Lecture 7

COT4210 DISCRETE STRUCTURES
DR. MATTHEW B. GERBER
6/14/2016
PORTIONS FROM SIPSER, INTRODUCTION TO THE THEORY OF COMPUTATION, $3^{\text {RD ED., } 2013}$

Some Rules

1. $A \rightarrow \mathbf{O A 1}$
2. $A \rightarrow B$
3. $B \rightarrow$ \#

These are rules for one thing becoming another

- A can become 0A1 or B
- B can only become \#

Let's start with A. What kinds of strings can we make with these rules?

Some Rules

1. $A \rightarrow \mathbf{O A 1}$
2. $A \rightarrow B$
3. $B \rightarrow$ \#

These are rules for one thing becoming another

- A can become 0A1 or B
- B can only become \#

Let's start with A. What kinds of strings can we make with these rules?

- \# 2 then 3

Some Rules

1. $A \rightarrow \mathbf{O A 1}$
2. $A \rightarrow B$
3. $B \rightarrow$ \#

These are rules for one thing becoming another

- A can become 0A1 or B
- B can only become \#

Let's start with A. What kinds of strings can we make with these rules?

\circ \#	2 then 3
\circ 0\#1	1 then 2 then 3

1 then 2 then 3

Some Rules

1. $A \rightarrow \mathbf{O A 1}$
2. $A \rightarrow B$
3. $B \rightarrow$ \#

These are rules for one thing becoming another

- A can become 0A1 or B
- B can only become \#

Let's start with A. What kinds of strings can we make with these rules?

\circ \#	2 then 3
$\circ 0 \# 1$	1 then 2 then 3
$\cdot 00 \# 11$	$1,1,2,3$

1 then 2 then 3

- 00\#11

1, 1, 2, 3

Some Rules

1. $A \rightarrow \mathbf{O A 1}$
2. $A \rightarrow B$
3. $B \rightarrow$ \#

These are rules for one thing becoming another

- A can become 0A1 or B
- B can only become \#

Let's start with A. What kinds of strings can we make with these rules?

$\circ \#$	2 then 3
$\circ 0 \# 1$	1 then 2 then 3
$\circ 00 \# 11$	$1,1,2,3$
$\circ 00000 \# 11111$	$1,1,1,1,1,2,3$

Some Rules

1. $A \rightarrow \mathbf{O A 1}$
2. $A \rightarrow B$
3. $B \rightarrow$ \#

These are rules for one thing becoming another

- A can become 0A1 or B
- B can only become \#

Let's start with A. What kinds of strings can we make with these rules?

$\circ \#$	2 then 3
$\circ 0 \# 1$	1 then 2 then 3
$\circ 00 \# 11$	$1,1,2,3$
$\circ 00000 \# 11111$	$1,1,1,1,1,2,3$

Do you see how these rules are different from regular languages?

Some Rules

1. $A \rightarrow \mathbf{O A 1}$
2. $A \rightarrow B$
3. $B \rightarrow$ \#

These are rules for one thing becoming another

Do you see now tnese rules are different from regular languages?

Context-Free Grammars: In Short

A context-free grammar is a series of substitution rules, or productions

Each rule is a single line

- The symbol on the left is called a variable, or non-terminal symbol
- The symbols on the right can be any combination of variables and terminal symbols

There are rules about where symbols can show up

- Only variables can be on the left
- Only one variable can be on the left
- Variables or terminals can be on the right

1. $A \rightarrow 0 A 1$
2. $A \rightarrow B$
3. $B \rightarrow \#$

Context-Free Grammars: How To Start

We can represent the start symbol in one of two ways

- We can represent it explicitly, using the generally-agreed name S...

1. $S \rightarrow A$
2. $A \rightarrow \mathbf{0 A 1}$
3. $A \rightarrow B$
4. $B \rightarrow \#$

Context-Free Grammars: How To Start

We can represent the start symbol in one of two ways

- We can represent it explicitly, using the generally-agreed name S...
- Or we can leave it implicit, which is more common

1. $A \rightarrow \mathbf{O A 1}$
2. $A \rightarrow B$
3. $B \rightarrow \#$

If we do not give an explicit start symbol, the start symbol is understood to be the left-hand side of the topmost rule

Context-Free Grammars: How To Start

We can represent the start symbol in one of two ways

- We can represent it explicitly, using the generally-agreed name S...
- Or we can leave it implicit, which is more common

1. $A \rightarrow \mathbf{0 A 1}$
2. $A \rightarrow B$
3. $B \rightarrow \#$

If we do not give an explicit start symbol, the start symbol is understood to be the left-hand side of the topmost rule

If a start symbol isn't the left-hand side of the topmost rule, GIVE AN EXPLICIT START SYMBOL!

- Yes, even if it's obvious
- It's not really obvious enough

Context-Free Grammars: How To Use

A grammar generates strings

1. Write down the start variable

$$
\begin{array}{ll}
\text { 1. } & A \rightarrow \mathbf{0 A 1} \\
\text { 2. } & A \rightarrow B \\
\text { 3. } & B \rightarrow \#
\end{array}
$$

Context-Free Grammars: How To Use

A grammar generates strings

1. Write down the start variable
2. Find a variable that's written and a rule that has it as its left-hand side
3. Replace the variable with the right-hand side of the rule
4. $A \rightarrow 0 A 1$
5. $A \rightarrow B$
6. $B \rightarrow \#$

Context-Free Grammars: How To Use

A grammar generates strings

1. Write down the start variable
2. Find a variable that's written and a rule that has it as its left-hand side
3. Replace the variable with the right-hand side of the rule
4. Repeat from step 2...
5. $A \rightarrow \mathbf{O A 1}$
6. $A \rightarrow B$
7. $B \rightarrow \#$
8. $A \rightarrow 0 A 1$
9. $A \rightarrow B$
10. $B \rightarrow \#$
\qquad
00A11
$(1,1)$

Context-Free Grammars: How To Use

A grammar generates strings

1. Write down the start variable
2. Find a variable that's written and a rule that has it as its left-hand side
3. Replace the variable with the right-hand side of the rule
```
1. A}->\mathbf{0A1
2. }A->
3. B}->
```

4. Repeat from step 2...

00B11
$(1,1,2)$

Context-Free Grammars: How To Use

A grammar generates strings

1. Write down the start variable
2. Find a variable that's written and a rule that has it as its left-hand side
3. Replace the variable with the right-hand side of the rule
4. Repeat from step 2 until you're out of variables
5. $A \rightarrow 0 A 1$
6. $A \rightarrow B$
7. $B \rightarrow \#$

00\#11

$(1,1,2,3)$

Context-Free Grammars: How To Use

A grammar generates strings

1. Write down the start variable
2. Find a variable that's written and a rule that has it as its left-hand side
3. Replace the variable with the right-hand side of the rule
4. Repeat from step 2 until you're out of variables

Three things:

- Notice that only terminal symbols remain

1. $A \rightarrow 0 A 1$
2. $A \rightarrow B$
3. $B \rightarrow$ \#

00\#11
$(1,1,2,3)$

Context-Free Grammars: How To Use

A grammar generates strings

1. Write down the start variable
2. Find a variable that's written and a rule that has it as its left-hand side
3. Replace the variable with the right-hand side of the rule
4. Repeat from step 2 until you're out of variables

Three things:

- Notice that only terminal symbols remain
- The chain you follow to get to the string is called a derivation...

1. $A \rightarrow \mathbf{0 A 1}$
2. $A \rightarrow B$
3. $B \rightarrow \#$

00\#11
$(1,1,2,3)$
$A \Rightarrow 0 A 1 \Rightarrow 00 A 11 \Rightarrow 00 B 11 \Rightarrow 00 \# 11$

Context-Free Grammars: How To Use

A grammar generates strings

1. Write down the start variable
2. Find a variable that's written and a rule that has it as its left-hand side
3. Replace the variable with the right-hand side of the rule
4. Repeat from step 2 until you're out of variables

Three things:

- Notice that only terminal symbols remain
- The chain you follow to get to the string is called a derivation...
- ...and it can also be represented as a parse tree

Another Grammar

1. SENTENCE \rightarrow ANOUN VERB ANOUN
2. ANOUN \rightarrow ARTICLE NOUN
3. ARTICLE \rightarrow a | an | the
4. NOUN \rightarrow person | eye | music | image
5. VERB \rightarrow hears \mid sees
the person hears the music
a person sees the image
an eye sees an image

Another Grammar

1. SENTENCE \rightarrow ANOUN VERB ANOUN
2. ANOUN \rightarrow ARTICLE NOUN
3. ARTICLE \rightarrow a | an | the
4. NOUN \rightarrow person | eye | music | image
5. VERB \rightarrow hears | sees
the person hears the music
a person sees the image
an eye sees an image
the image hears an person
a eye hears an music

Context Free Grammars and...

A grammar generates strings.
In fact, we can think of the strings that a given grammar can generate as a set of strings.
Guess what we call that set of strings.
Go on. Guess.

Definitions:

Context-Free Grammar, Context-Free Language

A context-free grammar is a 4-tuple $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{\Sigma}, \boldsymbol{R}, \boldsymbol{S})$ where:

- \boldsymbol{V} is a finite set called the variables
- Σ is a finite set, disjoint from V , called the terminals
$\circ \boldsymbol{R}$ is a finite set of rules, each rule allowing a variable to be rewritten as a string of variables and terminals, and
- $\boldsymbol{S} \in \boldsymbol{V}$ is the start variable.

The language $L(G)$ of a grammar is the set of strings that can be generated by that grammar.

A context-free language is a language that can be generated by a context-free grammar.

An Arithmetic Example

```
V= {EXPR,TERM, FACTOR }
\Sigma= {a,+, x, (, )}
```

Rules R are...
EXPR \rightarrow EXPR + TERM \| TERM
TERM \rightarrow TERM \times FACTOR \mid FACTOR
FACTOR \rightarrow (EXPR) |a

An Arithmetic Example Generating: $a+a \times a$

$\boldsymbol{V}=\{$ EXPR, TERM, FACTOR $\}$
$\Sigma=\{a,+, \times()$,

Rules R are...
EXPR \rightarrow EXPR + TERM | TERM
TERM \rightarrow TERM \times FACTOR \| FACTOR
FACTOR \rightarrow (EXPR) |a

An Arithmetic Example Generating: $(a+a) \times a$

```
V= {EXPR,TERM, FACTOR }
\Sigma= {a,+, x, (, )}
```

Rules R are...

Notes on CFG Design

Divide and conquer applies

- Make simpler portions of the grammar, then make the grammar out of them
- Simulate recursion by letting a variable generate itself, directly or indirectly

DFAs are easy to simulate with CFGs

- Make a variable V_{i} for each state q_{i}
- If $\delta\left(q_{i}, q_{k}\right)=a$, make a rule $V_{i} \rightarrow \mathbf{a} V_{k}$
- If q_{i} is an accept state, make a rule $V_{i} \rightarrow \varepsilon$
- Make V_{0} the starting variable

Since you can have $V \rightarrow \mathbf{a} / \mathbf{b}$, you can count

Ambiguity

$$
\begin{array}{ll}
V= & \{\operatorname{EXPR}\} \\
\Sigma= & \{\mathrm{a},+, \times,(,)\}
\end{array}
$$

Rules R are...

EXPR	\rightarrow EXPR + EXPR
EXPR	\rightarrow EXPR \times EXPR
EXPR	$\rightarrow(E X P R)$
EXPR	$\rightarrow \mathrm{a}$

Ambiguity

$$
\begin{array}{ll}
V= & \{\operatorname{EXPR}\} \\
\Sigma= & \{\mathbf{a},+, \times,(,)\}
\end{array}
$$

Rules R are...

EXPR	\rightarrow EXPR + EXPR
EXPR	\rightarrow EXPR \times EXPR
EXPR	$\rightarrow(E X P R)$
EXPR	$\rightarrow a$

Ambiguity

A grammar may generate a string ambiguously by having two different parse trees for it

- That's not the same thing has having two different derivations - derivations can differ just by what order the rules are applied in
- To formalize ambiguity, we first define a leftmost derivation as a derivation in which, at every step, the leftmost remaining variable is the one replaced; that gives us:

Definition (Ambiguity):

- A string w is derived ambiguously in grammar \boldsymbol{G} if it has two or more different leftmost derivations.
- A grammar \boldsymbol{G} is ambiguous if it generates some string ambiguously.

Sometimes we can find an unambiguous grammar to generate the same language...

- ...sometimes we can't
- There are languages that are inherently ambiguous

Chomsky Normal Form

A simplified form for context-free grammars

- Useful for working with CFGs using algorithms

A CFG is in Chomsky Normal Form if:

- Every rule is of one of the following forms:
- $A \rightarrow B C$
- $A \rightarrow \mathrm{a}$
- $S \rightarrow \varepsilon$
- Where A, B and C are variables, \mathbf{a} is a terminal, and:
$\circ S$ is the starting variable
- Neither B nor C are S (A can be)

Converting to CNF: 4-Step Process

1. Add a new start variable. It rewrites only to the old start variable:
$S_{0} \rightarrow s$
2. Get rid of rewrites to the empty string. For every rewrite of variable $X \rightarrow \varepsilon$:

- Remove the rule $X \rightarrow \varepsilon$
- Find every instance of a variable Y being rewritten to anything involving X
- Add a new rule rewriting Y to the same thing, but with X removed

3. Get rid of unit rules.

For every rewrite of variables $X \rightarrow Y$:

- Remove the rule $X \rightarrow Y$
- Find every instance of Y being rewritten to anything
- Add a new rule rewriting X to the same thing

4. Convert all the remaining rules.

For every rule $X \rightarrow y_{1} y_{2} y_{3} \ldots y_{n}$:

- Remove the rule $x \rightarrow y_{1} y_{2} y_{3} \ldots y_{n}$

Make new rules $X \rightarrow y_{1} x_{1}, x_{1} \rightarrow y_{2} x_{2}, x_{2} \rightarrow y_{3} x_{3}, \ldots, x_{n-2}$ $\rightarrow y_{n-1} y_{n}$

- When making these rules, for every y_{i} that's a terminal:
- Replace it with a new variable Y_{i}
- Create new rule $Y_{i} \rightarrow y_{i}$

CNF Conversion Example

(Board work: 2.10)

Next Time:
Pushdown Automata

