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A Language to Consider

B = { 0n1n | n  0 }

◦ Is B regular?

◦ No

◦ B has to count the number of zeroes – and that number is arbitrary

◦ What does the F in FSM, DFA and NFA stand for?



Pigeons and Pigeonholes
Here we see nine pigeons in nine pigeonholes

◦ If we put ten pigeons in these nine pigeonholes, we 
can say one thing for certain:

◦ There is at least one pigeonhole with more than one 
pigeon

We call the generalization of this idea the 
pigeonhole principle:

If n items are put into m containers with n > m, 
at least one container contains more than one 

item

◦ It’s technically not an axiom, but like induction, it’s 
so basic that we don’t really call it a theorem

Image: Wikimedia Commons, “Too Many Pigeons”, McKay from BenFrantzDale
Used under Creative Commons Attribution-ShareAlike 3.0 Unported



Pigeonholes and DFAs
Now consider a DFA, and consider a string we 
are accepting

◦ Say that the string has as many symbols as the 
DFA has states

◦ What does that mean we can say, with complete 
certainty?
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Pigeonholes and DFAs
Now consider a DFA, and consider a string we 
are accepting

◦ Say that the string has as many symbols as the 
DFA has states

◦ What does that mean we can say, with complete 
certainty?
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But that means…
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Pigeonholes and DFAs
Now consider a DFA, and consider a string we 
are accepting

◦ Say that the string has as many symbols as the 
DFA has states

◦ What does that mean we can say, with complete 
certainty?

We cycled at least once

But that means…

We can run that same cycle indefinitely
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The Pumping Lemma for Regular 
Languages
If A is a regular language, then there is a number p – the pumping length – so that if s is a string 
in A with length of at least p, then s = xyz so that:

◦ xyiz is a string in A for all i  0,

◦ |y| > 0, and

◦ |xy|  p

Notes:
◦ yi just means “y concatenated to itself i times”

◦ |s| means the length of a string s

◦ x and z can be empty, but y can’t be – this is the whole point of the lemma

◦ We call it a lemma because all it’s good for is showing that some languages aren’t regular



Proof Idea: The Pumping Lemma for 
Regular Languages
Let M = (Q, , , q0, F) be a DFA recognizing language A, and let p = |Q|.

◦ Consider s  A so that |s| = n, with n  p.  

◦ Show that s = xyz so that xyiz is a string in A for all i  0, with |y| > 0 and |xy|  p.
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2. The before and after parts can be empty, but the cyclic part can’t be empty or we don’t have enough 
states



Proof Idea: The Pumping Lemma for 
Regular Languages
Let M = (Q, , , q0, F) be a DFA recognizing language A, and let p = |Q|.

◦ Consider s  A so that |s| = n, with n  p.  

◦ Show that s = xyz so that xyiz is a string in A for all i  0, with |y| > 0 and |xy|  p.

We already showed the important parts of this.
◦ We go around a cycle – that is, we hit at least one state at least twice

◦ x is the part of the string before the cycle, y is the cyclic part, and z is the part after the cycle

All we’re saying is:
1. We can go around the cycle as many times as we want, since it’s a cycle

2. The before and after parts can be empty, but the cyclic part can’t be empty or we don’t have enough 
states

3. We have to hit some state twice by the time we hit a number of symbols equal to the number of 
states



Proof: The Pumping Lemma for Regular 
Languages
Let M = (Q, , , q0, F) be a DFA recognizing 
language A, and let p = |Q|.

◦ Consider s  A so that |s| = n, with n  p.  

◦ Show that s = xyz so that xyiz is a string in A for all i 
0, with |y| > 0 and |xy|  p.
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◦ z takes M from rk to rn

◦ But rj and rk are the same state!

◦ Therefore, M must accept xyiz for all i  0.
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Proof: The Pumping Lemma for Regular 
Languages
Let M = (Q, , , q0, F) be a DFA recognizing 
language A, and let p = |Q|.

◦ Consider s  A so that |s| = n, with n  p.  

◦ Show that s = xyz so that xyiz is a string in A for all i 
0, with |y| > 0 and |xy|  p.

Let s = s1s2… sn be a string accepted by M, with n  p

Let r1r2… rn+1 be the sequence of states that M
enters while computing S.  Observe that:

◦ The state sequence has length n + 1, which is at least
p + 1

◦ Within the first p + 1 states in the sequence, two 
different points in the sequence have to be the same 
state, by the pigeonhole principle

◦ Call the first one rj and the second one rk

Now let x = s1…sj-1, y = sj…sk-1, and z = sk…sn.  

Observe that:
◦ x takes M from r1 to rj

◦ y takes M from rj to rk

◦ z takes M from rk to rn

◦ But rj and rk are the same state!

◦ Therefore, M must accept xyiz for all i  0.

Observe that:
◦ Since j  k, |y| > 0

Finally, observe that:
◦ Since k  p + 1, |xy|  p

We have shown that all three conditions of the 
pumping lemma hold. 



Using the Pumping Lemma
The pumping lemma is basically only good for proofs by contradiction.  Three steps:

1. Set Up the Pump
◦ Assume a language A is regular

◦ Observe that, therefore, by the pumping lemma, there is a p so that any string s in A, of length p or greater, can be 
cut into xyz and pumped

◦ You don’t need to know what p is – only that it exists!

2. Break the Pump
◦ Find a string s in it, of length p or greater, that can’t be pumped

◦ Demonstrate that no matter how you cut it into xyz, it still can’t be pumped
◦ Remember all parts of the pumping lemma here – part 3 can be more useful than you’d think

3. Clean Up the Mess
◦ Observe that since string s in A, of length p or greater, can’t be pumped; and A is regular; we have a contradiction

with the pumping lemma

◦ Conclude that A is not regular



Some Non-Regular Languages

(Board Work: 1.73, 1.74, 1.75, 1.76, 1.77)



Categorizing Languages
◦ We have shown that there are plenty of languages we can't 

process using the tools we use for regular languages

◦ That does not mean we can't process them
◦ Obviously, any language we can think of an algorithm to recognize can be recognized

◦ It just can't be done with a DFA

◦ We consider regular languages the simplest class of languages 
worth putting serious thought into

◦ We have other tools for processing more complex classes of 
languages

◦ Over the next few weeks, we will walk our way up this hierarchy of 
languages



Next Time:
Context-Free Languages


