
Lecture 7
COT4210 DISCRETE STRUCTURES

DR. MATTHEW B. GERBER

6/14/2016

PORTIONS FROM SIPSER, INTRODUCTION TO THE THEORY OF
COMPUTATION , 3 RD ED., 2013

Some Rules
1. A 0A1

2. A B

3. B #

These are rules for one thing becoming
another

◦ A can become 0A1 or B

◦ B can only become #

Let’s start with A. What kinds of strings can
we make with these rules?

Some Rules
1. A 0A1

2. A B

3. B #

These are rules for one thing becoming
another

◦ A can become 0A1 or B

◦ B can only become #

Let’s start with A. What kinds of strings can
we make with these rules?

◦ # 2 then 3

Some Rules
1. A 0A1

2. A B

3. B #

These are rules for one thing becoming
another

◦ A can become 0A1 or B

◦ B can only become #

Let’s start with A. What kinds of strings can
we make with these rules?

◦ # 2 then 3

◦ 0#1 1 then 2 then 3

Some Rules
1. A 0A1

2. A B

3. B #

These are rules for one thing becoming
another

◦ A can become 0A1 or B

◦ B can only become #

Let’s start with A. What kinds of strings can
we make with these rules?

◦ # 2 then 3

◦ 0#1 1 then 2 then 3

◦ 00#11 1, 1, 2, 3

Some Rules
1. A 0A1

2. A B

3. B #

These are rules for one thing becoming
another

◦ A can become 0A1 or B

◦ B can only become #

Let’s start with A. What kinds of strings can
we make with these rules?

◦ # 2 then 3

◦ 0#1 1 then 2 then 3

◦ 00#11 1, 1, 2, 3

◦ 00000#11111 1,1,1,1,1,2,3

Some Rules
1. A 0A1

2. A B

3. B #

These are rules for one thing becoming
another

◦ A can become 0A1 or B

◦ B can only become #

Let’s start with A. What kinds of strings can
we make with these rules?

◦ # 2 then 3

◦ 0#1 1 then 2 then 3

◦ 00#11 1, 1, 2, 3

◦ 00000#11111 1,1,1,1,1,2,3

Do you see how these rules are different from
regular languages?

Some Rules
1. A 0A1

2. A B

3. B #

These are rules for one thing becoming
another

◦ A can become 0A1 or B

◦ B can only become #

Let’s start with A. What kinds of strings can
we make with these rules?

◦ # 2 then 3

◦ 0#1 1 then 2 then 3

◦ 00#11 1, 1, 2, 3

◦ 00000#11111 1,1,1,1,1,2,3

Do you see how these rules are different from
regular languages?

THEY CAN

COUNT!

Context-Free Grammars:
In Short
A context-free grammar is a series of
substitution rules, or productions

Each rule is a single line
◦ The symbol on the left is called a variable, or

non-terminal symbol

◦ The symbols on the right can be any
combination of variables and terminal symbols

There are rules about where symbols can
show up

◦ Only variables can be on the left

◦ Only one variable can be on the left

◦ Variables or terminals can be on the right

1. A 0A1

2. A B

3. B #

Context-Free Grammars:
How To Start
We can represent the start symbol in one of
two ways

◦ We can represent it explicitly, using the
generally-agreed name S…

1. S  A

2. A 0A1

3. A B

4. B #

Context-Free Grammars:
How To Start
We can represent the start symbol in one of
two ways

◦ We can represent it explicitly, using the
generally-agreed name S…

◦ Or we can leave it implicit, which is more
common

If we do not give an explicit start symbol, the
start symbol is understood to be the left-hand
side of the topmost rule

1. A 0A1

2. A B

3. B #

Context-Free Grammars:
How To Start
We can represent the start symbol in one of
two ways

◦ We can represent it explicitly, using the
generally-agreed name S…

◦ Or we can leave it implicit, which is more
common

If we do not give an explicit start symbol, the
start symbol is understood to be the left-hand
side of the topmost rule

If a start symbol isn’t the left-hand side of the
topmost rule, GIVE AN EXPLICIT START
SYMBOL!

◦ Yes, even if it’s obvious

◦ It’s not really obvious enough

1. A 0A1

2. A B

3. B #

Context-Free Grammars:
How To Use
A grammar generates strings

1. Write down the start variable
1. A 0A1

2. A B

3. B #

A

Context-Free Grammars:
How To Use
A grammar generates strings

1. Write down the start variable

2. Find a variable that’s written and a rule that
has it as its left-hand side

3. Replace the variable with the right-hand side
of the rule

1. A 0A1

2. A B

3. B #

0A1

(1)

Context-Free Grammars:
How To Use
A grammar generates strings

1. Write down the start variable

2. Find a variable that’s written and a rule that
has it as its left-hand side

3. Replace the variable with the right-hand side
of the rule

4. Repeat from step 2…

1. A 0A1

2. A B

3. B #

00A11

(1, 1)

Context-Free Grammars:
How To Use
A grammar generates strings

1. Write down the start variable

2. Find a variable that’s written and a rule that
has it as its left-hand side

3. Replace the variable with the right-hand side
of the rule

4. Repeat from step 2…

1. A 0A1

2. A B

3. B #

00B11

(1, 1, 2)

Context-Free Grammars:
How To Use
A grammar generates strings

1. Write down the start variable

2. Find a variable that’s written and a rule that
has it as its left-hand side

3. Replace the variable with the right-hand side
of the rule

4. Repeat from step 2 until you’re out of variables

1. A 0A1

2. A B

3. B #

00#11

(1, 1, 2, 3)

Context-Free Grammars:
How To Use
A grammar generates strings

1. Write down the start variable

2. Find a variable that’s written and a rule that
has it as its left-hand side

3. Replace the variable with the right-hand side
of the rule

4. Repeat from step 2 until you’re out of variables

Three things:
◦ Notice that only terminal symbols remain

1. A 0A1

2. A B

3. B #

00#11

(1, 1, 2, 3)

Context-Free Grammars:
How To Use
A grammar generates strings

1. Write down the start variable

2. Find a variable that’s written and a rule that
has it as its left-hand side

3. Replace the variable with the right-hand side
of the rule

4. Repeat from step 2 until you’re out of variables

Three things:
◦ Notice that only terminal symbols remain

◦ The chain you follow to get to the string is called
a derivation…

1. A 0A1

2. A B

3. B #

00#11

(1, 1, 2, 3)

A  0A1  00A11  00B11  00#11

Context-Free Grammars:
How To Use
A grammar generates strings

1. Write down the start variable

2. Find a variable that’s written and a rule that
has it as its left-hand side

3. Replace the variable with the right-hand side
of the rule

4. Repeat from step 2 until you’re out of variables

Three things:
◦ Notice that only terminal symbols remain

◦ The chain you follow to get to the string is called
a derivation…

◦ …and it can also be represented as a parse tree Rule 3

Rule 2

Rule 1

Rule 1

Start A

0 A

0 A

B

#

1

1

Another Grammar
1. SENTENCE  ANOUN VERB ANOUN

2. ANOUN  ARTICLE NOUN

3. ARTICLE  a | an | the

4. NOUN  person | eye | music | image

5. VERB  hears | sees

the person hears the music

a person sees the image

an eye sees an image

Another Grammar
1. SENTENCE  ANOUN VERB ANOUN

2. ANOUN  ARTICLE NOUN

3. ARTICLE  a | an | the

4. NOUN  person | eye | music | image

5. VERB  hears | sees

the person hears the music

a person sees the image

an eye sees an image

the image hears an person

a eye hears an music

Context Free Grammars and…

A grammar generates strings.

In fact, we can think of the strings that a given grammar can generate as a set of strings.

Guess what we call that set of strings.

Go on. Guess.

Definitions: Context-Free Grammar,
Context-Free Language

A context-free grammar is a 4-tuple G = (V, , R, S) where:
◦ V is a finite set called the variables

◦  is a finite set, disjoint from V, called the terminals

◦ R is a finite set of rules, each rule allowing a variable to be rewritten as a
string of variables and terminals, and

◦ S  V is the start variable.

The language L(G) of a grammar is the set of strings that can be
generated by that grammar.

A context-free language is a language that can be generated by a
context-free grammar.

An Arithmetic Example

V = { EXPR, TERM, FACTOR }

 = { a, +, , (,) }

Rules R are…

EXPR  EXPR + TERM | TERM

TERM  TERM  FACTOR | FACTOR

FACTOR  (EXPR) | a

An Arithmetic Example
Generating: a + a  a
V = { EXPR, TERM, FACTOR }

 = { a, +, , (,) }

Rules R are…

EXPR  EXPR + TERM | TERM

TERM  TERM  FACTOR | FACTOR

FACTOR  (EXPR) | a

EXPR

EXPR

TERM

FACTOR

a

+ TERM

TERM

FACTOR

a

 FACTOR

a

An Arithmetic Example
Generating: (a + a)  a
V = { EXPR, TERM, FACTOR }

 = { a, +, , (,) }

Rules R are…

EXPR  EXPR + TERM | TERM

TERM  TERM  FACTOR | FACTOR

FACTOR  (EXPR) | a

EXPR

TERM

TERM

FACTOR

(EXPR

EXPR

TERM

FACTOR

a

+ TERM

FACTOR

a

)

 FACTOR

a

Notes on CFG Design
Divide and conquer applies
◦ Make simpler portions of the grammar, then make the grammar out of them

◦ Simulate recursion by letting a variable generate itself, directly or indirectly

DFAs are easy to simulate with CFGs
◦ Make a variable Vi for each state qi

◦ If (qi, qk) = a, make a rule Vi  aVk

◦ If qi is an accept state, make a rule Vi  ε

◦ Make V0 the starting variable

Since you can have V aVb, you can count

Ambiguity
V = { EXPR }

 = { a, +, , (,) }

Rules R are…

EXPR  EXPR + EXPR

EXPR  EXPR  EXPR

EXPR  (EXPR)

EXPR  a

EXPR

EXPR

EXPR

a

+ EXPR

a

 EXPR

a

Ambiguity
V = { EXPR }

 = { a, +, , (,) }

Rules R are…

EXPR  EXPR + EXPR

EXPR  EXPR  EXPR

EXPR  (EXPR)

EXPR  a

EXPR

EXPR

a

+ EXPR

EXPR

a

 EXPR

a

Ambiguity
A grammar may generate a string ambiguously by having two different parse trees for it

◦ That’s not the same thing has having two different derivations – derivations can differ just by what order
the rules are applied in

◦ To formalize ambiguity, we first define a leftmost derivation as a derivation in which, at every step, the
leftmost remaining variable is the one replaced; that gives us:

Definition (Ambiguity):
◦ A string w is derived ambiguously in grammar G if it has two or more different leftmost derivations.

◦ A grammar G is ambiguous if it generates some string ambiguously.

Sometimes we can find an unambiguous grammar to generate the same language…
◦ …sometimes we can’t

◦ There are languages that are inherently ambiguous

Chomsky Normal Form
A simplified form for context-free grammars
◦ Useful for working with CFGs using algorithms

A CFG is in Chomsky Normal Form if:
◦ Every rule is of one of the following forms:

◦ A BC

◦ A a

◦ S ε

◦ Where A, B and C are variables, a is a terminal, and:
◦ S is the starting variable

◦ Neither B nor C are S (A can be)

Converting to CNF: 4-Step Process
1. Add a new start variable.

It rewrites only to the old start variable:
◦ S0  S

2. Get rid of rewrites to the empty string.
For every rewrite of variable X ε:

◦ Remove the rule X ε

◦ Find every instance of a variable Y being rewritten to
anything involving X

◦ Add a new rule rewriting Y to the same thing, but with X
removed

3. Get rid of unit rules.
For every rewrite of variables X Y:

◦ Remove the rule X Y

◦ Find every instance of Y being rewritten to anything

◦ Add a new rule rewriting X to the same thing

4. Convert all the remaining rules.
For every rule X y1y2y3…yn:

◦ Remove the rule X y1y2y3…yn

◦ Make new rules X y1X1, X1 y2X2, X2 y3X3, …, Xn-2

 yn-1yn

◦ When making these rules, for every yi that’s a terminal:

◦ Replace it with a new variable Yi

◦ Create new rule Yi  yi

CNF Conversion Example

(Board work: 2.10)

Next Time:
Pushdown Automata

