
Lecture 2
COT4210 DISCRETE STRUCTURES

DR. MATTHEW B. GERBER

5/24/2016

PORTIONS FROM SIPSER, INTRODUCTION TO THE THEORY OF
COMPUTATION , 3 RD ED., 2013

Nondeterminism
An NFA looks like a DFA, except an NFA:
◦ Can have more than one possible transition

per state per input symbol

◦ Doesn't have to have a transition for every
state for every input symbol

◦ Can transition on the empty string

It also works like a DFA, except
acceptance is nondeterministic
◦ A DFA accepts if the path for the input

string ends on an accept symbol

◦ An NFA accepts if any path for the input
string ends on an accept symbol

q1 q2 q3 q4

0, 1

1 0, ε 1

0, 1

Computation in an NFA

q1

0: q1

1: q1

0: q1

1: q1

1: q1

0: q1

1: q2

0: q3

1: q3

1: q2 1: q3

1: q4

0: q4

1: q2

0: q3

1: q4

1: q4

0: q4

1: q3

The easiest way to think of how an NFA
works is to think of a threaded DFA
◦ Every time there is a choice of more than

one path, the NFA splits off a copy of itself
to follow each path

◦ The copies conceptually run in parallel

◦ A copy that reaches the end of input either
accepts or rejects normally

◦ A copy that reaches a symbol it cannot
transition on stops and rejects

◦ The NFA itself accepts if any copy accepts

Input 010110 on our NFA

q1 q2 q3 q4

0, 1

1 0, ε 1

0, 1

q1

0: q1

1: q1

0: q1

1: q1

1: q1

0: q1

1: q2

0: q3

1: q3

1: q2 1: q3

1: q4

0: q4

1: q2

0: q3

1: q4

1: q4

0: q4

1: q3

NFA Example
What does this machine do?

q1

q1

0

ε 0

0

00

ε

NFA Example

q1

q1

0

ε 0

0

00

ε

What does this machine do?

This machine accepts all
strings consisting of a
number of zeroes that's a
multiple of either 2 or 3
◦ It's like our modulus machine

from last lecture, except it
accepts x mod 2 and x mod 3
at the same time

An NFA and its DFA
(Yes, this is, in fact, the best we can do.)

q1 q2 q3 q4

0, 1

1 0, ε 1

0, 1

q000 q100 q010 q110

q001 q101 q011 q111

1

0

0 0

0

0 0

0 0

1
1

1

1

1

1

1

An NFA and its DFA
(Yes, this is, in fact, the best we can do.)

q1 q2 q3 q4

0, 1

1 0, ε 1

0, 1

q000 q100 q010 q110

q001 q101 q011 q111

1

0

0 0

0

0 0

0 0

1
1

1

1

1

1

1

No, you’re not missing

some kind of subtle

elegance.

This DFA is a hideous

monster.

That’s why we have NFAs.

Definition:
Nondeterministic Finite Automaton
A nondeterministic finite automaton is a 5-tuple
(Q, , , q0, F) that consists of:
◦Q A finite set of states

◦ An alphabet

◦ δ: 𝑄 × Σ → 𝑃(𝑄) A transition function

◦ q0  Q A start state

◦ F  Q A set of accept (or final) states

Equivalence

The capabilities of NFAs are a strict superset of
the capabilities of DFAs, so every DFA can
obviously be made into an NFA.
◦The reverse is less obvious – but is nonetheless true
◦…and immensely important, as we'll get to soon
enough

Proof: NFA/DFA Equivalence
Prove that every NFA has an equivalent DFA.

(Board work: Theorem 1.39)

Example: NFA/DFA Equivalence

(Board work: Example 1.41)

Consequences 1

If every NFA has a DFA, then every language
that can be recognized with an NFA can be
recognized with a DFA.

But that means…

Consequences 1

If every NFA has a DFA, then every language
that can be recognized with an NFA can be
recognized with a DFA.

But that means…

Corollary to NFA/DFA Equivalence: A language
is regular if and only if it can be recognized by
an NFA.

Consequences 2
We ended last session by taking about 20 minutes to prove that the
class of regular languages was closed under union
◦ Let's do that again, a lot faster

◦ After that, we'll prove that it's closed under concatenation and star closure

(Board work: Theorems 1.45, 1.47, 1.49)

Next Time:
Regular Expressions

