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Consider an Automatic Entry Door
◦ When do we open and close 

the door?
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Consider an Automatic Entry Door
◦ When do we open and close 

the door?

◦ Four possible inputs: Outside, 
Inside, Both and Neither

◦ We open the door at Outside 
(only)

◦ We close the door at Neither

◦ Otherwise the door stays right 
where it is
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States and Transitions
Neither Outside Inside Both

Closed Closed Open Closed Closed

Open Closed Open Open Open

We can think of the door in terms of:
◦ Its states: Open and Closed

◦ Its transitions: When it opens and closes

Two concise ways to depict these
◦ A state transition table

◦ A state diagram

◦ Either may be better for a given machine

We call logical constructs that we think 
of in these terms automata, or 
machines
◦ Let’s make this less fuzzy

◦ First, let’s remember strings
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Review: Strings
◦ An alphabet is a non-empty, finite 

set of symbols

◦ A string over an alphabet is a finite 
sequence of symbols from that 
alphabet

◦ Strings have length, like any 
sequence; the empty string  is the 
string with length 0

◦ A language is a set of strings over a 
given alphabet

◦ Do not confound the empty 
language with the empty string

Given strings S, T, U and V, we write:
◦ Si to denote the ith symbol in S

◦ ST to denote the concatenation of S and T

◦ SR to denote the reverse of S

…and we say:
◦ S is a substring of V if  T, U  TSU = V

◦ …and a proper substring if S  V

◦ S is a prefix of V if  T  ST = V
◦ …and a proper prefix if S  V

◦ S is a suffix of V if  T  TS = V
◦ …and a proper suffix if S  V



Another Machine
This machine can read strings 
over the binary alphabet
◦ The incoming arrow on the left 

means q1 is the starting state

◦ The double circle around q2 means it 
is an accepting state

◦ This kind of machine, given any 
string over its alphabet, either 
accepts or rejects it

◦ So what strings will this machine 
accept?

q1 q3q2

0 1 0

1 0, 1



Definition:
Deterministic Finite Automata
A deterministic finite automaton is a 5-tuple (Q, , , q0, F) 
that consists of:
◦ Q A finite set of states

◦ An alphabet

◦ δ: 𝑄 × Σ → 𝑄 A transition function

◦ q0  Q A start state

◦ F  Q A set of accept (or final) states



Example 1 (1.6)
◦ Q = {q1, q2, q3}

◦ = {0, 1}

◦ δ:

◦ q1 (start state)

◦ F = {q2}

q1 q3q2

0 1 0

1 0, 1

0 1

q1 q1 q2

q2 q3 q2

q3 q2 q2



Examples 2 and 3 (1.7, 1.9)

q1 q2
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Example 4 (1.11)

r2q2

q1 r1

sa b

a

aa

a

b

b b
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Definition: Acceptance
Let M = (Q, , , q0, F) and w = w1w2…wn be a string of length n over 
.

M accepts w if there exists a sequence of states in Q r0, r1, …, rn so 
that:

1. r0 = q0

2. For i from 0 to n – 1, (ri, wi+1) = ri+1

3. rn  F



Definition: Acceptance (Computation)
Let M = (Q, , , q0, F) and w = w1w2…wn be a string of length n over 
.

M accepts w if there exists a sequence of states in Q r0, r1, …, rn so 
that:

1. r0 = q0

2. For i from 0 to n – 1, (ri, wi+1) = ri+1

3. rn  F



Definition: Recognition

A machine M recognizes language A if A = {w | M accepts w}.



Definition: Regular Language

A language is regular if and only if it can be recognized by a DFA.



Designing Finite Automata (pp. 41-44)

(board work)



The Regular Operations
Let A and B be languages.  We define union, concatenation and star (or Kleene Closure) as:

𝐴 ∪ 𝐵 = 𝑥 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵

𝐴 ∘ 𝐵 = 𝑥𝑦 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵

𝐴∗ = 𝑥1𝑥2…𝑥𝑘 𝑘 ≥ 0 and each 𝑥𝑖 ∈ 𝐴}



Regular Languages: Union Closure

We want to prove that the class of regular 
languages is closed under the regular 
operations – that performing those operations 
on regular languages results in regular 
languages.

Let’s start with union – and for that, let’s go to 
the board…



Next Time:
Nondeterminism


