
Lecture 8
COT4210 DISCRETE STRUCTURES

DR. MATTHEW B.  GERBER

6/16/2016

PORTIONS FROM SIPSER,  INTRODUCTION TO THE THEORY OF 
COMPUTATION ,  3 RD ED.,  2013



Context-Free Grammars:
Chomsky Normal Form
A simplified form for context-free grammars
◦ Useful for working with CFGs using algorithms

A CFG is in Chomsky Normal Form if:
◦ Every rule is of one of the following forms:

◦ A BC

◦ A a

◦ S ε

◦ Where A, B and C are variables, a is a terminal, and:
◦ S is the starting variable

◦ Neither B nor C are S (A can be)



Converting to CNF: 4-Step Process
1. Add a new start variable.

It rewrites only to the old start variable:
◦ S0  S

2. Get rid of rewrites to the empty string.
For every rewrite of variable X ε:

◦ Remove the rule X ε

◦ Find every instance of a variable Y being rewritten to 
anything involving X

◦ Add a new rule rewriting Y to the same thing, but with X
removed

3. Get rid of unit rules.
For every rewrite of variables X Y:

◦ Remove the rule X Y

◦ Find every instance of Y being rewritten to anything

◦ Add a new rule rewriting X to the same thing

4. Convert all the remaining rules.
For every rule X y1y2y3…yn:

◦ Remove the rule X y1y2y3…yn

◦ Make new rules X y1X1, X1 y2X2,   X2 y3X3,   …,   Xn-2

 yn-1yn

◦ When making these rules, for every yi that’s a terminal:

◦ Replace it with a new variable Yi

◦ Create new rule Yi  yi



CNF Conversion Example

(Board work: 2.10)



Review: Stacks
A stack is a storage 
mechanism

◦ First-in, last-out

◦ Push data onto the top of the 
stack

◦ Pop data from the top of the 
stack

◦ Items below the top of the 
stack aren’t accessible except 
by popping the top first



Pushdown Automata
On any transition:

◦ Push…

◦ Pop…

◦ Both…

◦ …or neither

a, εa

a, εε

a, ab

a, aε

A stack is a storage 
mechanism

◦ First-in, last-out

◦ Push data onto the top of the 
stack

◦ Pop data from the top of the 
stack

◦ Items below the top of the 
stack aren’t accessible except 
by popping the top first

A pushdown automaton is an 
NFA with a stack



Recognizing a Familiar Language

Can you tell what language this recognizes?

q1

q2

q0

q3

1, 0ε

ε, $ε

0, ε0
ε, ε$

1, 0ε



Recognizing a Familiar Language

Can you tell what language this recognizes?

{ 0n1n, n  0 }

q1

q2

q0

q3

1, 0ε

ε, $ε

0, ε0
ε, ε$

1, 0ε



Definition: Pushdown Automaton
A pushdown automaton is a 6-tuple 
M = (Q, , , , q0, F) with:

◦ Q as the set of states,

◦  as the input alphabet,

◦  as the stack alphabet,

◦ : Q  ε  ε  P(Q  ε) as the transition 
function,

◦ q0  Q as the start state, and 

◦ F  Q as the accept states.

It accepts a string w if:
◦ w = w1w2…wn, all wi  ε

◦ (The usual string splitting)

◦ There’s a state sequence r0, r1, … rm  Q
◦ (The usual state sequence)

◦ and a string sequence s0, s1, … sm  *
◦ (A sequence of stack contents)

…so that r0 = q0,   s0 = ε,   rm  F, and…
◦ For i from 0 to m – 1, (ri+1, b)  (ri, wi+1, a),

◦ (The usual transition mechanics…)

◦ …with si = at and si+1 = bt,

◦ …for some a, b  ε and t  *
◦ (…with the stack transition mechanics added on)



Formalizing our First PDA
◦ Q = { q0, q1, q2, q3 }

◦  = { 0, 1 }

◦  = { 0, $ }

◦ F = { q0, q3 }

◦ :

q1

q2

q0

q3

1, 0ε

ε, $ε

0, ε0
ε, ε$

1, 0ε

Input: 0 1 ε

Stack: 0 $ ε 0 $ ε 0 $ ε

q0 {(q1, $)}

q1 {(q1, 0)} {(q2, ε)}

q2 {(q2, ε)} {(q3, ε)}

q3



Another Familiar Language

Can you tell what language this recognizes?

q1

q2

q0

q3

ε, εε

ε, $ε

0, ε0
1, ε1

ε, ε$

0, 0ε
1, 1ε



Another Familiar Language

Can you tell what language this recognizes?

{ wwR, w  {0, 1}* }

Notice that we use the power of 
nondeterminism to “guess” when we need to 
switch between the string and its reverse.  This 
is common for PDAs.

q1

q2

q0

q3

ε, εε

ε, $ε

0, ε0
1, ε1

ε, ε$

0, 0ε
1, 1ε



One More Language

This one recognizes:

𝐚𝑖𝐛𝑗𝐜𝑘 𝑖, 𝑗, 𝑘 ≥ 0 and 𝑖 = 𝑗 or 𝑖 = 𝑘

We use nondeterminism twice here
◦ Once to decide whether we’re matching the b’s 

or the c’s with the a’s

◦ In the case of matching c’s, to decide when to 
stop throwing away b’s and start processing c’s

q6

q0

q1

q2

q4 q5

q3

ε, ε $
ε, ε ε

ε, ε ε

a, ε a

b, a  ε

ε, $  ε

c, ε ε

b, ε ε

ε, ε ε

c, a  ε

ε, $  ε



Standard PDA Tricks, Part 1
The Stack Bottom Symbol
◦ A PDA doesn’t normally have any 

way to tell when the stack is empty

◦ Many PDAs push a unique “stack 
bottom” symbol – usually $ - onto 
the stack as they begin execution

◦ This allows testing for an empty 
stack by looking for that same 
symbol

Pushing Strings
◦ We can push a string onto the stack 

just as easily as we can a symbol

◦ Imagine a sequence of empty-string 
transitions that each push a single 
symbol of the string

◦ From now on, we’ll allow ourselves 
to write transitions as though they 
were pushing strings

◦ When we do this, we push the last
symbol of the string first – if we are 
pushing xyz, we push z then y then x



Recognizing CFLs: The Plan
PDAs are equivalent in power to CFGs

◦ (admit it, you’re not very surprised)

◦ As always, two things to prove

◦ First, let’s prove that a PDA can recognize any CFL

We heavily exploit the nondeterminism of PDAs
◦ Remember that a derivation in a CFG is a sequence of substitutions

◦ We want to accept a string if any derivation of it in the grammar exists

◦ We don’t have to figure out which path to take – since a PDA is non-deterministic, it takes them all at 
once

We use the stack to “walk” the string
◦ For every variable, try every possible substitution

◦ For every terminal, try to find a match



Recognizing CFLs: General Method
◦ Push stack-bottom symbol $

◦ Repeat forever:
◦ Pop the stack, and switch on the result:

◦ For variable A:

◦ New non-deterministic branch for each rule with A as the LHS 

◦ On each branch:

◦ Push the RHS

◦ For terminal b:

◦ Read the next input symbol

◦ If the next input symbol is b, continue

◦ If not, reject on this branch

◦ For stack-bottom symbol $:

◦ Enter the accept state

◦ Accept the input if it’s all been read



Recognizing CFLs: Construction
Given a CFL G = (V, C, R, S):
◦ V is the variables

◦  is the terminals

◦ R is the rules

◦ S  V is the start variable

Create an NFA N with:
◦ Q = { q0, qloop, qaccept }

◦  = V  C

◦ F = { qaccept }

◦ : (q0, ε, ε) = { (qloop, S$) }

(qloop, a  C, a) = { (qloop, ε) }

(qloop, ε, A  V) = 

𝑞𝑙𝑜𝑜𝑝, 𝑅𝐻𝑆(𝑟) 𝑟 ∈ 𝑅, 𝐿𝐻𝑆 𝑟 = 𝐴

(qloop, ε, $) = { (qaccept, ε) }

Ø otherwise



Construction Examples

(Board work)



Standard PDA Tricks, Part 2
Single Accept State
◦ Just as easy as with an ordinary NFA

◦ Empty string, stack no-operation transitions 
from what would otherwise be accept 
states to a unified accept state

Empty Stack Before Accepting
◦ Get to a single-accept state

◦ Make it a non-accept state

◦ Add an empty-string self-loop that pops 
anything except $ off the stack

◦ Add an empty-string transition, that pops $, 
to a new accept state

Always Push Or Pop, Never Both
◦ Rewrite transitions that push and pop to 

pop then push, using a new middle state 
and an empty-string transition

◦ Rewrite transitions that neither push nor
pop to push then pop a dummy symbol, 
again using a new middle state and an 
empty-string transition



Grammars for PDAs:
Modifying the PDA
Let’s show that a CFG can generate the language of any PDA
◦ Take a PDA P

◦ It suffices to construct a CFG G that generates the language it accepts

First, let’s modify it as we discussed on the last slide. Let PG be P modified so 
that:
◦ It has a single accept state

◦ It empties its stack before it accepts

◦ Every transition either pushes or pops; not both and not neither

◦ Since we know PG accepts equivalently to P, it suffices to construct a CFG G that generates the 
language of PG

It suffices in turn to construct a grammar G, and show that G generates a string s if s
causes PG to go from its start state to its accept state



Grammars for PDAs:
Stack-Preserving Transitions
Our construction is, fundamentally, as follows:
◦ Consider every pair of states (qw, qz) in PG

◦ Create a variable Vwz derivable to all the strings that:
◦ Take the machine from qw to qz

◦ Leave the stack empty if it starts empty

◦ Note that the second part is really just “leave the stack like we 
found it”
◦ If we leave the stack empty given that it starts empty, then we will leave it containing string 

s given that it started containing string s



Grammars for PDAs: 
The Induction Plan
Remember the restrictions on PG:

◦ Single accept state

◦ Empty stack before accepting

◦ Always push or pop, never both or neither

Consider any string s so that s takes PG from qw

to qz preserving stack emptiness
◦ The first move must be a push

◦ The last move must be a pop

If the symbol popped at the end is the same 
symbol pushed at the beginning, the stack 
might only be empty at the beginning and end

◦ Vwz = aVxyb where:
◦ a is the input read along with that first push

◦ b is the input read along with that last pop

◦ x is the state just after w

◦ y is the state just before z

Otherwise, the stack is empty at some point in 
between

◦ Vwz = VwxVxz where x is the state at that point



Grammars for PDAs:
Construction
Let PDA PG = (Q, , , , q0, {qaccept}) restricted 
so that it:

◦ Has a single accept state

◦ Empties its stack before accepting

◦ Always pushes or pops on a transition, never 
both or neither

We have rules to:
1. Handle the degenerate case of a state 

transitioning to itself

2. Handle the transitive transition case

3. Handle the push-pop case

Let G be a CFG and construct its rules as 
follows:

1. For all w  Q

◦ Add rule Vww  

2. For all w, x, z  Q,

◦ Add rule Vwz  VwxVxz

3. For all w, x, y, z  Q, u  , and a, b  ε:

◦ If (w, a, ) contains (x, u)
and (y, b, u) contains (z, )
then add rule Vwz  aVxyb



Grammars for PDAs:
Showing It Works – Direction 1 Basis
We want to show that if Vwz generates string s, 
then s takes PG from qw to qz preserving stack 
emptiness.

We show this by induction on the number of 
steps in the derivation of s.

Basis: The derivation has one step.  Therefore, 
the RHS cannot have variables.  The only rules 
without variables on the RHS in G are rules of 
the form Vww  .  Clearly  takes PG from qw
to qw preserving stack emptiness, as desired.

Let PDA PG = (Q, , , , q0, {qaccept}) restricted 
to single accept state, empty stack before 
accept, and always-push-or-pop.

Let G be a CFG with rules as follows:
1. For all w  Q

◦ Add rule Vww  

2. For all w, x, z  Q,

◦ Add rule Vwz  VwxVxz

3. For all w, x, y, z  Q, u  , and a, b  ε:

◦ If (w, a, ) contains (x, u)
and (y, b, u) contains (z, )
then add rule Vwz  aVxyb



Grammars for PDAs:
Showing It Works – Direction 1 Setup
Induction Hypothesis: If Vwz generates string s
by a derivation with k or fewer steps, k  1,
then s takes PG from qw to qz preserving stack 
emptiness.

Induction: Show that if Vwz generates string s
by a derivation with k + 1 steps, then s takes PG

from qw to qz preserving stack emptiness.

Consider Vwz* s in k + 1 steps.  The first step 
must be either Vwz  VwxVxz or Vwz  aVxyb.

Let PDA PG = (Q, , , , q0, {qaccept}) restricted 
to single accept state, empty stack before 
accept, and always-push-or-pop.

Let G be a CFG with rules as follows:
1. For all w  Q

◦ Add rule Vww  

2. For all w, x, z  Q,

◦ Add rule Vwz  VwxVxz

3. For all w, x, y, z  Q, u  , and a, b  ε:

◦ If (w, a, ) contains (x, u)
and (y, b, u) contains (z, )
then add rule Vwz  aVxyb



Grammars for PDAs:
Showing It Works – Direction 1 Case 1
Induction: Show that if Vwz generates string s
by a derivation with k + 1 steps, then s takes PG

from qw to qz preserving stack emptiness.

Consider Vwz* s in k + 1 steps.  The first step 
must be either Vwz  VwxVxz or Vwz  aVxyb.

If it’s Vwz  VwxVxz, then:
◦ s = rt so that Vwx * r and Vxz* t, both in k or 

fewer steps.

◦ Therefore by the induction hypothesis, r takes PG
from qw to qx and t takes PG from qx to qz, both 
preserving stack emptiness.

◦ Therefore, rt takes PG from qw to qz preserving 
stack emptiness.  Since rt = s, so does s, as 
desired.

Let PDA PG = (Q, , , , q0, {qaccept}) restricted 
to single accept state, empty stack before 
accept, and always-push-or-pop.

Let G be a CFG with rules as follows:
1. For all w  Q

◦ Add rule Vww  

2. For all w, x, z  Q,

◦ Add rule Vwz  VwxVxz

3. For all w, x, y, z  Q, u  , and a, b  ε:

◦ If (w, a, ) contains (x, u)
and (y, b, u) contains (z, )
then add rule Vwz  aVxyb



Grammars for PDAs:
Showing It Works – Direction 1 Case 2
If it’s Vwz  aVxyb, then:

◦ s = atb so that Vxy * t in k or fewer steps.

◦ Therefore by the induction hypothesis, t takes PG
from qx to qy preserving stack emptiness.

◦ By part 3 of our construction, since Vwz  aVxyb
is a rule, then for some stack symbol u, (w, a, ) 
contains (x, u) and (y, b, u) contains (z, ).

◦ Therefore, PG can:
◦ Read a and push u to go from qw to qx

◦ Use t to go from qx to qy with only u left on the stack

◦ Read b and pop u to go from qy to qz

◦ …which leaves the stack empty, and we have 
completed our transition as desired.

Let PDA PG = (Q, , , , q0, {qaccept}) restricted 
to single accept state, empty stack before 
accept, and always-push-or-pop.

Let G be a CFG with rules as follows:
1. For all w  Q

◦ Add rule Vww  

2. For all w, x, z  Q,

◦ Add rule Vwz  VwxVxz

3. For all w, x, y, z  Q, u  , and a, b  ε:

◦ If (w, a, ) contains (x, u)
and (y, b, u) contains (z, )
then add rule Vwz  aVxyb



We’re almost done.
REALLY.



Grammars for PDAs:
Showing It Works – Direction 2 Basis
We want to show that if s takes PG from qw to 
qz preserving stack emptiness, then Vwz

generates string s.  We show this by induction 
on the number of steps in PG’s computation 
from qw to qz.

Basis: The computation has no steps.  
◦ Therefore, it starts and ends at the same state w.  

◦ Therefore, we need Vww to generate s.  

◦ In 0 steps, PG can’t read anything, so s = .

◦ By part 1 of our construction, we have Vww  
as desired.

Let PDA PG = (Q, , , , q0, {qaccept}) restricted 
to single accept state, empty stack before 
accept, and always-push-or-pop.

Let G be a CFG with rules as follows:
1. For all w  Q

◦ Add rule Vww  

2. For all w, x, z  Q,

◦ Add rule Vwz  VwxVxz

3. For all w, x, y, z  Q, u  , and a, b  ε:

◦ If (w, a, ) contains (x, u)
and (y, b, u) contains (z, )
then add rule Vwz  aVxyb



Grammars for PDAs:
Showing It Works – Direction 2 Setup
Induction Hypothesis: If s takes PG from qw to 
qz preserving stack emptiness by a 
computation with k or fewer steps, k  0, then
Vwz generates string s.

Induction: Show that if s takes PG from qw to qz

preserving stack emptiness by a computation 
with k + 1 steps, then Vwz generates string s.

Suppose s takes PG from qw to qz preserving 
emptiness by a computation with k + 1 steps.  

Then either the stack becomes empty 
somewhere in between qw and qz, or the stack 
is empty only at the beginning and end of this 
computation.

Let PDA PG = (Q, , , , q0, {qaccept}) restricted 
to single accept state, empty stack before 
accept, and always-push-or-pop.

Let G be a CFG with rules as follows:
1. For all w  Q

◦ Add rule Vww  

2. For all w, x, z  Q,

◦ Add rule Vwz  VwxVxz

3. For all w, x, y, z  Q, u  , and a, b  ε:

◦ If (w, a, ) contains (x, u)
and (y, b, u) contains (z, )
then add rule Vwz  aVxyb



Grammars for PDAs:
Showing It Works – Direction 2 Case 1
Either the stack becomes empty somewhere in 
between qw and qz, or the stack is empty only 
at the beginning and end of this computation.

If the stack becomes empty between them:
◦ Let qx be the state where it does so.

◦ Then the computations from qw to qx, and qx to 
qz, have k or fewer steps.  

◦ Let s = rt where r takes PG from qw to qx and t 
takes PG from qx to qz.

◦ By the induction hypothesis, Vwx * r and 
Vxz * t.

◦ By part 2 of our construction, Vwz  VwxVxz.

◦ Then Vwz * rt, and since rt = s, Vwz * s as 
desired.

Let PDA PG = (Q, , , , q0, {qaccept}) restricted 
to single accept state, empty stack before 
accept, and always-push-or-pop.

Let G be a CFG with rules as follows:
1. For all w  Q

◦ Add rule Vww  

2. For all w, x, z  Q,

◦ Add rule Vwz  VwxVxz

3. For all w, x, y, z  Q, u  , and a, b  ε:

◦ If (w, a, ) contains (x, u)
and (y, b, u) contains (z, )
then add rule Vwz  aVxyb



Grammars for PDAs:
Showing It Works – Direction 2 Case 2
If the stack doesn’t become empty in between
qw and qz:

◦ Observe that the symbol u that is pushed at the 
first move must also be popped at the last move.

◦ Let a be the input read in the first move, and b
be the input read in the last move, and t be the 
part of s between them, so that s = atb.

◦ Let qx be the state just after qw and qy be the 
state just before qz.

◦ t takes PG from qx to qy in (k – 1) steps.  
Therefore, by the induction hypothesis, Vxy
generates t.

◦ By the third part of our construction, 
Vwz  aVxyb.  So Vwz * atb.  

◦ Since s = atb, Vwz * s as desired.

Let PDA PG = (Q, , , , q0, {qaccept}) restricted 
to single accept state, empty stack before 
accept, and always-push-or-pop.

Let G be a CFG with rules as follows:
1. For all w  Q

◦ Add rule Vww  

2. For all w, x, z  Q,

◦ Add rule Vwz  VwxVxz

3. For all w, x, y, z  Q, u  , and a, b  ε:

◦ If (w, a, ) contains (x, u)
and (y, b, u) contains (z, )
then add rule Vwz  aVxyb



Construction Examples



Construction Examples

No.



PDA-CFG Equivalence
We’ve shown that:

◦ Any context-free grammar’s language can be recognized by a pushdown automaton

◦ Any pushdown automaton’s language can be generated by a context-free grammar

PDAs and CFGs are equal in power.  So we can now say all of the following:
◦ A language is context-free if and only if a context-free grammar generates it.

◦ A language is context-free if and only if a pushdown automaton recognizes it.

◦ A context-free grammar generates a language if and only if a pushdown automaton recognizes it.



A Corollary
We’ve just proven that PDAs recognize context-free languages.

◦ But a PDA is just an NFA with a stack.

◦ It can ignore its stack just like an NFA can ignore nondeterminism.



A Corollary
We’ve just proven that PDAs recognize context-free languages.

◦ But a PDA is just an NFA with a stack.

◦ It can ignore its stack just like an NFA can ignore nondeterminism.

Every regular language is also a context-free language.



Next Time:
Deterministic PDAs, Non-
CFLs, and More Pigeons


