
Lecture 4
COT4210 DISCRETE STRUCTURES

DR. MATTHEW B. GERBER

5/31/2016

PORTIONS FROM SIPSER, INTRODUCTION TO THE THEORY OF
COMPUTATION , 3 RD ED., 2013

Finishing Up GNFAs

Review: GNFAs Generally
A GNFA is a special kind of NFA that uses regular expressions as its transition alphabet

◦ A GNFA has a single start state and a single accept state

◦ Nothing can transition into the start state, and nothing can transition out of the accept state

First, we convert our DFA to a GNFA
◦ This is the easy part

We then convert that GNFA to a regular expression by state ripping and repair
◦ One by one, we remove states from the GNFA, or rip the states out

◦ After each rip, we expand the expressions on the transitions surrounding the removed state, so that the
GNFA still recognizes the same language

We know we’re done when there are only two states left—the start and accept states
◦ …and the transition regular expression between them has to be the regular expression recognizing the

original language

Review: Making the GNFA
First, we:
◦ Add specific start and accept states

◦ Add an empty-string transition
from the start state to the old
start state

◦ Add empty transitions from the
old accept states to the accept
state

◦ Convert all the multiple-symbol
transitions to use the union
operator

1

2

a

b

a, b

Review: Making the GNFA
First, we:
◦ Add specific start and accept states

◦ Add an empty-string transition
from the start state to the old
start state

◦ Add empty transitions from the
old accept states to the accept
state

◦ Convert all the multiple-symbol
transitions to use the union
operator

1

2

a

b

a  b

s

a





Review: Making the GNFA
Now we rip out a state
◦ It actually doesn’t matter which

1 transitioned to the accept state
through 2, so…
◦ We need to repair that transition

1

2

a

b

a  b

s

a





Review: Making the GNFA
Now we rip out a state
◦ It actually doesn’t matter which

1 transitioned to the accept state
through 2, so…
◦ We need to repair that transition

◦ The concatenation is obvious

◦ Can you see why we need the star
closure?

1

2

a

s

a



b(a  b)*

Review: Making the GNFA
Now we rip out a state
◦ It actually doesn’t matter which

1 transitioned to the accept state
through 2, so…
◦ We need to repair that transition

◦ The concatenation is obvious

◦ Can you see why we need the star
closure?

One more state, and we’re done

1

2

a

s

a



b(a  b)*

Review: Making the GNFA
Now we rip out a state
◦ It actually doesn’t matter which

1 transitioned to the accept state
through 2, so…
◦ We need to repair that transition

◦ The concatenation is obvious

◦ Can you see why we need the star
closure?

One more state, and we’re done

1

2

s

a

a*b(a  b)*

Reliable Ripping and Repair
Ripping is the easy part: Just pick a state qr that isn’t the start or accept state

Repair is the hard part. Consider every pair of states qa and qb so that:
◦ qa can transition to qr on regular expression Rar

◦ qr can transition to qb on regular expression Rrb

◦ (If the transition can go the other way too, it counts as two pairs)

Since we aren’t picking the start or accept state, it is both necessary and sufficient to repair
every such transition

Three cases to consider:
◦ qa can always transition to qb on regular expression (Rar)(Rrb)

◦ If qr has a self-loop on Rr then we concatenate with (Rr*) to get (Rar)(Rr)*(Rrb)

◦ And finally, if qa can transition to qb on regex Rab without qr involved, we union with (Rab) to get:

(Rar)(Rr)*(Rrb)(Rab)

Definition: Generalized
Nondeterministic Finite Automaton
A GNFA is a 5-tuple G = {Q, , , qs, qf} where:
◦ Q is the set of states,
◦  is the input alphabet,
◦ 𝛿: (𝑄 − 𝑞𝑎) × (𝑄 − 𝑞𝑠) → 𝑹 (with R as the set of all regular expressions over )

is the transition function,
◦ qs is the start state, and
◦ qf is the (single) accept state

A GNFA accepts string w on  if:
◦ w = w1w2 … wk, and…

◦ …state sequence q0q1 … qk exists, so that q0 = qs and qk = qf, and…

◦ wi  L((qi-1, qi)) for i from 1 to k

Recursive Conversion
Let RIP(G) be a function that accepts a GNFA G = {Q, , , qs, qf}. It returns GR =
{QR, , R, qs, qf} so that:
◦ QR = Q – {qr} for some qr  {qs, qf}, and

◦ For every qa  QR – {qf} and qb  QR – {qs},

R(qa, qb) = (Rar)(Rr)*(Rrb)(Rab)

where: Rar =  (qa, qr) Rrb =  (qr, qb) Rr =  (qr, qr) Rab =  (qa, qb)

Now Let CONVERT(G) be a function that accepts a GNFA G = {Q, , , qs, qf}. It
returns:
◦ The regular expression (qs, qf) if |Q| = 2, and

◦ CONVERT(RIP(G)) otherwise.

A Little Convincing
We can show RIP(G) is equivalent to G:
◦ If G accepts w, then G enters states qs, q1, q2, …, qf

◦ If none of these are qr, obviously RIP(G) accepts w

◦ If qr does appear, then let the states before and after it be qa and qb, and our construction shows that
R provides a regular expression transition between them equivalent to all transitions through qr

◦ If RIP(G) accepts w, then RIP(G) enters states qs, q1, q2, …, qf

◦ If none of the transitions previously involved qr, obviously G accepts w

◦ If a transition did previously involve qr, we just reverse our construction to observe that G can make
the same transition through qr

◦ G and RIP(G) each accept everything the other does; therefore, they are
equivalent.

Lemma: DFAs to Regular Expressions
Suffices to show that for a GNFA G = {Q, , , qs, qf}, CONVERT(G) returns a regular expression
describing L(G).

◦ Proof: Induction on |Q|.

◦ Basis: |Q| = 2. Then G has a singular transition from qs, qf for strings described by a regular expression
(qs, qf) = R, which CONVERT(G) returns as desired.

◦ Induction Hypothesis: Assume that for any Gk = {Qk, , k, qsk, qfk} with |Qk| < |Q|, CONVERT returns a
regular expression describing L(Gk).

◦ Induction: Consider RIP(G) = {QR, , R, qs, qf}.
◦ By definition of RIP(G), |QR|=|Q| - 1.

◦ Therefore, by the induction hypothesis, CONVERT(RIP(G)) returns a regular expression describing L(RIP(G)).

◦ We have already shown that L(RIP(G)) = L(G).

◦ CONVERT(RIP(G)) returns a regular expression describing L(G), as desired.

Closure of Regular
Languages

Proof: Closure of Regular Languages –
Union

Let NA = { QA, , A, q0A, FA } and
NB = { QB, , B, q0B, FB } be NFAs
recognizing regular languages A and B.

Proof: Closure of Regular Languages –
Union

Let NA = { QA, , A, q0A, FA } and
NB = { QB, , B, q0B, FB } be NFAs
recognizing regular languages A and B.

Construct a new NFA N = { Q, , , s, F }
with:
◦ Q = QA  QB  { s }

◦ Start state s

◦ F = FA  FB

s

Proof: Closure of Regular Languages –
Union

Let NA = { QA, , A, q0A, FA } and
NB = { QB, , B, q0B, FB } be NFAs
recognizing regular languages A and B.

Construct a new NFA N = { Q, , , s, F }
with:
◦ Q = QA  QB  { s }

◦ Start state s

◦ F = FA  FB

◦ 𝛿 𝑞, 𝑎 =

𝛿𝐴 𝑞, 𝑎 𝑞 ∈ 𝑄𝐴

𝛿𝐵 𝑞, 𝑎 𝑞 ∈ 𝑄𝐵

{𝑞0𝐴, 𝑞0𝐵} 𝑞 = 𝑠 and 𝑎 = 𝜀
∅ otherwise

s





Proof: Closure of Regular Languages –
Union

◦ N clearly accepts everything NA or NB

accept, and nothing else.

◦ Therefore by recognition, N accepts
everything in A or in B, and nothing else.

◦ Therefore by union, N accepts everything in
A  B, and nothing else.

◦ Therefore by recognition, N recognizes
A  B.

◦ Therefore, there is an NFA recognizing
A  B.

◦ Therefore, A  B is regular. 

s





Proof: Closure of Regular Languages –
Concatenation

Let NA = { QA, , A, q0A, FA } and
NB = { QB, , B, q0B, FB } be NFAs recognizing
regular languages A and B.

Proof: Closure of Regular Languages –
Concatenation

Let NA = { QA, , A, q0A, FA } and
NB = { QB, , B, q0B, FB } be NFAs recognizing
regular languages A and B.

Construct a new NFA N = { Q, , , s, F } with:
◦ Q = QA  QB  { s }

◦ Start state q0A

◦ F = FB

Proof: Closure of Regular Languages –
Concatenation

Let NA = { QA, , A, q0A, FA } and
NB = { QB, , B, q0B, FB } be NFAs recognizing
regular languages A and B.

Construct a new NFA N = { Q, , , s, F } with:
◦ Q = QA  QB  { s }

◦ Start state q0A

◦ F = FB

◦ 𝛿 𝑞, 𝑎 =

𝛿𝐵 𝑞, 𝑎 𝑞 ∈ 𝑄𝐵

𝛿𝐴 𝑞, 𝑎 𝑞 ∈ 𝑄𝐴 and 𝑞 ∉ 𝐹𝐴
𝛿𝐴 𝑞, 𝑎 𝑞 ∈ 𝐹𝐴 and 𝑎 ≠ 𝜀

𝛿𝐴 𝑞, 𝜀  {𝑞0𝐵} 𝑞 ∈ 𝐹𝐴 and 𝑎 = 𝜀







Proof: Closure of Regular Languages –
Concatenation

◦ N clearly accepts every string consisting of a
string accepted by NA followed by a string
accepted by NB, and only those strings.

◦ Therefore by recognition, N accepts every string
that is a string in A followed by a string in B, and
nothing else.

◦ Therefore by concatenation, N accepts every
string in AB, and nothing else.

◦ Therefore by recognition, N recognizes AB.

◦ Therefore, there is an NFA recognizing AB.

◦ Therefore, AB is regular. 







Proof: Closure of Regular Languages –
Star

Let NA = { QA, , A, q0A, FA } be an NFA
recognizing regular language A.

Proof: Closure of Regular Languages –
Star

Let NA = { QA, , A, q0A, FA } be an NFA
recognizing regular language A.

Construct a new NFA N = { Q, , , s, F } with:
◦ Q = QA  { s }

◦ Start state s

◦ F = FA  { s }
ss

Proof: Closure of Regular Languages –
Star

Let NA = { QA, , A, q0A, FA } be an NFA
recognizing regular language A.

Construct a new NFA N = { Q, , , s, F } with:
◦ Q = QA  { s }

◦ Start state s

◦ F = FA  { s }

𝛿 𝑞, 𝑎 =

𝛿𝐴 𝑞, 𝑎 𝑞 ∈ 𝑄𝐴 and 𝑞 ∉ 𝐹𝐴
𝛿𝐴 𝑞, 𝑎 𝑞 ∈ 𝐹𝐴 and 𝑎 ≠ 𝜀

𝛿𝐴 𝑞, 𝜀  𝑞0𝐴 𝑞 ∈ 𝐹𝐴 and 𝑎 = 𝜀
{𝑞0𝐴} 𝑞 = 𝑠 and 𝑎 = 𝜀
∅ otherwise

ss









Proof: Closure of Regular Languages –
Star

◦ N clearly accepts every string consisting of
zero or more strings accepted by NA.

◦ Therefore by recognition, N accepts every
string consisting of zero or more strings in
A.

◦ Therefore by star, N accepts every string in
A*.

◦ Therefore by recognition, N recognizes A*.

◦ Therefore, there is an NFA recognizing A*.

◦ Therefore, A* is regular. 

ss









Regular Expressions:
Formal Cleanup

Regular Expression Equivalence
We split the set equivalence proof as
normal. We need to prove two things:

If a language is regular, it is described
by a regular expression
◦ Handled by the ability to create a GNFA for

any DFA, and subsequently describe the
language recognized by that GNFA with a
regular expression

If a language is described by a regular
expression, then that language is
regular
◦ Recall the definition of regular languages

R is a regular expression over the alphabet  if
it is:

1. a for some a  

2. ε

3. Ø

4. (R1  R2) where R1 and R2 are both regular
expressions

5. (R1 ∘ R2) where R1 and R2 are both regular
expressions

6. (R1*) where R1 is a regular expression
◦ 1-3 represent the languages {a}, {ε} and the empty

language, respectively

◦ 4-6 represent the union, concatenation and star closure
of the language(s) described by the regular expression
operand(s)

Expression-to-Language Equivalence
Consider each case of the definition
of regular expressions

1. R = a for some a  

2. R = ε

3. R = Ø

…and for 4-6, we just use the same
constructions from the regular class
closure proofs

Next Time: NFA to DFA,
Revisited

