Lecture 1

COT4210 DISCRETE STRUCTURES
DR. MATTHEW B. GERBER
5/19/2016
PORTIONS FROM SIPSER, INTRODUCTION TO THE THEORY OF COMPUTATION, $3^{\text {RD ED., } 2013}$

Consider an Automatic Entry Door

- When do we open and close the door?

Consider an Automatic Entry Door

- When do we open and close the door?
- Four possible inputs: Outside, Inside, Both and Neither
- We open the door at Outside (only)
- We close the door at Neither
- Otherwise the door stays right where it is

States and Transitions

	Neither	Outside	Inside	Both
Closed	Closed	Open	Closed	Closed
Open	Closed	Open	Open	Open

We can think of the door in terms of:

- Its states: Open and Closed
- Its transitions: When it opens and closes

Two concise ways to depict these

- A state transition table
- A state diagram
- Either may be better for a given machine

We call logical constructs that we think
of in these terms automata, or machines

- Let's make this less fuzzy
- First, let's remember strings

Review: Strings

- An alphabet is a non-empty, finite set of symbols
- A string over an alphabet is a finite sequence of symbols from that alphabet
- Strings have length, like any sequence; the empty string ε is the string with length 0
- A language is a set of strings over a given alphabet
- Do not confound the empty language with the empty string

Given strings S, T, U and V, we write:

- S_{i} to denote the $i^{\text {th }}$ symbol in S
- $S T$ to denote the concatenation of S and T
- S^{R} to denote the reverse of S
...and we say:
- S is a substring of V if $\exists T, U \ni T S U=V$
- ...and a proper substring if $S \neq V$
- S is a prefix of V if $\exists T \ni S T=V$
- ...and a proper prefix if $S \neq V$
- S is a suffix of V if $\exists T \ni T S=V$
- ...and a proper suffix if $S \neq V$

Another Machine

This machine can read strings over the binary alphabet
\circ The incoming arrow on the left means q_{1} is the starting state

- The double circle around q_{2} means it is an accepting state
- This kind of machine, given any string over its alphabet, either accepts or rejects it
- So what strings will this machine accept?

Definition: Deterministic Finite Automata

A deterministic finite automaton is a 5-tuple ($\left.Q, \Sigma, \delta, q_{0}, F\right)$ that consists of:

- Q

A finite set of states
$\circ \Sigma$
An alphabet

- $\delta: Q \times \Sigma \rightarrow Q \quad$ A transition function
${ }^{\circ} q_{0} \in Q \quad$ A start state
${ }^{\circ} F \subseteq Q$
A set of accept (or final) states

Example 1 (1.6)

- $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$
- $\Sigma=\{0,1\}$
$\circ \delta$:

| | 0 | 1 |
| :--- | :--- | :--- | :--- |
| q_{1} | q_{1} | q_{2} |
| q_{2} | q_{3} | q_{2} |
| q_{3} | q_{2} | q_{2} |

${ }^{\circ} q_{1}$ (start state)

- $F=\left\{q_{2}\right\}$

Examples 2 and 3 (1.7, 1.9)

Example 4 (1.11)

Definition: Acceptance

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ and $w=w_{1} w_{2} \ldots w_{n}$ be a string of length n over Σ.
M accepts w if there exists a sequence of states in $Q r_{0}, r_{1}, \ldots, r_{n}$ so that:

1. $r_{0}=q_{0}$
2. For i from 0 to $n-1, \delta\left(r_{i}, w_{i+1}\right)=r_{i+1}$
3. $r_{n} \in F$

Definition: Acceptance (Computation)

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ and $w=w_{1} w_{2} \ldots w_{n}$ be a string of length n over Σ.
M accepts w if there exists a sequence of states in $Q r_{0}, r_{1}, \ldots, r_{n}$ so that:

1. $r_{0}=q_{0}$
2. For i from 0 to $n-1, \delta\left(r_{i}, w_{i+1}\right)=r_{i+1}$
3. $r_{n} \in F$

Definition: Recognition

A machine M recognizes language A if $A=\{w \mid M$ accepts $w\}$.

Definition: Regular Language

A language is regular if and only if it can be recognized by a DFA.

Designing Finite Automata (pp. 41-44)
(board work)

The Regular Operations

Let A and B be languages. We define union, concatenation and star (or Kleene Closure) as:

$$
\begin{aligned}
& A \cup B=\{x \mid x \in A \text { or } x \in B\} \\
& A \circ B=\{x y \mid x \in A \text { and } y \in B\} \\
& A^{*}=\left\{x_{1} x_{2} \ldots x_{k} \mid k \geq 0 \text { and each } x_{i} \in A\right\}
\end{aligned}
$$

Regular Languages: Union Closure

We want to prove that the class of regular languages is closed under the regular operations - that performing those operations on regular languages results in regular languages.
Let's start with union - and for that, let's go to the board...

Next Time:
Nondeterminism

