Lecture 6

COT4210 DISCRETE STRUCTURES

DR. MATTHEW B. GERBER

6/7/2016

PORTIONS FROM SIPSER, *INTRODUCTION TO THE THEORY OF* COMPUTATION, 3RD ED., 2013

A Language to Consider

 $B = \{ 0^n 1^n | n \ge 0 \}$

• Is *B* regular?

A Language to Consider

 $B=\{\ 0^n1^n\ |\ n\geq 0\ \}$

- Is *B* regular?
- No
- B has to count the number of zeroes and that number is arbitrary
- What does the **F** in FSM, DFA and NFA stand for?

Pigeons and Pigeonholes

Here we see nine pigeons in nine pigeonholes

- If we put ten pigeons in these nine pigeonholes, we can say one thing for certain:
- There is at least one pigeonhole with more than one pigeon

We call the generalization of this idea the *pigeonhole principle*:

If *n* items are put into *m* containers with *n* > *m*, at least one container contains more than one item

 It's technically not an axiom, but like induction, it's so basic that we don't really call it a theorem

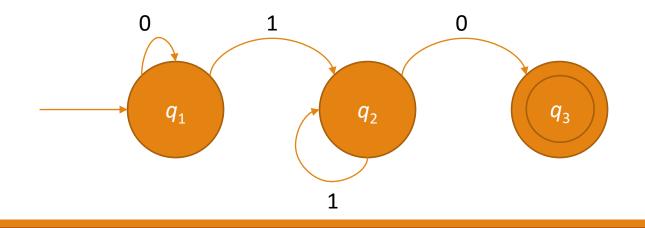
Image: Wikimedia Commons, "Too Many Pigeons", McKay from BenFrantzDale Used under Creative Commons Attribution-ShareAlike 3.0 Unported

Pigeonholes and DFAs

Now consider a DFA, and consider a string we are accepting

- Say that the string has as many symbols as the DFA has states
- What does that mean we can say, with complete certainty?

110

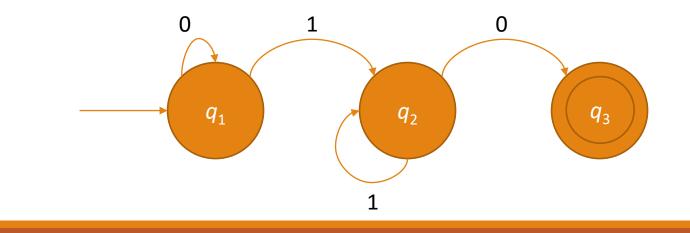


Pigeonholes and DFAs

Now consider a DFA, and consider a string we are accepting

- Say that the string has as many symbols as the DFA has states
- What does that mean we can say, with complete certainty?

1**1**0



We cycled at least once

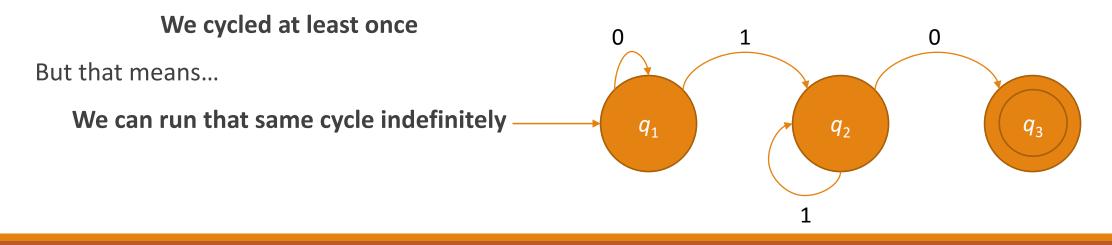
But that means...

Pigeonholes and DFAs

Now consider a DFA, and consider a string we are accepting

- Say that the string has as many symbols as the DFA has states
- What does that mean we can say, with complete certainty?

10 1**1**0 1**11**0



If A is a regular language, then there is a number p – the **pumping length** – so that if s is a string in A with length of at least p, then s = xyz so that:

- $xy^i z$ is a string in A for all $i \ge 0$,
- |y| > 0, and
- $|xy| \leq p$

Notes:

- yⁱ just means "y concatenated to itself i times"
- |s| means the length of a string s
- x and z can be empty, but y can't be this is the whole point of the lemma
- We call it a lemma because all it's good for is showing that some languages aren't regular

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let p = |Q|.

- Consider $s \in A$ so that |s| = n, with $n \ge p$.
- Show that s = xyz so that $xy^i z$ is a string in A for all $i \ge 0$, with |y| > 0 and $|xy| \le p$.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let p = |Q|.

- Consider $s \in A$ so that |s| = n, with $n \ge p$.
- Show that s = xyz so that $xy^i z$ is a string in A for all $i \ge 0$, with |y| > 0 and $|xy| \le p$.

We already showed the important parts of this.

- We go around a cycle that is, we hit at least one state at least twice
- *x* is the part of the string **before** the cycle, *y* is the **cyclic** part, and *z* is the part **after** the cycle

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let p = |Q|.

- Consider $s \in A$ so that |s| = n, with $n \ge p$.
- Show that s = xyz so that $xy^i z$ is a string in A for all $i \ge 0$, with |y| > 0 and $|xy| \le p$.

We already showed the important parts of this.

- We go around a cycle that is, we hit at least one state at least twice
- *x* is the part of the string **before** the cycle, *y* is the **cyclic** part, and *z* is the part **after** the cycle

All we're saying is:

1. We can go around the cycle as many times as we want, since it's a cycle

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let p = |Q|.

- Consider $s \in A$ so that |s| = n, with $n \ge p$.
- Show that s = xyz so that $xy^i z$ is a string in A for all $i \ge 0$, with |y| > 0 and $|xy| \le p$.

We already showed the important parts of this.

- We go around a cycle that is, we hit at least one state at least twice
- *x* is the part of the string **before** the cycle, *y* is the **cyclic** part, and *z* is the part **after** the cycle

All we're saying is:

- 1. We can go around the cycle **as many times as we want**, since it's a cycle
- 2. The before and after parts can be empty, but **the cyclic part can't be empty** or we don't have enough states

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let p = |Q|.

- Consider $s \in A$ so that |s| = n, with $n \ge p$.
- Show that s = xyz so that $xy^i z$ is a string in A for all $i \ge 0$, with |y| > 0 and $|xy| \le p$.

We already showed the important parts of this.

- We go around a cycle that is, we hit at least one state at least twice
- x is the part of the string **before** the cycle, y is the **cyclic** part, and z is the part **after** the cycle

All we're saying is:

- 1. We can go around the cycle **as many times as we want**, since it's a cycle
- 2. The before and after parts can be empty, but **the cyclic part can't be empty** or we don't have enough states
- 3. We have to hit some state twice by the time we hit a number of symbols equal to the number of states

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let p = |Q|.

- Consider $s \in A$ so that |s| = n, with $n \ge p$.
- Show that *s* = *xyz* so that *xyⁱz* is a string in *A* for all *i* ≥ 0, with |*y*| > 0 and |*xy*| ≤ *p*.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let p = |Q|.

- Consider $s \in A$ so that |s| = n, with $n \ge p$.
- Show that s = xyz so that xyⁱz is a string in A for all i ≥
 0, with |y| > 0 and |xy| ≤ p.

Let $s = s_1 s_2 \dots s_n$ be a string accepted by M, with $n \ge p$

Let $r_1r_2...r_{n+1}$ be the sequence of states that M enters while computing S.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let p = |Q|.

- Consider $s \in A$ so that |s| = n, with $n \ge p$.
- Show that s = xyz so that xyⁱz is a string in A for all i ≥ 0, with |y| > 0 and |xy| ≤ p.

Let $s = s_1 s_2 \dots s_n$ be a string accepted by M, with $n \ge p$

Let $r_1r_2...r_{n+1}$ be the sequence of states that M enters while computing S. Observe that:

- The state sequence has length *n* + 1, which is at least *p* + 1
- Within the first p + 1 states in the sequence, two <u>different points in the sequence</u> have to be the same state, by the pigeonhole principle
- Call the first one r_i and the second one r_k

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let p = |Q|.

- Consider $s \in A$ so that |s| = n, with $n \ge p$.
- Show that s = xyz so that xyⁱz is a string in A for all i ≥ 0, with |y| > 0 and |xy| ≤ p.

Let $s = s_1 s_2 \dots s_n$ be a string accepted by M, with $n \ge p$

Let $r_1r_2...r_{n+1}$ be the sequence of states that M enters while computing S. Observe that:

- The state sequence has length n + 1, which is at least p + 1
- Within the first p + 1 states in the sequence, two <u>different points in the sequence</u> have to be the same state, by the pigeonhole principle
- Call the first one r_i and the second one r_k

Now let $x = s_1...s_{j-1}$, $y = s_j...s_{k-1}$, and $z = s_k...s_n$.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let p = |Q|.

- Consider $s \in A$ so that |s| = n, with $n \ge p$.
- Show that *s* = *xyz* so that *xyⁱz* is a string in *A* for all *i* ≥ 0, with |*y*| > 0 and |*xy*| ≤ *p*.

Let $s = s_1 s_2 \dots s_n$ be a string accepted by M, with $n \ge p$

Let $r_1r_2...r_{n+1}$ be the sequence of states that M enters while computing S. Observe that:

- The state sequence has length *n* + 1, which is at least *p* + 1
- Within the first p + 1 states in the sequence, two <u>different points in the sequence</u> have to be the same state, by the pigeonhole principle
- Call the first one r_i and the second one r_k

Now let $x = s_1...s_{j-1}$, $y = s_j...s_{k-1}$, and $z = s_k...s_n$.

Observe that:

- x takes M from r_1 to r_j
- y takes M from r_i to r_k
- z takes M from r_k to r_n
- But *r_i* and *r_k* are the same state!
- Therefore, *M* must accept $xy^i z$ for all $i \ge 0$.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let p = |Q|.

- Consider $s \in A$ so that |s| = n, with $n \ge p$.
- Show that *s* = *xyz* so that *xyⁱz* is a string in *A* for all *i* ≥ 0, with |*y*| > 0 and |*xy*| ≤ *p*.

Let $s = s_1 s_2 \dots s_n$ be a string accepted by M, with $n \ge p$

Let $r_1r_2...r_{n+1}$ be the sequence of states that M enters while computing S. Observe that:

- The state sequence has length *n* + 1, which is at least *p* + 1
- Within the first p + 1 states in the sequence, two <u>different points in the sequence</u> have to be the same state, by the pigeonhole principle
- Call the first one r_i and the second one r_k

Now let $x = s_1...s_{j-1}$, $y = s_j...s_{k-1}$, and $z = s_k...s_n$.

Observe that:

- *x* takes *M* from r_1 to r_j
- y takes M from r_i to r_k
- z takes M from r_k to r_n
- But *r_i* and *r_k* are the same state!
- Therefore, *M* must accept $xy^i z$ for all $i \ge 0$.

Observe that:

• Since $j \neq k$, |y| > 0

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let p = |Q|.

- Consider $s \in A$ so that |s| = n, with $n \ge p$.
- Show that *s* = *xyz* so that *xyⁱz* is a string in *A* for all *i* ≥ 0, with |*y*| > 0 and |*xy*| ≤ *p*.

Let $s = s_1 s_2 \dots s_n$ be a string accepted by M, with $n \ge p$

Let $r_1r_2...r_{n+1}$ be the sequence of states that M enters while computing S. Observe that:

- The state sequence has length *n* + 1, which is at least *p* + 1
- Within the first p + 1 states in the sequence, two <u>different points in the sequence</u> have to be the same state, by the pigeonhole principle
- Call the first one r_i and the second one r_k

Now let $x = s_1...s_{j-1}$, $y = s_j...s_{k-1}$, and $z = s_k...s_n$.

Observe that:

- x takes M from r_1 to r_j
- y takes M from r_i to r_k
- z takes M from r_k to r_n
- But *r_i* and *r_k* are the same state!
- Therefore, *M* must accept $xy^i z$ for all $i \ge 0$.

Observe that:

• Since $j \neq k$, |y| > 0

Finally, observe that:

• Since $k \le p + 1$, $|xy| \le p$

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing language A, and let p = |Q|.

- Consider $s \in A$ so that |s| = n, with $n \ge p$.
- Show that *s* = *xyz* so that *xyⁱz* is a string in *A* for all *i* ≥ 0, with |*y*| > 0 and |*xy*| ≤ *p*.

Let $s = s_1 s_2 \dots s_n$ be a string accepted by M, with $n \ge p$

Let $r_1r_2...r_{n+1}$ be the sequence of states that M enters while computing S. Observe that:

- The state sequence has length *n* + 1, which is at least *p* + 1
- Within the first p + 1 states in the sequence, two <u>different points in the sequence</u> have to be the same state, by the pigeonhole principle
- Call the first one r_i and the second one r_k

Now let $x = s_1...s_{j-1}$, $y = s_j...s_{k-1}$, and $z = s_k...s_n$.

Observe that:

- x takes M from r_1 to r_j
- y takes M from r_i to r_k
- z takes M from r_k to r_n
- But *r_i* and *r_k* are the same state!
- Therefore, *M* must accept $xy^i z$ for all $i \ge 0$.

Observe that:

• Since $j \neq k$, |y| > 0

Finally, observe that:

• Since $k \le p + 1$, $|xy| \le p$

We have shown that all three conditions of the pumping lemma hold.

Using the Pumping Lemma

The pumping lemma is basically only good for proofs by contradiction. Three steps:

1. Set Up the Pump

- Assume a language A is regular
- Observe that, therefore, by the pumping lemma, there is a *p* so that any string *s* in *A*, of length *p* or greater, can be cut into *xyz* and **pumped**
 - You don't need to know what *p* is only that it exists!

2. Break the Pump

- Find a string *s* in it, of length *p* or greater, that **can't** be pumped
- Demonstrate that no matter how you cut it into xyz, it still can't be pumped
 - Remember all parts of the pumping lemma here part 3 can be more useful than you'd think

3. Clean Up the Mess

- Observe that since string *s* in *A*, of length *p* or greater, can't be pumped; and *A* is regular; we have a **contradiction** with the pumping lemma
- Conclude that **A** is not regular

Some Non-Regular Languages

(Board Work: 1.73, 1.74, 1.75, 1.76, 1.77)

Categorizing Languages

- We have shown that there are plenty of languages we can't process using the tools we use for regular languages
- That does *not* mean we can't process them
 - Obviously, any language we can think of an algorithm to recognize can be recognized
 - It just can't be done with a DFA
- We consider regular languages the simplest class of languages worth putting serious thought into
- We have other tools for processing more complex classes of languages
- Over the next few weeks, we will walk our way up this hierarchy of languages

Next Time: Context-Free Languages