Introduction and Review

COT4210 DISCRETE STRUCTURES

DR. MATTHEW B. GERBER

5/17/2016

PORTIONS FROM SIPSER, *INTRODUCTION TO THE THEORY OF* COMPUTATION, 3RD ED., 2013

Overview (0.1)

What is *computability*?

- What are the fundamental capabilities and limitations of computers?
- Why are some problems harder than others?
 - Sorting is pretty easy...
 - ...but scheduling is very hard
- Why are some problems flat-out impossible?
 - The halting problem
 - Determining the truth or falsehood of a statement
- What are *automata*?
 - Why are they important?
 - More importantly, why are they *useful*?

Review of Mathematical Essentials

SECTION 0.2

Sets

Given elements x and y, and sets A and B:

Containment

- $x \in A A$ contains x.
- $x \notin A A$ doesn't contain x.
- $A = \{x, y\}$ A contains only x and y.
- $A = \{x \mid x \in \mathbb{N}, x > 50\}$ A contains the natural numbers higher than 50.

Operators

- $A \cup B$ union
- $A \cap B$ intersection
- \overline{A} complement

Subsets

- $A \subseteq B A$ is a subset of B.
 - $\forall x \in A, x \in B$
- $A \subset B A$ is a proper subset of B.
 - $\forall x \in A, x \in B \text{ and } A \neq B.$
- The *power set* of A is the set of all subsets of A.

Common sets

- Z the set of all integers
- N the set of all natural numbers
- $\circ arnothing$ or ϕ the empty set

Sequences and Functions

Sequences

- Like ordered sets
- Finite sequences are called *k*-tuples
- 2-tuples are also known as ordered pairs

Cartesian products of sets:

- $A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$
- Can take it of any number of sets
- $A \times A = A^2$, $A \times A \times A = A^3$, etc.

Functions

- Map a *domain* onto a *range*
- *n*-ary functions take *n* arguments
- $f: D \rightarrow R$
 - *abs*: $Z \rightarrow Z$
 - add: $Z \times Z \rightarrow Z$

A function is...

- One-to-one (an injection) if it maps every element of the range from at most one element of the domain
- Onto (a surjection) if it maps every element of the range from at least one element of the domain
- A *bijection* if every element of the range is mapped by exactly one element of the domain

Relations

A *predicate* or *property* is a function with range {TRUE, FALSE}

A property with a domain of *n*-tuples *Aⁿ* is an *n*-ary relation

Binary relations are common, and like binary functions, we use infix notations for them

Let *R* be a binary relation on A^2 . *R* is:

- *Reflexive* if $\forall x \in a, x R x$
- Symmetric if $x R y \rightarrow y R x$
- Transitive if (x R y, y R z) $\rightarrow x R z$

• An *equivalence* relation if it is reflexive, symmetric and transitive

Graphs: Undirected Graphs

An undirected *graph* is a collection of *nodes* (or *vertices*) and *edges* that connect them

- The *degree* of a node is the number of edges that connect to that node
- Edges are unique you can't have two edges between the same pair of nodes
- Nodes can have *self-loops*
- Edges can also be labeled

Graphs: Subgraphs

An undirected *graph* is a collection of *nodes* (or *vertices*) and *edges* that connect them

- The *degree* of a node is the number of edges that connect to that node
- Edges are unique you can't have two edges between the same pair of nodes
- Nodes can have *self-loops*
- Edges can also be labeled

A graph G is a *subgraph* of graph H if it has a subset of H's nodes and all the related edges

Graphs: Paths

A *path* is a sequence of nodes connected by edges

- A simple path doesn't repeat any nodes
- A graph is *connected* if every two nodes have a path

Graphs: Cycles

A *path* is a sequence of nodes connected by edges

- A simple path doesn't repeat any nodes
- A graph is *connected* if every two nodes have a path
- A path is a cycle if it starts and ends on the same node
- A *simple cycle* contains at least three nodes and repeats only the first/last

Graphs: Trees

A *path* is a sequence of nodes connected by edges

- A simple path doesn't repeat any nodes
- A graph is *connected* if every two nodes have a path
- A path is a cycle if it starts and ends on the same node
- A simple cycle contains at least three nodes and repeats only the first/last
- A graph is a *tree* if it is connected and has no simple cycles

Graphs: Directed Graphs

A *directed graph* is a graph with arrows instead of lines

- Edges between nodes *i* and *j* are *ordered* pairs (*i*, *j*)
- *Directed paths* are paths that follow the direction of the edges

Graphs: Directed Graphs

A *directed graph* is a graph with arrows instead of lines

- Edges between nodes *i* and *j* are *ordered* pairs (*i*, *j*)
- Directed paths are paths that follow the direction of the edges
- A directed graph is *strongly connected* if every pair of nodes has a directed path

Directed Graphs and Binary Relations

Consider the relation "beats"

Proofs

SECTIONS 0.3-0.4

Proofs and Friends

All of these *should* be clear and concise; they *must* be precise

- Definitions describe the mathematical objects and ideas we want to work with
- Statements or assertions are things we say about mathematics; they can be true or false
- Proofs are unassailable logical demonstrations that statements are true
- Theorems are statements that have been proven true
- Lemmas are theorems that are only any good for proving other theorems
- Corollaries are follow-on theorems that are easy to prove once you prove their parent theorems

How To Prove Something

- 1. Understand the statement
- 2. Convince *yourself* of whether it is true or false
- 3. Work out its implications until you have a general sense of *why* it is true or false
 - "Warm fuzzy feelings" don't prove anything but they can help you get *ready* to prove something
- 4. Break down any sub-cases you will need to prove
 - After this you may need to cycle back to step 2
- 5. Get started

Formats of Proofs

•The book uses a highly narrative proof format

There are several other valid ones
Let's look at two

Quasi-Narrative Format Prove $\overline{A \cup B} = \overline{A} \cap \overline{B}$

We can show this by showing $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$ and $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$.

Suppose $x \in A \cup B$.

Then by definition of complement, $x \notin A \cup B$. Then by definition of union, $x \notin A$ and $x \notin B$. Then by def. of complement, $x \in \overline{A}$ and $x \in \overline{B}$. Then by definition of intersection, $x \in \overline{A} \cap \overline{B}$. We have shown that if $x \in \overline{A \cup B}, x \in \overline{A} \cap \overline{B}$. Hence by definition of subset, $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$.

Now suppose $x \in \overline{A} \cap \overline{B}$.

Then by def. of intersection, $x \in \overline{A}$ and $x \in \overline{B}$. Then by def. of complement, $x \notin A$ and $x \notin B$. Then by definition of union, $x \notin A \cup B$. Then by definition of complement, $x \in \overline{A \cup B}$. We have shown that if $x \in \overline{A} \cap \overline{B}$, $x \in \overline{A \cup B}$. Hence by definition of subset, $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$.

We have shown that $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$ and $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$.

Hence by set equality, $\overline{A \cup B} = \overline{A} \cap \overline{B}$, QED.

Two-Column Format Prove $\overline{A \cup B} = \overline{A} \cap \overline{B}$

T	$SISAOB \subseteq A \cap B, A \cap B \subseteq A \cup B$	set equality
2 3 4 5 6 7	Let $x \in \overline{A \cup B}$ $\therefore x \notin A \cup B$ $\therefore x \in \overline{A}, x \in \overline{B}$ $\therefore x \in \overline{A \cap B}$ $x \in \overline{A \cup B} \Rightarrow x \in \overline{A \cap B}$ $\therefore \overline{A \cup B} \subseteq \overline{A \cap B}$	complement union intersection 2-5 subset
8 9 10 11 12 13 14	Let $x \in \overline{A} \cap \overline{B}$ $\therefore x \in \overline{A}, x \in \overline{B}$ $\therefore x \notin A, x \notin B$ $\therefore x \notin A \cup B$ $\therefore x \notin \overline{A \cup B}$ $\therefore x \in \overline{A \cup B}$ $x \in \overline{A \cap B} \Rightarrow x \in \overline{A \cup B}$ $\therefore \overline{A \cap B} \subseteq \overline{A \cup B}$	intersection complement union complement 9-13 subset
15 16	$\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}, \overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$ $\therefore \overline{A \cup B} = \overline{A} \cap \overline{B}$	7, 14 set equality

 $CTC \overline{A \sqcup D} \subset \overline{A} \cap \overline{D} \overline{A} \cap \overline{D} \subset \overline{A \sqcup D}$

1

Types of Proofs

Direct Argument

• What we just did

Construction

 Prove something exists by showing how to make it

Contradiction

 Prove something is true by showing it can't be false

Weak Induction

- Show that a statement is true for the case of 0
- Show that *if* it's true for the case of *i*, it's true for the case of *i* + 1

Strong Induction

- Show that it's true for the case of 0
- Show that *if* it's true for all of the cases
 i, it's true for the case of *i*

Next Time: Finite Automata