X \rightarrow Y$
- Find every instance of Y being rewritten to anything
- Add a new rule rewriting X to the same thing

4. Convert all the remaining rules.

For every rule $X \rightarrow y_{1} y_{2} y_{3} \ldots y_{n}$:

- Remove the rule $x \rightarrow y_{1} y_{2} y_{3} \ldots y_{n}$

Make new rules $X \rightarrow y_{1} x_{1}, x_{1} \rightarrow y_{2} x_{2}, x_{2} \rightarrow y_{3} x_{3}, \ldots, x_{n-2}$ $\rightarrow y_{n-1} y_{n}$

- When making these rules, for every y_{i} that's a terminal:
- Replace it with a new variable Y_{i}
- Create new rule $Y_{i} \rightarrow y_{i}$

CNF Conversion Example

(Board work: 2.10)

Review: Stacks

A stack is a storage

mechanism

- First-in, last-out
- Push data onto the top of the stack
- Pop data from the top of the stack
- Items below the top of the stack aren't accessible except by popping the top first

Pushdown Automata

A stack is a storage

mechanism

- First-in, last-out
- Push data onto the top of the stack
- Pop data from the top of the stack
- Items below the top of the stack aren't accessible except by popping the top first

A pushdown automaton is an
NFA with a stack

On any transition:

- Push...
- Pop...
- Both...
- ...or neither

Recognizing a Familiar Language

Can you tell what language this recognizes?

Recognizing a Familiar Language

Can you tell what language this recognizes?

$$
\left\{0^{n} 1^{n}, n \geq 0\right\}
$$

Definition: Pushdown Automaton

A pushdown automaton is a 6-tuple $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ with:

- Q as the set of states,
- Σ as the input alphabet,
- Γ as the stack alphabet,
- $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow \mathrm{P}\left(Q \times \Gamma_{\varepsilon}\right)$ as the transition function,
- $q_{0} \in Q$ as the start state, and
- $F \subseteq Q$ as the accept states.

It accepts a string w if:
。 $w=w_{1} w_{2} \ldots w_{n}$, all $w_{i} \in \Sigma_{\varepsilon}$
(The usual string splitting)

- There's a state sequence $r_{0}, r_{1}, \ldots r_{m} \in Q$
- (The usual state sequence)
- and a string sequence $s_{0}, s_{1}, \ldots s_{m} \in \Gamma^{*}$
- (A sequence of stack contents)
...so that $r_{0}=q_{0}, s_{0}=\varepsilon, r_{m} \in F$, and...
- For i from 0 to $m-1,\left(r_{i+1}, b\right) \in \delta\left(r_{i}, w_{i+1}, a\right)$,
- (The usual transition mechanics...)
- ... with $s_{i}=a t$ and $s_{i+1}=b t$,
- ...for some $a, b \in \Gamma_{\varepsilon}$ and $t \in \Gamma^{*}$
- (... with the stack transition mechanics added on)

Formalizing our First PDA

Another Familiar Language

Can you tell what language this recognizes?

Another Familiar Language

Can you tell what language this recognizes?

$$
\left\{w w^{R}, w \geq\{0,1\}^{*}\right\}
$$

Notice that we use the power of nondeterminism to "guess" when we need to switch between the string and its reverse. This is common for PDAs.

One More Language

This one recognizes:

$$
\left\{\mathbf{a}^{i} \mathbf{b}^{j} \mathbf{c}^{k} \mid i, j, k \geq 0 \text { and } i=j \text { or } i=k\right\}
$$

We use nondeterminism twice here

- Once to decide whether we're matching the b's or the c's with the a's
- In the case of matching c's, to decide when to stop throwing away b's and start processing c's

Standard PDA Tricks, Part 1

The Stack Bottom Symbol

- A PDA doesn't normally have any way to tell when the stack is empty
- Many PDAs push a unique "stack bottom" symbol - usually \$ - onto the stack as they begin execution
- This allows testing for an empty stack by looking for that same symbol

Pushing Strings

- We can push a string onto the stack just as easily as we can a symbol
- Imagine a sequence of empty-string transitions that each push a single symbol of the string
- From now on, we'll allow ourselves to write transitions as though they were pushing strings
- When we do this, we push the last symbol of the string first - if we are pushing $\mathbf{x y z}$, we push \mathbf{z} then \mathbf{y} then \mathbf{x}

Recognizing CFLs: The Plan

PDAs are equivalent in power to CFGs

- (admit it, you're not very surprised)
- As always, two things to prove
- First, let's prove that a PDA can recognize any CFL

We heavily exploit the nondeterminism of PDAs

- Remember that a derivation in a CFG is a sequence of substitutions
- We want to accept a string if any derivation of it in the grammar exists
- We don't have to figure out which path to take - since a PDA is non-deterministic, it takes them all at once

We use the stack to "walk" the string

- For every variable, try every possible substitution
- For every terminal, try to find a match

Recognizing CFLs: General Method

- Push stack-bottom symbol \$
- Repeat forever:
- Pop the stack, and switch on the result:
- For variable A:
- New non-deterministic branch for each rule with A as the LHS
- On each branch:
- Push the RHS
- For terminal b:
- Read the next input symbol
- If the next input symbol is \mathbf{b}, continue
- If not, reject on this branch
- For stack-bottom symbol \$:
- Enter the accept state
- Accept the input if it's all been read

Recognizing CFLs: Construction

Given a CFL $\boldsymbol{G}=\left(\boldsymbol{V}, \Sigma_{C}, \boldsymbol{R}, \boldsymbol{S}\right)$:

- \boldsymbol{V} is the variables
- Σ is the terminals
- \boldsymbol{R} is the rules
- $\boldsymbol{S} \in \boldsymbol{V}$ is the start variable

Create an NFA \boldsymbol{N} with:

$$
\begin{aligned}
\circ & Q= \\
\circ & \left\{q_{0}, q_{\text {loop }}, q_{\text {accept }}\right\} \\
\circ & V \cup \Sigma_{C} \\
\circ F= & \left\{q_{\text {accept }}\right\} \\
\circ & \delta: \quad \\
& \delta\left(q_{0}, \varepsilon, \varepsilon\right)=\quad\left\{\left(q_{\text {loop }}, S \$\right)\right\} \\
& \delta\left(q_{\text {loop }}, \mathbf{a} \in \Sigma_{c}, a\right)=\left\{\left(q_{\text {loop }}, \varepsilon\right)\right\} \\
& \delta\left(q_{\text {loop }}, \varepsilon, A \in V\right)= \\
& \left\{\left(q_{\text {loop }}, R H S(r)\right) \mid r \in R, \text { LHS }(r)=A\right\} \\
& \delta\left(q_{\text {loop }}, \varepsilon, \$\right)=\quad\left\{\left(q_{\text {accept }}, \varepsilon\right)\right\} \\
& \varnothing \text { otherwise }
\end{aligned}
$$

Construction Examples

(Board work)

Standard PDA Tricks, Part 2

Single Accept State

- Just as easy as with an ordinary NFA
- Empty string, stack no-operation transitions from what would otherwise be accept states to a unified accept state

Empty Stack Before Accepting

- Get to a single-accept state
- Make it a non-accept state
- Add an empty-string self-loop that pops anything except \$ off the stack
- Add an empty-string transition, that pops \$, to a new accept state

Always Push Or Pop, Never Both

- Rewrite transitions that push and pop to pop then push, using a new middle state and an empty-string transition
- Rewrite transitions that neither push nor pop to push then pop a dummy symbol, again using a new middle state and an empty-string transition

Grammars for PDAs: Modifying the PDA

Let's show that a CFG can generate the language of any PDA

- Take a PDA P
- It suffices to construct a CFG G that generates the language it accepts

First, let's modify it as we discussed on the last slide. Let P_{G} be P modified so that:

- It has a single accept state
- It empties its stack before it accepts
- Every transition either pushes or pops; not both and not neither
- Since we know P_{G} accepts equivalently to P, it suffices to construct a CFG G that generates the language of P_{G}

It suffices in turn to construct a grammar G, and show that G generates a string s if s causes P_{G} to go from its start state to its accept state

Grammars for PDAs: Stack-Preserving Transitions

Our construction is, fundamentally, as follows:

- Consider every pair of states $\left(q_{w}, q_{z}\right)$ in P_{G}
${ }^{\circ}$ Create a variable $V_{w z}$ derivable to all the strings that:
- Take the machine from q_{w} to q_{z}
- Leave the stack empty if it starts empty
- Note that the second part is really just "leave the stack like we found it"
- If we leave the stack empty given that it starts empty, then we will leave it containing string s given that it started containing string s

Grammars for PDAs: The Induction Plan

Remember the restrictions on P_{G} :

- Single accept state
- Empty stack before accepting
- Always push or pop, never both or neither

Consider any string s so that s takes P_{G} from q_{w} to q_{z} preserving stack emptiness

- The first move must be a push
- The last move must be a pop

If the symbol popped at the end is the same symbol pushed at the beginning, the stack might only be empty at the beginning and end

- $V_{w z}=\mathbf{a} V_{x y} \mathbf{b}$ where:
- \mathbf{a} is the input read along with that first push
- \mathbf{b} is the input read along with that last pop
- x is the state just after w
- y is the state just before z

Otherwise, the stack is empty at some point in between

- $V_{w z}=V_{w x} V_{x z}$ where x is the state at that point

Grammars for PDAs: Construction

Let PDA $P_{G}=\left(Q, \Sigma, \Gamma, \delta, q_{0},\left\{q_{\text {accept }}\right\}\right)$ restricted so that it:

- Has a single accept state
- Empties its stack before accepting
- Always pushes or pops on a transition, never both or neither

We have rules to:

1. Handle the degenerate case of a state transitioning to itself
2. Handle the transitive transition case
3. Handle the push-pop case

Let G be a CFG and construct its rules as follows:

1. For all $w \in Q$

- Add rule $\quad V_{w w} \rightarrow \varepsilon$

2. For all $w, x, z \in Q$,

- Add rule $\quad V_{w z} \rightarrow V_{w x} V_{x z}$

3. For all $w, x, y, z \in Q, \mathbf{u} \in \Gamma$, and $\mathbf{a}, \mathbf{b} \in \Sigma_{\varepsilon}$:

- If $\delta(w, \mathbf{a}, \varepsilon)$ contains (x, \mathbf{u}) and $\delta(y, \mathbf{b}, \mathbf{u})$ contains (z, ε) then add rule $V_{w z} \rightarrow \mathbf{a} V_{x y} \mathbf{b}$

Grammars for PDAs: Showing It Works - Direction 1 Basis

We want to show that if $V_{w z}$ generates string s, then s takes P_{G} from q_{w} to q_{z} preserving stack emptiness.

We show this by induction on the number of steps in the derivation of s.

Basis: The derivation has one step. Therefore, the RHS cannot have variables. The only rules without variables on the RHS in G are rules of the form $V_{w w} \rightarrow \varepsilon$. Clearly ε takes P_{G} from q_{w} to q_{w} preserving stack emptiness, as desired.

Let PDA $P_{G}=\left(Q, \Sigma, \Gamma, \delta, q_{0},\left\{q_{\text {accept }}\right\}\right)$ restricted to single accept state, empty stack before accept, and always-push-or-pop.

Let G be a CFG with rules as follows:

1. For all $w \in Q$

- Add rule $\quad V_{w w} \rightarrow \varepsilon$

2. For all $w, x, z \in Q$,

- Add rule $\quad V_{w z} \rightarrow V_{w x} V_{x z}$

3. For all $w, x, y, z \in Q, \mathbf{u} \in \Gamma$, and $\mathbf{a}, \mathbf{b} \in \Sigma_{\varepsilon}$:

- If $\delta(w, \mathbf{a}, \varepsilon)$ contains (x, \mathbf{u}) and $\delta(y, \mathbf{b}, \mathbf{u})$ contains (z, ε) then add rule $V_{w z} \rightarrow \mathbf{a} V_{x y} \mathbf{b}$

Grammars for PDAs: Showing It Works - Direction 1 Setup

Induction Hypothesis: If $V_{w z}$ generates string s by a derivation with k or fewer steps, $k \geq 1$, then s takes P_{G} from q_{w} to q_{z} preserving stack emptiness.

Induction: Show that if $V_{w z}$ generates string s by a derivation with $k+1$ steps, then s takes P_{G} from q_{w} to q_{z} preserving stack emptiness.

Consider $V_{w z} \rightarrow^{*} s$ in $k+1$ steps. The first step must be either $V_{w z} \rightarrow V_{w x} V_{x z}$ or $V_{w z} \rightarrow \mathbf{a} V_{x y} \mathbf{b}$.

Let PDA $P_{G}=\left(Q, \Sigma, \Gamma, \delta, q_{0},\left\{q_{\text {accept }}\right\}\right)$ restricted to single accept state, empty stack before accept, and always-push-or-pop.

Let G be a CFG with rules as follows:

1. For all $w \in Q$

- Add rule $\quad V_{w w} \rightarrow \varepsilon$

2. For all $w, x, z \in Q$,

- Add rule $\quad V_{w z} \rightarrow V_{w x} V_{x z}$

3. For all $w, x, y, z \in Q, \mathbf{u} \in \Gamma$, and $\mathbf{a}, \mathbf{b} \in \Sigma_{\varepsilon}$:

- If $\delta(w, \mathbf{a}, \varepsilon)$ contains (x, \mathbf{u}) and $\delta(y, \mathbf{b}, \mathbf{u})$ contains (z, ε) then add rule $V_{w z} \rightarrow \mathbf{a} V_{x y} \mathbf{b}$

Grammars for PDAs: Showing It Works - Direction 1 Case 1

Induction: Show that if $V_{w z}$ generates string s by a derivation with $k+1$ steps, then s takes P_{G} from q_{w} to q_{z} preserving stack emptiness.

Consider $V_{w z} \rightarrow^{*} s$ in $k+1$ steps. The first step must be either $V_{w z} \rightarrow V_{w x} V_{x z}$ or $V_{w z} \rightarrow \mathbf{a} V_{x y} \mathbf{b}$.
If it's $V_{w z} \rightarrow V_{w x} V_{x z}$, then:

- $s=r t$ so that $V_{w x} \rightarrow^{*} r$ and $V_{x z} \rightarrow^{*} t$, both in k or fewer steps.
- Therefore by the induction hypothesis, r takes P_{G} from q_{w} to q_{x} and t takes P_{G} from q_{x} to q_{z}, both preserving stack emptiness.
- Therefore, r takes P_{G} from q_{w} to q_{z} preserving stack emptiness. Since $r t=s$, so does s, as desired.

Let PDA $P_{G}=\left(Q, \Sigma, \Gamma, \delta, q_{0},\left\{q_{\text {accept }}\right\}\right)$ restricted to single accept state, empty stack before accept, and always-push-or-pop.

Let G be a CFG with rules as follows:

1. For all $w \in Q$

- Add rule $\quad V_{w w} \rightarrow \varepsilon$

2. For all $w, x, z \in Q$,

- Add rule $\quad V_{w z} \rightarrow V_{w x} V_{x z}$

3. For all $w, x, y, z \in Q, \mathbf{u} \in \Gamma$, and $\mathbf{a}, \mathbf{b} \in \Sigma_{\varepsilon}$:

- If $\delta(w, \mathbf{a}, \varepsilon)$ contains (x, \mathbf{u}) and $\delta(y, \mathbf{b}, \mathbf{u})$ contains (z, ε) then add rule $V_{w z} \rightarrow \mathbf{a} V_{x y} \mathbf{b}$

Grammars for PDAs: Showing It Works - Direction 1 Case 2

If it's $V_{w z} \rightarrow \mathbf{a} V_{x y} \mathbf{b}$, then:

- $s=$ atb so that $V_{x y} \rightarrow^{*} t$ in k or fewer steps.
- Therefore by the induction hypothesis, t takes P_{G} from q_{x} to q_{y} preserving stack emptiness.
- By part 3 of our construction, since $V_{w z} \rightarrow \mathbf{a} V_{x y} \mathbf{b}$ is a rule, then for some stack symbol $\mathbf{u}, \delta(w, a, \varepsilon)$ contains (x, \mathbf{u}) and $\delta(y, \mathbf{b}, \mathbf{u})$ contains (z, ε).
- Therefore, P_{G} can:
- Read a and push u to go from q_{w} to q_{x}
- Use t to go from q_{x} to q_{y} with only \mathbf{u} left on the stack
- Read b and pop \mathbf{u} to go from q_{y} to q_{z}
- ...which leaves the stack empty, and we have completed our transition as desired.

Let PDA $P_{G}=\left(Q, \Sigma, \Gamma, \delta, q_{0},\left\{q_{\text {accept }}\right\}\right)$ restricted to single accept state, empty stack before accept, and always-push-or-pop.

Let G be a CFG with rules as follows:

1. For all $w \in Q$

- Add rule $\quad V_{w w} \rightarrow \varepsilon$

2. For all $w, x, z \in Q$,

- Add rule $\quad V_{w z} \rightarrow V_{w x} V_{x z}$

3. For all $w, x, y, z \in Q, \mathbf{u} \in \Gamma$, and $\mathbf{a}, \mathbf{b} \in \Sigma_{\varepsilon}$:

- If $\quad \delta(w, \mathbf{a}, \varepsilon)$ contains (x, \mathbf{u}) and $\delta(y, \mathbf{b}, \mathbf{u})$ contains (z, ε) then add rule $V_{w z} \rightarrow \mathbf{a} V_{x y} \mathbf{b}$

We're almost done.

REALLY.

Grammars for PDAs:
 Showing It Works - Direction 2 Basis

We want to show that if s takes P_{G} from q_{w} to q_{z} preserving stack emptiness, then $V_{w z}$ generates string s. We show this by induction on the number of steps in P_{G} 's computation from q_{w} to q_{z}.

Basis: The computation has no steps.

- Therefore, it starts and ends at the same state w.
- Therefore, we need $V_{w w}$ to generate s.
- In 0 steps, P_{G} can't read anything, so $s=\varepsilon$.
- By part 1 of our construction, we have $V_{w w} \rightarrow \varepsilon$ as desired.

Let PDA $P_{G}=\left(Q, \Sigma, \Gamma, \delta, q_{0},\left\{q_{\text {accept }}\right\}\right)$ restricted to single accept state, empty stack before accept, and always-push-or-pop.

Let G be a CFG with rules as follows:

1. For all $w \in Q$

- Add rule $\quad V_{w w} \rightarrow \varepsilon$

2. For all $w, x, z \in Q$,

- Add rule $\quad V_{w z} \rightarrow V_{w x} V_{x z}$

3. For all $w, x, y, z \in Q, \mathbf{u} \in \Gamma$, and $\mathbf{a}, \mathbf{b} \in \Sigma_{\varepsilon}$:

- If $\delta(w, \mathbf{a}, \varepsilon)$ contains (x, \mathbf{u}) and $\delta(y, \mathbf{b}, \mathbf{u})$ contains (z, ε) then add rule $V_{w z} \rightarrow \mathbf{a} V_{x y} \mathbf{b}$

Grammars for PDAs: Showing It Works - Direction 2 Setup

Induction Hypothesis: If s takes P_{G} from q_{w} to q_{z} preserving stack emptiness by a computation with k or fewer steps, $k \geq 0$, then $V_{w z}$ generates string s.

Induction: Show that if s takes P_{G} from q_{w} to q_{z} preserving stack emptiness by a computation with $k+1$ steps, then V_{wz} generates string s.

Suppose s takes P_{G} from q_{w} to q_{z} preserving emptiness by a computation with $k+1$ steps.

Then either the stack becomes empty somewhere in between q_{w} and q_{z}, or the stack is empty only at the beginning and end of this computation.

Let PDA $P_{G}=\left(Q, \Sigma, \Gamma, \delta, q_{0},\left\{q_{\text {accept }}\right\}\right)$ restricted to single accept state, empty stack before accept, and always-push-or-pop.

Let G be a CFG with rules as follows:

1. For all $w \in Q$

- Add rule $\quad V_{w w} \rightarrow \varepsilon$

2. For all $w, x, z \in Q$,

- Add rule $\quad V_{w z} \rightarrow V_{w x} V_{x z}$

3. For all $w, x, y, z \in Q, \mathbf{u} \in \Gamma$, and $\mathbf{a}, \mathbf{b} \in \Sigma_{\varepsilon}$:

- If $\delta(w, \mathbf{a}, \varepsilon)$ contains (x, \mathbf{u}) and $\delta(y, \mathbf{b}, \mathbf{u})$ contains (z, ε) then add rule $V_{w z} \rightarrow \mathbf{a} V_{x y} \mathbf{b}$

Grammars for PDAs: Showing It Works - Direction 2 Case 1

Either the stack becomes empty somewhere in between q_{w} and q_{z}, or the stack is empty only at the beginning and end of this computation.

If the stack becomes empty between them:

- Let q_{x} be the state where it does so.
- Then the computations from q_{w} to q_{x}, and q_{x} to q_{z}, have k or fewer steps.
- Let $s=r t$ where r takes P_{G} from q_{w} to q_{x} and t takes P_{G} from q_{x} to q_{z}.
- By the induction hypothesis, $V_{w x} \rightarrow * r$ and $V_{x z} \rightarrow^{*} t$.
- By part 2 of our construction, $V_{w z} \rightarrow V_{w x} V_{x z}$.
- Then $V_{w z} \rightarrow^{*} r t$, and since $r t=s, V_{w z} \rightarrow^{*} s$ as desired.

Let PDA $P_{G}=\left(Q, \Sigma, \Gamma, \delta, q_{0},\left\{q_{\text {accept }}\right\}\right)$ restricted to single accept state, empty stack before accept, and always-push-or-pop.

Let G be a CFG with rules as follows:

1. For all $w \in Q$

- Add rule $\quad V_{w w} \rightarrow \varepsilon$

2. For all $w, x, z \in Q$,

- Add rule $\quad V_{w z} \rightarrow V_{w x} V_{x z}$

3. For all $w, x, y, z \in Q, \mathbf{u} \in \Gamma$, and $\mathbf{a}, \mathbf{b} \in \Sigma_{\varepsilon}$:

- If $\delta(w, \mathbf{a}, \varepsilon)$ contains (x, \mathbf{u}) and $\delta(y, \mathbf{b}, \mathbf{u})$ contains (z, ε) then add rule $V_{w z} \rightarrow \mathbf{a} V_{x y} \mathbf{b}$

Grammars for PDAs:
 Showing It Works - Direction 2 Case 2

If the stack doesn't become empty in between q_{w} and q_{z} :

- Observe that the symbol u that is pushed at the first move must also be popped at the last move.
- Let \mathbf{a} be the input read in the first move, and \mathbf{b} be the input read in the last move, and t be the part of s between them, so that $s=\mathbf{a t b}$.
- Let q_{x} be the state just after q_{w} and q_{y} be the state just before q_{z}.
- t takes P_{G} from q_{x} to q_{y} in $(k-1)$ steps. Therefore, by the induction hypothesis, $V_{x y}$ generates t.
- By the third part of our construction, $V_{w z} \rightarrow \mathbf{a} V_{x y} \mathbf{b}$. So $V_{w z} \rightarrow^{*}$ atb.
- Since $s=\mathbf{a t b}, V_{w z} \rightarrow^{*} s$ as desired.

Let PDA $P_{G}=\left(Q, \Sigma, \Gamma, \delta, q_{0},\left\{q_{\text {accept }}\right\}\right)$ restricted to single accept state, empty stack before accept, and always-push-or-pop.

Let G be a CFG with rules as follows:

1. For all $w \in Q$

- Add rule $\quad V_{w w} \rightarrow \varepsilon$

2. For all $w, x, z \in Q$,

- Add rule $\quad V_{w z} \rightarrow V_{w x} V_{x z}$

3. For all $w, x, y, z \in Q, \mathbf{u} \in \Gamma$, and $\mathbf{a}, \mathbf{b} \in \Sigma_{\varepsilon}$:

- If $\delta(w, \mathbf{a}, \varepsilon)$ contains (x, \mathbf{u}) and $\delta(y, \mathbf{b}, \mathbf{u})$ contains (z, ε) then add rule $V_{w z} \rightarrow \mathbf{a} V_{x y} \mathbf{b}$

Construction Examples

Construction Examples

No.

PDA-CFG Equivalence

We've shown that:

- Any context-free grammar's language can be recognized by a pushdown automaton
- Any pushdown automaton's language can be generated by a context-free grammar

PDAs and CFGs are equal in power. So we can now say all of the following:

- A language is context-free if and only if a context-free grammar generates it.
- A language is context-free if and only if a pushdown automaton recognizes it.
- A context-free grammar generates a language if and only if a pushdown automaton recognizes it.

A Corollary

We've just proven that PDAs recognize context-free languages.

- But a PDA is just an NFA with a stack.
- It can ignore its stack just like an NFA can ignore nondeterminism.

A Corollary

We've just proven that PDAs recognize context-free languages.

- But a PDA is just an NFA with a stack.
- It can ignore its stack just like an NFA can ignore nondeterminism.

Every regular language is also a context-free language.

Next Time:
Deterministic PDAs, NonCFLs, and More Pigeons

