Lecture 1

COT4210 DISCRETE STRUCTURES

DR. MATTHEW B. GERBER

5/19/2016

PORTIONS FROM SIPSER, *INTRODUCTION TO THE THEORY OF* COMPUTATION, 3RD ED., 2013

Consider an Automatic Entry Door

Consider an Automatic Entry Door

- When do we open and close the door?
- Four possible inputs: Outside, Inside, Both and Neither
- We open the door at Outside (only)
- We *close* the door at Neither
- Otherwise the door stays right where it is

States and Transitions

	Neither	Outside	Inside	Both
Closed	Closed	Open	Closed	Closed
Open	Closed	Open	Open	Open

We can think of the door in terms of:

- Its states: Open and Closed
- Its *transitions*: When it opens and closes

Two concise ways to depict these

- A state transition table
- A state diagram
- Either may be better for a given machine

We call logical constructs that we think of in these terms *automata*, or *machines*

- Let's make this less fuzzy
- First, let's remember strings

Review: Strings

- An alphabet is a non-empty, finite set of symbols
- A string over an alphabet is a finite sequence of symbols from that alphabet
- Strings have *length*, like any sequence; the empty string ε is the string with length 0
- A *language* is a set of strings over a given alphabet
- Do not confound the empty language with the empty string

Given strings *S*, *T*, *U* and *V*, we write:

- S_i to denote the *i*th symbol in *S*
- ST to denote the concatenation of S and T
- *S^R* to denote the *reverse* of *S*
- ...and we say:
- S is a substring of V if $\exists T, U \ni TSU = V$
 - ...and a proper substring if $S \neq V$
- S is a *prefix* of V if $\exists T \ni ST = V$
 - ...and a proper prefix if $S \neq V$
- S is a suffix of V if $\exists T \ni TS = V$
 - ...and a *proper suffix* if $S \neq V$

Another Machine

This machine can read strings over the binary alphabet

- The incoming arrow on the left means q₁ is the **starting** state
- The double circle around q₂ means it is an **accepting** state
- This kind of machine, given any string over its alphabet, either accepts or rejects it
- So what strings will this machine accept?

Definition: Deterministic Finite Automata

A **deterministic finite automaton** is a 5-tuple ($Q, \Sigma, \delta, q_0, F$) that consists of:

- *Q* A finite set of *states*
- Σ An alphabet
- $\delta: Q \times \Sigma \to Q$ A transition function
- $q_0 \in Q$ A start state
- $F \subseteq Q$ A set of *accept* (or *final*) states

Example 1 (1.6)

•
$$Q = \{q_1, q_2, q_3\}$$

• $\Sigma = \{0, 1\}$
• δ :
• 0
 q_1
 q_1
 q_2
 q_2
 q_3
 q_2
 q_3
 q_2
 q_2
 q_3
 q_3
 q_2
 q_3
 q_3
 q_2
 q_3
 q_3
 q_2
 q_3
 q_3

Examples 2 and 3 (1.7, 1.9)

Example 4 (1.11)

Definition: Acceptance

Let $M = (Q, \Sigma, \delta, q_0, F)$ and $w = w_1 w_2 \dots w_n$ be a string of length *n* over Σ .

M accepts *w* if there exists a sequence of states in $Q r_0, r_1, ..., r_n$ so that:

1.
$$r_0 = q_0$$

2. For *i* from 0 to
$$n - 1$$
, $\delta(r_i, w_{i+1}) = r_{i+1}$

$$3. \quad r_n \in F$$

Definition: Acceptance (Computation)

Let $M = (Q, \Sigma, \delta, q_0, F)$ and $w = w_1 w_2 \dots w_n$ be a string of length *n* over Σ .

M accepts *w* if there exists a sequence of states in $Q r_0, r_1, ..., r_n$ so that:

1.
$$r_0 = q_0$$

2. For *i* from 0 to
$$n - 1$$
, $\delta(r_i, w_{i+1}) = r_{i+1}$

$$3. \quad r_n \in F$$

Definition: Recognition

A machine *M* recognizes language *A* if $A = \{w \mid M \text{ accepts } w\}$.

Definition: Regular Language

A language is **regular** if and only if it can be recognized by a DFA.

Designing Finite Automata (pp. 41-44)

(board work)

The Regular Operations

Let A and B be languages. We define union, concatenation and star (or Kleene Closure) as:

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$
$$A \circ B = \{xy \mid x \in A \text{ and } y \in B\}$$
$$A^* = \{x_1 x_2 \dots x_k \mid k \ge 0 \text{ and } each x_i \in A\}$$

Regular Languages: Union Closure

We want to prove that the class of regular languages is **closed** under the regular operations – that performing those operations on regular languages results in regular languages.

Let's start with union – and for that, let's go to the board...

Next Time: Nondeterminism