
Lecture 5
COT4210 DISCRETE STRUCTURES

DR. MATTHEW B. GERBER

6/2/2016

PORTIONS FROM SIPSER, INTRODUCTION TO THE THEORY OF
COMPUTATION , 3 RD ED., 2013

Revisited: NFA-to-DFA Conversion
NFAs have three capabilities that DFAs don’t:

◦ Multiple transitions on the same symbol

◦ Empty-string transitions

◦ No transitions on some symbols

q1 q2 q3 q4

0, 1

1 0, ε 1

0, 1

Revisited: NFA-to-DFA Conversion:
Multiple Transitions

Recall our original NFA

q1 q2 q3 q4

0, 1

1 0, ε 1

0, 1

Revisited: NFA-to-DFA Conversion:
Multiple Transitions

Recall our original NFA

Now recall what computation on it looks like
◦ Every time we have more than one choice, we

spin off as many copies of the NFA as necessary
to account for that choice

q1

0: q1

1: q1

0: q1

1: q1

1: q1

0: q1

1: q2

0: q3

1: q3

1: q2 1: q3

1: q4

0: q4

1: q2

0: q3

1: q4

1: q4

0: q4

1: q3

Revisited: NFA-to-DFA Conversion:
Multiple Transitions

Recall our original NFA

Now recall what computation on it looks like
◦ Every time we have more than one choice, we

spin off as many copies of the NFA as necessary
to account for that choice

Observe that we only need the copies that are
actually unique against time and current states

◦ We only care whether we accept or not, not how
many times we accept

◦ At a given time, it only matters whether we are
in a given state or not – not how many times we
are in it

◦ This means prior computation doesn’t matter

So at a given time, an NFA is in a set of states

q1

0: q1

1: q1

0: q1

1: q1

1: q1

0: q1

1: q2

0: q3

1: q3

1: q2 1: q3

1: q4

0: q4

1: q2

0: q3

1: q4

1: q4

0: q4

1: q3

Revisited: NFA-to-DFA Conversion:
Empty Transitions

Multiple transitions imply that at any given
time, an NFA is in a set of states

What about empty transitions?
◦ Note that the empty string never appears here

q1

0: q1

1: q1

0: q1

1: q1

1: q1

0: q1

1: q2

0: q3

1: q3

1: q2 1: q3

1: q4

0: q4

1: q2

0: q3

1: q4

1: q4

0: q4

1: q3

Revisited: NFA-to-DFA Conversion:
Empty Transitions

Multiple transitions imply that at any given
time, an NFA is in a set of states

What about empty transitions?
◦ Note that the empty string never appears here

◦ …but everywhere q2 does, q3 does too

q1

0: q1

1: q1

0: q1

1: q1

1: q1

0: q1

1: q2

0: q3

1: q3

1: q2 1: q3

1: q4

0: q4

1: q2

0: q3

1: q4

1: q4

0: q4

1: q3

q1 q2 q3 q4

0, 1

1 0, ε 1

0, 1

Revisited: NFA-to-DFA Conversion:
Empty Transitions

Multiple transitions imply that at any given
time, an NFA is in a set of states

What about empty transitions?
◦ Note that the empty string never appears here

◦ …but everywhere q2 does, q3 does too

◦ We can handle empty-string transitions by just
“looking forward” at them and including them in
the set of possible states at a given moment

Empty transitions are handled in computation
by including their possibilities in the set of
states

q1

0: q1

1: q1

0: q1

1: q1

1: q1

0: q1

1: q2

0: q3

1: q3

1: q2 1: q3

1: q4

0: q4

1: q2

0: q3

1: q4

1: q4

0: q4

1: q3

Revisited: NFA-to-DFA Conversion:
Empty Transitions

Multiple transitions imply that at any given
time, an NFA is in a set of states

Empty transitions are handled in computation
by including their possibilities in the set of
states

What about missing transitions?
◦ We’re already in a set of states

◦ If a state in that set is missing a transition from
our next input symbol, it just doesn’t add
anything to the next set of states

Missing transitions simply don’t add anything
to the next set of states

q1

0: q1

1: q1

0: q1

1: q1

1: q1

0: q1

1: q2

0: q3

1: q3

1: q2 1: q3

1: q4

0: q4

1: q2

0: q3

1: q4

1: q4

0: q4

1: q3

Revisited: NFA-to-DFA Conversion:
Simulating the NFA
Keep in mind our three observations about the computation process of an NFA:

1. Multiple transitions imply that at any given time, an NFA is in a set of states

2. Empty transitions are handled in computation by including their possibilities in the set of states

3. Missing transitions simply don’t add anything to the next set of states

Now take this a bit further:
◦ The power set P(Q) of an NFA’s states is the set of all possible subsets of its states

◦ So at any given time, the set of states an NFA is in is an element in P(Q)

◦ P(Q) is itself a set

So on a given transition, an NFA is simply transitioning from one element of P(Q) to another

Revisited: NFA-to-DFA Conversion:
Simulating the NFA
Keep in mind our three observations about the computation process of an NFA:

1. Multiple transitions imply that at any given time, an NFA is in a set of states

2. Empty transitions are handled in computation by including their possibilities in the set of states

3. Missing transitions simply don’t add anything to the next set of states

We have also observed that:
4. On a given transition, an NFA is simply transitioning from one element of P(Q) to another

Now consider empty and missing transitions:
◦ The possibilities of empty transitions are included in the set of states by look-ahead

◦ Missing transitions are handled by simply not adding anything to the set of states

◦ So given the next input symbol, we account for them completely in the next set of states

This means that an NFA transitions from one element of P(Q) to another element of P(Q)
based only on the next input symbol

Revisited: NFA-to-DFA Conversion:
Simulating the NFA
Keep in mind our three observations about the computation process of an NFA:

1. Multiple transitions imply that at any given time, an NFA is in a set of states

2. Empty transitions are handled in computation by including their possibilities in the set of states

3. Missing transitions simply don’t add anything to the next set of states

We have also observed that:
4. On a given transition, an NFA is simply transitioning from one element of P(Q) to another

5. An NFA transitions from one element of P(Q) to another element of P(Q) based only on the next
input symbol

So while an NFA is computing, we have:
◦ A finite set of states it can be in, and

◦ A way to know which state it will be in next, given only its current state and the input symbol

Revisited: NFA-to-DFA Conversion:
Simulating the NFA
Keep in mind our three observations about the computation process of an NFA:

1. Multiple transitions imply that at any given time, an NFA is in a set of states

2. Empty transitions are handled in computation by including their possibilities in the set of states

3. Missing transitions simply don’t add anything to the next set of states

We have also observed that:
4. On a given transition, an NFA is simply transitioning from one element of P(Q) to another

5. An NFA transitions from one element of P(Q) to another element of P(Q) based only on the next
input symbol

So while an NFA is computing, we have:
◦ A finite set of states it can be in, and

◦ A way to know which state it will be in next, given only its current state and the input symbol

That’s a DFA.

Building the DFA
We want to build a DFA D = { QD, , D, q0D, FD }
that simulates NFA N = { QN, , N, q0N, FN }

We need to figure out:
◦ The state set

◦ The transition function

◦ The start state

◦ The final states

1

2 3

ε

a
a, b

b
a

Building the DFA: States
We want to build a DFA D = { QD, , D, q0D, FD }
that simulates NFA N = { QN, , N, q0N, FN }

The state set is the easiest part: just
remember that we need to simulate being in
some subset of the states of N, and say:

◦ QD = P(QN), the power set of QN

1

2 3

Ø 1 2 3

12 23 13 123

ε

a
a, b

b
a

Building the DFA: Starting
We want to build a DFA D = { QD, , D, q0D, FD }
that simulates NFA N = { QN, , N, q0N, FN }

◦ QD = P(QN), the power set of QN

Next let’s look at the start state
◦ Easy answer: the state corresponding to being in,

and only in, the start state of the NFA

◦ …with one wrinkle: empty-string transitions

So we need the set-state containing:
◦ q0N

◦ The states you can reach from q0N with only
empty-string transitions

Let’s call that set-state E({q0N}), and say:
◦ q0D = E({q0N})

1

2 3

Ø 1 2 3

12 23 13 123

ε

a
a, b

b
a

Building the DFA: Acceptance
We want to build a DFA D = { QD, , D, q0D, FD }
that simulates NFA N = { QN, , N, q0N, FN }

◦ QD = P(QN), the power set of QN

◦ q0D = E({q0N})

Next the accept states – which actually are easy
◦ Recall that the NFA accepts if it has any computation path

to an accept state

◦ This means that in our computation, if there is any state
we could be in that is an NFA accept state, we accept

So a state-set accepts if it contains any accept state
from the NFA

◦ FD = {R  QD | R and FN have a common member}, or

◦ FD = {R  QD | R  FN  Ø}

1

2 3

Ø 1 2 3

12 23 13 123

ε

a
a, b

b
a

Building the DFA: Transition
We want to build a DFA D = { QD, , D, q0D, FD }
that simulates NFA N = { QN, , N, q0N, FN }

◦ QD = P(QN), the power set of QN

◦ q0D = E({q0N})

◦ FD = {R  QD | R  FN  Ø}

Now the transition function. Remember:
◦ The NFA transitions between sets of states

◦ We simulate that by having a state for each possible set

So to transition on a given symbol a, we:
◦ Look at all the NFA states we are currently simulating

◦ Look at all the states they can possibly transition to on a

◦ Transition to the set of all of those states

1

2 3

Ø 1 2 3

12 23 13 123

ε

a
a, b

b
a

Building the DFA: Transition
We want to build a DFA D = { QD, , D, q0D, FD }
that simulates NFA N = { QN, , N, q0N, FN }

◦ QD = P(QN), the power set of QN

◦ q0D = E({q0N})

◦ FD = {R  QD | R  FN  Ø}

To transition on a given symbol a, we:
◦ Look at all the NFA states we are currently simulating

◦ Look at all the states they can possibly transition to on a

◦ Transition to the set of all of those states

So we define 𝛿𝐷: 𝑄𝐷 × Σ → 𝑄𝐷 as:
◦ 𝛿𝐷 𝑅, 𝑎 = 𝑞 ∈ 𝑄𝑁 | 𝑞 ∈ 𝛿𝑁 𝑟, 𝑎 for some 𝑟 ∈ 𝑅

◦ …almost

1

2 3

Ø 1 2 3

12 23 13 123

ε

a
a, b

b
a

a, b

a b b

a

b

a

a, b b

a

b

a
a

b

Building the DFA: Transition
We want to build a DFA D = { QD, , D, q0D, FD }
that simulates NFA N = { QN, , N, q0N, FN }

◦ QD = P(QN), the power set of QN

◦ q0D = E({q0N})

◦ FD = {R  QD | R  FN  Ø}

We just defined 𝛿𝐷: 𝑄𝐷 × Σ → 𝑄𝐷 as:
◦ 𝛿𝐷 𝑅, 𝑎 = 𝑞 ∈ 𝑄𝑁 | 𝑞 ∈ 𝛿𝑁 𝑟, 𝑎 for some 𝑟 ∈ 𝑅

But we need to consider empty string transitions
◦ We can just do this the same way we did with the start

state

So we finally say:
◦ 𝜹𝑫 𝑹, 𝒂 = 𝒒 ∈ 𝑸𝑵 | 𝒒 ∈ 𝑬(𝜹𝑵 𝒓, 𝒂) 𝐟𝐨𝐫 𝐬𝐨𝐦𝐞 𝒓 ∈ 𝑹

1

2 3

Ø 1 2 3

12 23 13 123

ε

a
a, b

b
a

a, b

a b b

a

b

a

a, b b

a

b

a
a

b

Building the DFA: Transition
We have built a DFA D = { QD, , D, q0D, FD }
that simulates NFA N = { QN, , N, q0N, FN }

◦ QD = P(QN), the power set of QN

◦ q0D = E({q0N})

◦ FD = {R  QD | R  FN  Ø}

◦ 𝜹𝑫 𝑹, 𝒂 = 𝒒 ∈ 𝑸𝑵 | 𝒒 ∈ 𝑬(𝜹𝑵 𝒓, 𝒂) 𝐟𝐨𝐫 𝐬𝐨𝐦𝐞 𝒓 ∈ 𝑹

From our observations during construction, D is always
in a state corresponding to the subset of states N could
be in on the same input

We have observed that for any NFA N, a corresponding
DFA D exists that recognizes the same language as N

Hence, by definition of regular languages, any language
recognized by an NFA is regular.

1

2 3

Ø 1 2 3

12 23 13 123

ε

a
a, b

b
a

a, b

a b b

a

b

a

a, b b

a

b

a
a

b

Building the DFA: Transition
We have built a DFA D = { QD, , D, q0D, FD }
that simulates NFA N = { QN, , N, q0N, FN }

◦ QD = P(QN), the power set of QN

◦ q0D = E({q0N})

◦ FD = {R  QD | R  FN  Ø}

◦ 𝜹𝑫 𝑹, 𝒂 = 𝒒 ∈ 𝑸𝑵 | 𝒒 ∈ 𝑬(𝜹𝑵 𝒓, 𝒂) 𝐟𝐨𝐫 𝐬𝐨𝐦𝐞 𝒓 ∈ 𝑹

From our observations during construction, D is always
in a state corresponding to the subset of states N could
be in on the same input

We have observed that for any NFA N, a corresponding
DFA D exists that recognizes the same language as N

Hence, by definition of regular languages, any language
recognized by an NFA is regular.

1

2 3

Ø 1 2 3

12 23 13 123

ε

a
a, b

b
a

a, b

a b b

a

b

a

a, b b

a

b

a
a

b

No, this isn’t a formal proof. I’m not going to draw the little square.

But it’s good enough for the book, let alone this class, and doing a
formal proof would take weeks.

Next Time:
Non-Regular Languages

