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Nondeterminism
An NFA looks like a DFA, except an NFA:
◦ Can have more than one possible transition 

per state per input symbol

◦ Doesn't have to have a transition for every 
state for every input symbol

◦ Can transition on the empty string

It also works like a DFA, except 
acceptance is nondeterministic
◦ A DFA accepts if the path for the input 

string ends on an accept symbol

◦ An NFA accepts if any path for the input 
string ends on an accept symbol
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Computation in an NFA

q1

0: q1

1: q1

0: q1

1: q1

1: q1

0: q1

1: q2

0: q3

1: q3

1: q2 1: q3

1: q4

0: q4

1: q2

0: q3

1: q4

1: q4

0: q4

1: q3

The easiest way to think of how an NFA 
works is to think of a threaded DFA
◦ Every time there is a choice of more than 

one path, the NFA splits off a copy of itself 
to follow each path

◦ The copies conceptually run in parallel

◦ A copy that reaches the end of input either 
accepts or rejects normally

◦ A copy that reaches a symbol it cannot 
transition on stops and rejects

◦ The NFA itself accepts if any copy accepts



Input 010110 on our NFA
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NFA Example
What does this machine do?
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NFA Example
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What does this machine do?

This machine accepts all 
strings consisting of a 
number of zeroes that's a 
multiple of either 2 or 3
◦ It's like our modulus machine 

from last lecture, except it 
accepts x mod 2 and x mod 3 
at the same time



An NFA and its DFA
(Yes, this is, in fact, the best we can do.)
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An NFA and its DFA
(Yes, this is, in fact, the best we can do.)
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No, you’re not missing 

some kind of subtle 

elegance.

This DFA is a hideous 

monster.

That’s why we have NFAs.



Definition:
Nondeterministic Finite Automaton
A nondeterministic finite automaton is a 5-tuple 
(Q, , , q0, F) that consists of:
◦Q A finite set of states

◦ An alphabet

◦ δ: 𝑄 × Σ → 𝑃(𝑄) A transition function

◦ q0  Q A start state

◦ F  Q A set of accept (or final) states



Equivalence

The capabilities of NFAs are a strict superset of 
the capabilities of DFAs, so every DFA can 
obviously be made into an NFA.
◦The reverse is less obvious – but is nonetheless true
◦…and immensely important, as we'll get to soon 
enough



Proof: NFA/DFA Equivalence
Prove that every NFA has an equivalent DFA.

(Board work: Theorem 1.39)



Example: NFA/DFA Equivalence

(Board work: Example 1.41)



Consequences 1

If every NFA has a DFA, then every language 
that can be recognized with an NFA can be 
recognized with a DFA.

But that means…



Consequences 1

If every NFA has a DFA, then every language 
that can be recognized with an NFA can be 
recognized with a DFA.

But that means…

Corollary to NFA/DFA Equivalence: A language 
is regular if and only if it can be recognized by 
an NFA.



Consequences 2
We ended last session by taking about 20 minutes to prove that the 
class of regular languages was closed under union
◦ Let's do that again, a lot faster

◦ After that, we'll prove that it's closed under concatenation and star closure

(Board work: Theorems 1.45, 1.47, 1.49)



Next Time:
Regular Expressions


