
4/7/19 © UCF EECS 1

Who, What, Where and When
• Instructor: Charles Hughes; 

HEC-247C
charles.hughes@ucf.edu
(e-mail is a good way to get me)
Use Subject: COT6410 
Office Hours: TR 3:15PM-4:30PM

• Web Page: http://www.cs.ucf.edu/courses/cot6410/Spring2019
• Meetings: TR 1:30PM-2:45PM, HEC-103; 

28 periods, each 75 minutes long. 
Final Exam (Tuesday, April 30 from 1:00PM to 3:50PM) is 
separate from class meetings 

• GTA: Harish Raviprakash; harishr@knights.ucf.edu
Use Subject: COT6410 
Office Hours: MW 1:30PM-3:00PM; Room: HEC-308
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Text Material
• References: 
• Cooper, Computability Theory 2nd Ed., Chapman-Hall/CRC Mathematics Series, 2003.
• Garey&Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. 

Freeman & Co., 1979.
• Davis, Sigal&Weyuker, Computability, Complexity and Languages 2nd Ed., Acad. Press (Morgan 

Kaufmann), 1994.
• Papadimitriou & Lewis, Elements of the Theory of Computation, Prentice-Hall, 1997.
• Bernard Moret, The Theory of Computation, Addison-Wesley, 1998.
• Hopcroft, Motwani&Ullman, Intro to Automata Theory, Languages and Computation 3rd Ed., Prentice-

Hall, 2006.
• Oded Goldreich, Computational Complexity: A Conceptual Approach, Cambridge University Press, 2008.
• Draft available at http://www.wisdom.weizmann.ac.il/~/oded/cc-drafts.html
• Oded Goldreich, P, NP, and NP-Completeness: The Basics of Complexity Theory, Cambridge University 

Press, 2010.
• Draft available at http://www.wisdom.weizmann.ac.il/~/oded/bc-drafts.html
• Arora&Barak, Computational Complexity: A Modern Approach, Cambridge University Press, 2009.
• Draft available at http://www.cs.princeton.edu/theory/complexity/
• Sipser, Introduction to the Theory of Computation 3rd Ed., Cengage Learning, 2013.
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Goals of Course
• Introduce Computability and Complexity Theory, including

– Review background on automata and formal languages

– Basic notions in theory of computation
• Algorithms and effective procedures

• Decision and optimization problems

• Decision problems have yes/no answer to each instance

– Limits of computation
• Turing Machines and other equivalent models

• Determinism and non-determinism

• Undecidable problems

• The technique of reducibility; The ubiquity of undecidability (Rice’s Theorem)

• The notions of semi-decidable (re) and of co-re sets

– Complexity theory
• Order notation (quick review)

• Polynomial reducibility

• Time complexity, the sets P, NP, co-NP, NP-complete, NP-hard, etc., and the question 
does P=NP? Sets in NP and NP-Complete. 

• Gadgets and other reduction techniques
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Expected Outcomes
• You will gain a solid understanding of various types of 

computational models and their relations to one another.
• You will have a strong sense of the limits that are 

imposed by the very nature of computation, and the 
ubiquity of unsolvable problems throughout CS. 

• You will understand the notion of computational 
complexity and especially of the classes of problems 
known as P, NP, co-NP, NP-complete and NP-Hard.

• You will (hopefully) come away with stronger formal 
proof skills and a better appreciation of the importance of 
discrete mathematics to all aspects of CS. 
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Keeping Up
• I expect you to visit the course web site regularly 

(preferably daily) to see if changes have been made or 

material has been added. 

• Attendance is preferred, although I do not take roll. 

• I do, however, ask lots of questions in class and give lots 

of hints about the kinds of questions I will ask on exams. 

It would be a shame to miss the hints, or to fail to 

impress me with your insightful in-class answers.

• You are responsible for all material covered in class, 

whether in the notes or not.
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Rules to Abide By
• Do Your Own Work

– When you turn in an assignment, you are implicitly telling me 
that these are the fruits of your labor. Do not copy anyone else's 
homework or let anyone else copy yours. In contrast, working 
together to understand lecture material and solutions to 
problems not posed as assignments is encouraged.

• Late Assignments
– I will accept no late assignments, except under very unusual 

conditions, and those exceptions must be arranged with me in 
advance unless associated with some tragic event.

• Exams
– No communication during exams, except with me or a 

designated proctor, will be tolerated. A single offense will lead to 
termination of your participation in the class, and the assignment 
of a failing grade.
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Grading
• Grading of Assignments and Exams

– I will endeavor to return each exam within a week of 
its taking place and each assignment within a week of 
its due date.

• Exam Weights
– The weights of exams will be adjusted to your 

personal benefits, as I weigh the exam you do well in 
more than one in which you do less well.
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Important Dates
• Midterm – Tues., March 5 (tentative)

• Spring Break – March11-16

• Withdraw Deadline – Wednesday, March 20

• Final – Tues., April 30, 1:00PM–3:50PM
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Evaluation (tentative)
• Mid Term – 125 points ; Final – 200 points 
• Assignments – 75 points; 

Paper and Presentation – 75 points
• Extra – 25 points used to increase weight of 

exams or maybe paper/presentation, always to 
your benefit

• Total Available: 500 points
• Grading will be  A >= 90%, B+ >= 85%, 

B >= 80%, C+ >= 75%, C >= 70%, 
D >= 50%, F < 50% (Minuses might be used)
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Decision Problems
• A set of input data items (input "instances” or domain)

• Each input data item defines a question with an answer 

Yes/No or True/False or 1/0.

• A decision problem can be viewed as a relation between 

its domain and its binary range

• A decision problem can also be viewed as a partition of 

the input domain into those that give rise to true 

instances and those that give rise to false instances.

• In each case, we seek an algorithmic solution (in the 

form of a predicate) or a proof that none exists

• When an algorithmic solution exists, we seek an efficient 

algorithm, or proofs of the problem’s inherent complexity
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S
Subset of interest,

maybe with ordered 
elements

UNIVERSE OF DISCOURSE
USUALLY STRINGS OR NATURAL NUMBERS

For some element, 
x, is x in S? 

DECISION PROBLEMS

Example 1: S is set of Primes and x is a natural number; is x in S (is x a prime)?
Example 2: S is an undirected graph (pairs for neighbors); is S 3-colorable?
Example 3: S is a program in C; is S syntactically correct?
Example 4: S is program in C; does S halt on all input?
Example 5: S is a set of strings; is the language S Regular, Context-Free, … ?

Question: How many 
subsets of Natural 
Numbers are there?



Recognizer and Generators
1. When we discuss languages and classes of languages, we discuss 

recognizers and generators
2. A recognizer for a specific language is a program or computational model 

that differentiates members from non-members of the given language
3. A portion of the job of a compiler is to check to see if an input is a legitimate 

member of some specific programming language – we refer to this as a 
syntactic recognizer

4. A generator for a specific language is a program that generates all and only 
members of the given language

5. In general, it is not individual languages that interest us, but rather classes 
of languages that are definable by some specific class of recognizers or 
generators

6. One type of recognizer is called an automata and there are multiple classes 
of automata

7. One type of generator is called a grammar and there are multiple classes of 
grammars

8. Our first journey will be a review of automata and grammars 
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Alphabets and Strings
• DEFINITION 1.  An alphabet S is a finite, non-empty set 

of abstract symbols.
• DEFINITION 2. S*, the set of all strings over the 

alphabet, S, is given inductively as follows.
– Basis:  l Î S* ( the null string is denoted by l, it is the string of 

length 0, that is |l| = 0) [text uses e but I avoid that as hate 
saying e Î A; it’s really confusing when manually written]
"a Î S, a Î S* (the members of S are strings of length 1, |a| = 1)

– Induction rule:  If  x Î S*, and a Î S, then  a×x Î S* and x×a Î S*. 
Furthermore, l×x = x×l = x, and |a×x| = |x×a| = 1+ |x|.

– NOTE: �a×x� denotes �a concatenated to x� and is formed by 
appending the symbol a to the left end of x.  Similarly, x×a, 
denotes appending a to the right end of x.  In either case, if x is 
the null string (l), then the resultant string is �a�.

– We could have skipped saying "a Î S, a Î S*, as this is covered 
by the induction step.

4/7/19 13© UCF EECS



Languages
• DEFINITION 3.  Let S be an alphabet. A language over S is a subset, L, of 
S*.

• Example.  Languages over the alphabet S = {a, b}.
– Ø (the empty set) is a language over S
– S* (the universal set) is a language over S
– {a, bb, aba } (a finite subset of S*) is a language over S.

– { abnam | n = m2, n, m  ³ 0 } (infinite subset) is a language over S.

• DEFINITION 4.  Let L and M be two languages over S.  Then the
concatenation of L with M, denoted L×M is the set,
L×M = { x×y | x Î L and y Î M }
The concatenation of arbitrary strings x and y is defined inductively as 
follows. 
Basis:  When |x| £ 1 or |y| £ 1, then x×y is defined as in Definition 2. 
Inductive rule: when |x| > 1 and |y| > 1, then x = x’ × a for some a Î S and x� Î S*, 
where |x�| = |x|-1.  Then x×y = x’×(a×y).
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UNIVERSE OF LANGUAGES

Non-RE

RE = Semi-Dec = Phrase-Structured

Recursive = Decidable

Context-Sensitive

Context-Free

DCFL

REGULAR



GRAMMARS

Type 0=Phrase-Structured

Type 1=Context-Sensitive

Type 2=Context-Free

LR(k)

Type 3=
Regular = 

Right Linear

Deterministic CFG

REWRITING SYSTEMS



AUTOMATA 
Recognizers that use State & storage
Turing Machines (DTM = NDTM)

LBAs (DLBAs = NDLBAs)

NPDAs

DFAs = 
NDFAs

DPDAs

MODELS OF COMPUTATION

Of these models, only TMs can do general 
computation



What We are Studying
Computability Theory

The study of what 
can/cannot be done 
via purely 
computational means.

Complexity Theory

The study of what 
can/cannot be done 
well via purely 
computational means.
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Graph Coloring
• Instance: A graph G = (V, E) and an integer k.
• Question: Can G be "properly colored" with at most k colors?

• Proper Coloring: a color is assigned to each vertex so that adjacent 
vertices have different colors.

• Suppose we have two instances of this problem (1) is True (Yes) 
and the other (2) is False (No).

• AND, you know (1) is Yes and (2) is No. (Maybe you have a secret 
program that has analyzed the two instance.)
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Checking a “Yes” Answer
• Without showing how your program works (you may not even know), how 

can you convince someone else that instance (1) is, in fact, a Yes instance?

• We can assume the output of the program was an actual coloring of G. Just 
give that to a doubter who can easily check that no adjacent vertices are 
colored the same, and that no more than k colors were used.

• How about the No instance?

• What could the program have given that allows us to quickly "verify" (2) is a 
No  instance?

• No One Knows!!
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Checking a “No” Answer
• The only thing anyone has thought of is to have it test all 

possible ways to k-color the graph – all of which fail, of 
course, if “No” is the correct answer.

• There are an exponential number of things (colorings) to 
check.

• For some problems, there seems to be a big difference 
between verifying Yes and No instances.

• To solve a problem efficiently, we must be able to solve 
both Yes and No instances efficiently.
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Hard and Easy
• True Conjecture: If a problem is easy to solve, then it is 

easy to verify (just solve it and compare).

• Contrapositive: If a problem is hard to verify, then it is 
(probably) hard to solve.

• There is nothing magical about Yes and No instances –
sometimes the Yes instances are hard to verify and No 
instances are easy to verify.

• And, of course, sometimes both are hard to verify.
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Easy Verification
• Are there problems in which both Yes and No instances 

are easy to verify?

• Yes. For example: Search a list L of n values for a key x.
• Question: Is x in the list L?

• Yes and No instances are both easy to verify.

• In fact, the entire problem is easy to solve!!
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Verify vs Solve
• Conjecture: If both Yes and No instances are easy to verify, then the 

problem is easy to solve.

• No one has yet proven this claim, but most researchers believe it to 
be true.

• Note: It is usually relatively easy to prove something is easy – just 
write an algorithm for it and prove it is correct and that it is fast 
(usually,  we mean polynomial).

• But, it is usually very difficult to prove something is hard – we may  
not be clever enough yet. So, you will often see "appears to be 
hard."
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Instances vs Problems
• Each instance has an 'answer.‘

– An instance’s answer is the solution of the 
instance - it is not the solution of the problem.

– A solution of the problem is a computational 
procedure that finds the answer of any 
instance given to it – the procedure must halt 
on all instances – it must be an 'algorithm.'
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Three Classes of Problems
Problems can be classified to be in one of 
three groups (classes):

Undecidable, Exponential, and Polynomial.

Theoretically, all problems belong to exactly 
one of these three classes and our job is often 
to find which one. 
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Why do we Care?
When given a new problem to solve (design an algorithm 
for), if it's undecidable, or even exponential, you will 
waste a lot of time trying to write a polynomial solution 
for it!!

If the problem really is polynomial, it will be worthwhile 
spending some time and effort to find a polynomial 
solution and, better yet, the lowest degree polynomial 
solution.

You should know something about how hard a problem 
is before you try to solve it.
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Procedure (Program)
– A finite set of operations (statements) such that

• Each statement is finitely presented and formed from a 
predetermined finite set of symbols and is constrained by 
some set of language syntax rules.

• The current state of the machine model is finitely 
presentable.

• The semantic rules of the language specify the effects of 
the operations on the machine’s state and the order in 
which these operations are executed. 

• If the procedure (eventually) halts when started on some 
input, it produces the correct answer to this given 
instance of the problem.
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Algorithm
• A procedure that

– Correctly solves any instance of a given 
problem. 

– Completes execution in a finite number of 
steps no matter what input it receives.
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Sample Algorithm/Procedure
{ Example algorithm: 

Linear search of a finite list for a key;
If key is found, answer “Yes”;
If key is not found, answer “No”; }

{ Example procedure: 
Linear search of a finite list for a key;
If key is found, answer “Yes”;
If key is not found, try this strategy again; }

Note: Latter is not unreasonable if the list can be 
increased in size by some properly synchronized 
concurrent thread.
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Procedure vs Algorithm
Looking back at our approaches to “find a key in a finite 
list,” we see that the algorithm always halts and always 
reports the correct answer. In contrast, the procedure 
does not halt in some cases, but never lies. 

What this illustrates is the essential distinction between 
an algorithm and a procedure – algorithms always halt in 
some finite number of steps, whereas procedures may 
run on forever for certain inputs. A particularly silly 
procedure that never lies is a program that never halts 
for any input.
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Notion of Solvable
• A problem is solvable if there exists an algorithm that 

solves it (provides the correct answer for each instance). 
• The fact that a problem is solvable or, equivalently, 

decidable does not mean it is solved. To be solved, 
someone must have actually produced a correct 
algorithm. 

• The distinction between solvable and solved is subtle. 
Solvable is an innate property – an unsolvable problem 
can never become solved, but a solvable one may or 
may not be solved in an individual’s lifetime.
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An Old Solvable Problem
Does there exist a set of positive whole numbers, a, b, 
c and an n>2 such that an+bn = cn?

In 1637, the French mathematician, Pierre de Fermat, claimed that 
the answer to this question is “No”. This was called Fermat’s Last 
Theorem, despite the fact that he never produced a proof of its 
correctness. 
While this problem remained unsolved until Fermat’s claim was 
verified in 1995 by Andrew Wiles, the problem was always solvable, 
since it had just one question, so the solution was either “Yes” or 
“No”, and an algorithm exists for each of these candidate solutions.
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Research Territory
Decidable – vs – Undecidable

(area of Computability Theory)

Exponential – vs – polynomial   
(area of Computational Complexity)

For “easy” problems, we want to 
determine lower and upper bounds on 
complexity and develop best Algorithms

(area of Algorithm Design/Analysis)
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A CS Grand Challenge
Does P=NP?

There are many equivalent ways to describe P and NP. For now, we 
will use the following. 
P is the set of decision problems (those whose instances have 
“Yes”/ “No” answers) that can be solved in polynomial time on a 
deterministic computer (no concurrency or guesses allowed). 
NP is the set of decision problems that can be solved in polynomial 
time on a non-deterministic computer (equivalently one that  can 
spawn an unbounded number of parallel threads; equivalently one 
that can be verified in polynomial time on a deterministic computer). 
Again, as “Does P=NP?” has just one question, it is solvable, we 
just don’t yet know which solution, “Yes” or “No”, is the correct one.
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Computability vs Complexity
Computability focuses on the distinction between 
solvable and unsolvable problems, providing tools that 
may be used to identify unsolvable problems – ones that 
can never be solved by mechanical (computational) 
means. Surprisingly, unsolvable problems are 
everywhere as you will see. 
In contrast, complexity theory focuses on how hard it is 
to solve problems that are known to be solvable. Hard 
solvable problems abound in the real world. We will 
address computability theory for the first part of this 
course, returning to complexity theory later in the 
semester.
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REVIEW
REGULAR LANGUAGES
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Regular Languages # 1
• Finite state automata and Regular languages 

– Definitions: Deterministic and Non-Deterministic 
– Notions of state transitions, acceptance and language accepted 
– State diagrams and state tables 
– Construction from descriptions of languages 
– Conversion of NFA to DFA

• l-Closure
• Subset construction
• Reachable states 
• Reaching states 
• Minimizing DFAs (distinguishable states)
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Regular Languages # 2
• Regular expressions and Regular Sets 

– Definition of regular expressions and regular sets 
– Every regular set is a regular language 
– Every regular language is a regular set 

• Ripping states (GNFA) 
• Ri,j

k expressions
– Rij

k+1 = (Rij
k + Rik

k � ( Rkk
k )* � Rkj

k)
– L(A) = +f∈F R1f

n

• Regular equations 
– Uniqueness of solution to R=Q+RP 
– Solving for expressions associated with states
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Regular Languages # 3
• Pumping Lemma 

– Classic non-regular languages {0n 1n | n >= 0} 
– Formal statement and proof of Pumping Lemma for Regular 

Languages 
– Use of Pumping Lemma (Adversarial Nature)

• Minimization (using distinguishable states)
• Myhill-Nerode

– Right Invariant Equivalence Relations (RIER)
– Specific RIER, x RL y ∀z [xz∈L ⇔ yz∈L] is minimal
– Uniqueness of minimum state DFA based on RL

– Use to show languages are no Regular
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Regular Languages # 4
• Grammars 

– Definition of grammar and notions of derivation and 
language 

– Restricted grammars: Regular (right and left linear)
– Why you can’t mix right and left linear and stay in 

Regular domain 
– Relation of regular grammars to finite state automata 
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Regular Languages # 5
• Closures

– Union, Concatenation, Keene star 
– Complement, Exclusive Union, Intersection, Set Difference, 

Reversal
– Substitution, Homomorphism, Quotient, Prefix, Suffix, Substring 
– Max, Min 

• Decidable Properties 
– Membership
– L = Ø
– L = Σ*
– Finiteness / Infiniteness
– Equivalence
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REVIEW
CONTEXT-FREE  & 

CONTEXT-SENSITIVE 
LANGUAGES
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Context-Free #1

• Context free grammars
– Writing grammars for specific languages
– Leftmost and rightmost derivations, 

Parse trees, Ambiguity
– Closure (union, concatenation, reversal, 

substitution, homomorphism)
– Pumping Lemma for CFLs
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Context-Free #2
• Context free grammars

– Chomsky Normal Form
• Remove lambda rules
• Remove chain rules
• Remove non-generating (unproductive) non-

terminals (and rules)
• Remove unreachable non-terminals (and rules)
• Make rhs match CNF constraints

– CKY algorithm
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Context-Free #3
• Push-down automata

– Various notions of acceptance and their 
equivalence

– Deterministic vs non-deterministic
– Equivalence to CFLs

• CFG to PDA definitely; PDA to CFG, only 
conceptually

– Top-down vs bottom up parsing
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Context-Free #4
• Closure

– Union, concatenation, star
– Substitution
– Intersection with regular
– Quotient with regular, Prefix, Suffix, Substring

• Non-Closure
– Intersection, complement, min, max
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Context-Sensitive
• Context sensitive grammars and LBAs

– Rules for CSG
– Ability to shuttle symbols to preset 

places
– Just basic definition of LBA
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Concrete Model of FSA
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x1 x2 x3 … Xn-1 xn

L is a finite state (regular) language over finite alphabet S 
Each xi is a character in S
w = x1 x2 … xn is a string to be tested for membership in L

• Arrow above represents read head that starts on left.
• q0 ∈ Q (finite state set) is initial state of machine.
• Only action at each step is to change state based on 

character being read and current state. State change is 
determined by a transition function d: Q � S � Q.

• Once state is changed, read head moves right. 
• Machine stops when head passes last input character.
• Machine accepts string as member of L if it ends up in 

a state from Final State set F ⊆ Q.

q0
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Finite State Automata
• A deterministic finite state automaton (DFA) A is defined 

by a 5-tuple 
A = (Q,Σ,δ,q0,F), where
– Q is a finite set of symbols called the states of A
– Σ is a finite set of symbols called the alphabet of A
– δ is a function from Q�Σ into Q (δ: Q�Σ → Q) called 

the transition function of A
– q0∈Q is a unique element of Q called the start state
– F is a subset of Q (F ⊆ Q) called the final states (can 

be empty)
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DFA Transitions
• Given a DFA, A = (Q,Σ,δ,q0,F), we can definition the 

reflexive transitive closure of δ, δ*:Q�Σ* → Q, by
– δ*(q,l) = q where l is the string of length 0

• Note that text uses ∊ rather than l as symbol for string of length zero

– δ*(q,ax) = δ*(δ(q,a),x), where a ∈ Σ and x ∈ Σ*
– Note that this means

δ*(q,a) = δ(q,a), where a ∈ Σ as a = al
• We also define the transitive closure of δ, δ+, by

– δ+(q,w) = δ*(q,w)  when |w|>0 or, equivalently, w ∈ Σ+

• The function δ* describes every step of computation by 
the automaton starting in some state until it runs out of 
characters to read
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Regular Languages and DFAs
• Given a DFA, A = (Q,Σ,δ,q0,F), we can define the 

language accepted by A as those strings that cause it to 
end up in a final state once it has consumed the entire 
string

• Formally, the language accepted by A is
– { w | δ*(q0,w) ∈ F }

• We generally refer to this language as L(A) 
• We define the notion of a Regular Language by saying 

that a language is Regular if and only if it is accepted 
(recognized) by some DFA
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State Diagram
• A finite state automaton can be described by a 

state diagram, where 
– Each state is represented by a node labelled with that 

state, e.g.,    q
– The state state has an arc entering it with no source, 

e.g.,      q0

– Each transition δ(q,a) = s is represented by a directed 
arc from node q to node s that is labelled with the 
letter a, e.g.,     q    a s

– Each final state has an extra circle around its node, 
e.g.,      f
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Sample DFAs # 1, 2
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E O
1

1

0 0

A = ( {E,O}, {0,1}, d, E, {O}), where d is defined by above 
diagram. L(A) = { w | w is a binary string of odd parity }

A

A’ = ( {C,NC,X}, {00,01,10,11}, d’, C, {NC}), where d’ is defined by above 
diagram. L(A’) = { w | w is a pair of binary strings where the bottom string 
is the 2’s complement of the top one, both read least (lsb) to most 
significant bit (msb) }

C NC11

00 01,10

A’
01,10

X

S

00,11
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Sample DFA # 3
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A” = ( {0,1,2}, {0,1}, d”, 0, {2}), where d” is defined by 
above diagram. L(A”) = { w | w is a binary string of length 
at least 1 being read left to right (msb to lsb) that, when 
interpreted as a decimal number divided by 3, has a 
remainder of 2 }

0 1
1

0

A” 2

1

00
01
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State Transition Table
• A finite state automaton can be described by a state 

transition table with |Q| rows and |Σ| columns
• Rows are labelled with state names and columns with 

input letters
• The start state has some indicator, e.g., a greater than 

sign (>q) and each final state has some indicator, e.g., 
an underscore (f)

• The entry in row q, column a, contains δ(q,a)
• In general we will use state diagrams, but transition 

tables are useful in some cases (state minimization)

4/7/19 56© UCF EECS



Sample DFA # 4

4/7/19 57

A’’’ = ( {0%5,1%5,2%5,3%5,4%5}, {0,1}, d’’’, 0, {3%5}), 
where d’’’ is defined by above diagram.
L(A’’) = { w | w is a binary string of length at least 1 being 
read left to right (msb to lsb) that, when interpreted as a 
decimal number divided by 5, has a remainder of 3 }

Really, this is better done as a state diagram, but have put 
this up so you can see the pattern.

0 1
0 % 5 0 % 5 1 % 5
1 % 5 2 % 5 3 % 5
2 % 5 4 % 5 0 % 5
3 % 5 1 % 5 2 % 5
4 % 5 3 % 5 4 % 5

Accept State
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Sample DFA # 5
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This checks a string to see if it’s a legal password. In our case, a legal
password must contain at least one of each of the following: lower case letter, 
upper case letter, number, and special character from the following set 
{!@#$%^&}. No other characters are allowed 

A-Z a-z 0-9 @#$%^&
ð Empty A a 0 @

A A Aa A0 A@
a Aa a a0 a@
0 A0 a0 0 0@
@ A@ a@ 0@ @
Aa Aa Aa Aa0 Aa@
A0 A0 Aa0 A0 A0@
A@ A@ Aa@ A0@ A@
a0 Aa0 a0 a0 a0@
a@ Aa@ a@ a0@ a@
0@ A0@ a0@ 0@ 0@
Aa0 Aa0 Aa0 Aa0 Aa0@
Aa@ Aa@ Aa@ Aa0@ Aa@
A0@ A0@ Aa0@ A0@ A0@
a0@ Aa0@ a0@ a0@ a0@

Aa0@ Aa0@ Aa0@ Aa0@ Aa0@
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DFA Closure
• Regular languages (those recognized by DFAs) are closed 

under complement, union, intersection, difference and 
exclusive or (⊕) and many other set operations

• Let A1 = (Q1,Σ,δ1,q0,F1), A2 = (Q2,Σ,δ2,s0,F2) be arbitrary DFAs
• Σ*-L(A1) is recognized by A1

C = (Q1,Σ,δ1,q0,Q1-F1)
• Define A3 = (Q1�Q2,Σ,δ3,<q0,s0>,F3) where 

δ3(<q,s>,a)= <δ1(q,a),δ2(s,a)>, qÎQ1, sÎQ2, aÎΣ
– L(A1)∪L(A2) is recognized when F3=(F1�Q2)∪(Q1�F2)
– L(A1)∩L(A2) is recognized when F3=F1�F2

– L(A1) - L(A2) is recognized when F3=F1�(Q2-F2)
– L(A1) ⊕ L(A2) is recognized when F3=F1�(Q2-F2)∪(Q1-F1)�F2
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Complement of Regular Sets
• Let A = (Q,Σ,δ,q0,F)
• Simply create new automaton

AC = (Q,Σ,δ,q0,Q-F)
• L(AC) = { w | δ*(q0,w) ∊ Q-F } = 

{ w | δ*(q0,w) ∉ F } = 
{ w | w ∉ L(A) } 

• Again, imagine trying to do this in the context of regular 
expressions

• Choosing the right representation can make a very big 
difference in how easy or hard it is to prove some 
property is true
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Parallelizing DFAs
• Regular sets can be shown closed under many binary operations 

using the notion of parallel machine simulation
• Let A1 = (Q1,Σ,δ1,q0,F1)  and A2 = (Q2,Σ,δ2,s0,F2) where 

Q1∩Q2 = Ø
• B = (Q1�Q2,Σ,δ3,<q0,s0>,F3) where

δ3(<q,s>,a) = < δ1(q,a), δ2(s,a) >
• Union is F3 = F1�Q2 ∪ Q1�F2

• Intersection is F3 = F1�F2
– Can do by combining union and complement

• Difference is F3 = F1�(Q2 – F2) 
– Can do by combining intersection and complement

• Exclusive Or is F3=F1�(Q2-F2)∪(Q1-F1)�F2
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Non-determinism NFA
• A non-deterministic finite state automaton (NFA) A is defined by a 5-tuple 

A = (Q,Σ,δ,q0,F), where

– Q is a finite set of symbols called the states of A

– Σ is a finite set of symbols called the alphabet of A

– δ is a function from Q�Σe into P(Q) = 2Q  ; Note: Σe = (Σ∪{l}) 
(δ: Q� Σe → P(Q)) called the transition function of A; by definition q ∈
δ(q,l)

– q0∈Q is a unique element of Q called the start state

– F is a subset of Q (F ⊆ Q) called the final states

– Note that a state/input (called a discriminant) can lead nowhere new, one place 
or many places in an NFA; moreover, an NFA can jump between states even 
without reading any input symbol

– For simplicity, we often extend the definition of δ: Q� Σe to a variant that 
handles sets of states, where δ: P(Q)� Σe is defined as 
δ(S,a) = ∪q∈S δ(q,a), where a ∈ Σe – if S=Ø, ∪q∈S δ(q,a) =Ø
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NFA Transitions
• Given an NFA, A = (Q,Σ,δ,q0,F), we can define the 

reflexive transitive closure of δ, δ*:P(Q)�Σ* → P(Q), by
– l-Closure(S) = { t | t ∊ δ*(S,l)}, S ∈ P(Q) – extended δ
– δ*(S,l) = l-Closure(S) 
– δ*(S,ax) = δ*(l-Closure(δ(S,a),x)), where a ∈ Σ and x ∈ Σ*

• Note that δ*(S,ax) = ∪q∈S∪p∈l-Closure(δ(q,a)) δ*(p,x), where a ∈ Σ and x ∈ Σ*

• We also define the transitive closure of δ, δ+, by
– δ+(S,w) = δ*(S,w)  when |w|>0 or, equivalently, w ∈ Σ+

• The function δ* describes every “possible” step of 
computation by the non-deterministic automaton starting 
in some state until it runs out of characters to read

4/7/19 63© UCF EECS



NFA Languages
• Given an NFA, A = (Q,Σ,δ,q0,F), we can define the 

language accepted by A as those strings that allow it to 
end up in a final state once it has consumed the entire 
string – here we just mean that there is some accepting 
path

• Formally, the language accepted by A is
– { w | (δ*(l-Closure({q0}),w) ∩ F) ≠ Ø }

• Notice that we accept if there is any set of choices of 
transitions that lead to a final state
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Finite State Diagram
• A non-deterministic finite state automaton can 

be described by a finite state diagram, except
– We now can have transitions labelled with l
– The same letter can appear on multiple arcs from a 

state q to multiple distinct destination states

4/7/19 65© UCF EECS



Equivalence of DFA and NFA
• Clearly every DFA is an NFA except that 

δ(q,a) = s becomes δ(q,a) = {s}, so any 
language accepted by a DFA can be 
accepted by an NFA.

• The challenge is to show every language 
accepted by an NFA is accepted by an 
equivalent DFA. That is, if A is an NFA, 
then we can construct a DFA A’, such that 
L(A’) = L(A).
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Constructing DFA from NFA
• Let A = (Q,Σ,δ,q0,F) be an arbitrary NFA
• Let S be an arbitrary subset of Q.

– Construct the sequence seq(S) to be a sequence that contains 
all elements of S in lexicographical order, using angle brackets 
to . That is, if S={q1, q3, q2} then seq(S)=<q1,q2,q3>. If S=Ø
then seq(S)=<>

• Our goal is to create a DFA, A’, whose state set contains 
seq(S), whenever there is some w such that S=δ*(q0,w)

• To make our life easier, we will act as if the states of A’ 
are sets, knowing that we really are talking about 
corresponding sequences
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l-Closure
• Define the l-Closure of a state q as the set of states one can arrive 

at from q, without reading any additional input.
• Formally l-Closure(q) = { t | t ∊ δ*(q,l) }
• We can extend this to S ∈ P(Q) by

l-Closure(S) = { t | t ∊ δ*(q,l), q ∈ S } = { t | t ∊ l-Closure(q),q ∈ S}
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A B C D E
1 l

0

1

0,1

λ

0

1

A:

State A B C D E

l-closure { A } { B , C } { C } { D, E } { E }
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Details of DFA
• Let A = (Q,Σ,δ,q0,F) be an arbitrary NFA

• In an abstract sense,
A’ = (<P(Q)>,Σ,δ’, <l-Closure({q0})>, F’), 
but we really don’t need so many states (2|Q|) and we 
can iteratively determine those needed by starting at l-
Closure({q0}) and keeping only states reachable from 
here

• Define δ’(<S>,a) = <l-Closure(δ(S,a))> = 
<∪q∈S l-Closure(δ(q,a)) >, where a∈Σ, S ∈ P(Q)

• F’ = {<S> ∈ <P(Q)> | (S ∩ F) ≠ Ø }
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Regular Languages and NFAs
• Showing that every NFA can be simulated by a DFA that 

accepts the same language proves the following
• A language is Regular if and only if it is accepted 

(recognized) by some NFA
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Convert from NFA to DFA
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Lexical Analysis
• Consider distinguishing variable names 

from keywords like IF, THEN, ELSE, etc.
• This really screams for non-determinism
• Non deterministic automata typically have 

fewer states
• However, non-deterministic FSA 

interpretation is not as fast as deterministic
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4/7/19

Practice Problems
Practice
1. Using DFA�s (not any equivalent notation) show that the 

Regular Languages are closed under Min, where 
Min(L) = { w | w Î L, but no proper prefix of w is in L}.. 
This means that w Î Min(L) iff w Î L and for no y≠λ is x 
in L, where w=xy. Said a third way, w is not an extension 
of any element in L.

2. a.) Present a transition diagram for an NFA for the 
language associated with the regular expression 
(1011 + 111 + 101)*.

b.) Use the standard conversion technique (subsets of 
states) to convert the NFA from (a) to an equivalent 
DFA. Be sure to not include unreachable states. 
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4/7/19

Practice DFA/NFA 
1. Present a transition diagram for a DFA that recognizes 

the set of binary strings that, when interpreted as 
entering the DFA most to least significant digit, each 
represents a binary number that is divisible by either 2 or 
3 or both. Thus, 100, 110, 1001 and 1100 are in the 
language, but 01, 101, 111 and 1011 are not.

2. a.) Present a transition diagram with no lambda 
transitions for an NFA associated with the regular 
expression (0111 + 111 + 011)*. 
Your NFA must have no more than four states.
b.) Use the standard conversion technique (subsets of 
states) to convert the NFA from (a) to an equivalent 
DFA. Be sure to not include unreachable states.
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Regular Expressions
• Primitive:

– Φ denotes {}
– λ denotes {λ} 
– a where a is in Σ denotes {a}

• Closure:
– If R and S are regular expressions then so are R � S, R + S and 

R*, where
• R � S denotes RS = { xy | x is in R and y is in S }
• R + S denotes RÈS = { x | x is in R or x is in S }
• R* denotes R*

• Parentheses are used as needed
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Regular Sets =
Regular Languages

• Show every regular expression denotes a 
language recognized by a finite state 
automaton (can do deterministic or non-
deterministic)

• Show every Finite State Automata 
recognizes a language denoted by a 
regular expression
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Every Regular Set is a 
Regular Language

• Primitive:
– Φ denotes {}
– λ denotes {λ} 
– a where a is in Σ denotes {a}

• Closure: (Assume that R’s and S’s states do not overlap)
– R � S start with machine for R, add l transitions from 

every final state of R’s recognizer to start state of S,
making final state of S final states of new machine

– R + S create new start state and add l transitions from new
state to start states of each of R and S, making union 
of R’s and S’s final states the new final states 

– R* add l transitions from each final state of R back to its start
state, keeping original start and final states (gets R+) – FIX?
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λ
aa
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Every Regular Language is a 
Regular Set Using Rij

k

• This is a challenge that can be addressed in multiple ways but 
I like to start with the Rij

k approach. Here’s how it works.
• Let A = (Q,Σ,δ,q1,F) be a DFA, where Q = {q1,q2, … , qn}
• Rij

k = {w | δ*(qi,w) = qj, and no intermediate state visited 
between qi and qj, while reading w, has index > k

• Basis: k=0, Rij
0 = { a | δ(qi,a) = qj } sets are either Φ, λ, or an 

element of Σ or λ + element of Σ, and so are regular sets
• Inductive hypothesis: Assume Rij

m are regular sets for 
0 ≤ m ≤ k

• Inductive step: k+1, Rij
k+1 = (Rij

k + Rik+1
k � ( Rk+1k+1

k )* � Rk+1j
k)

• L(A) = +f∈F R1f
n
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Convert to RE
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q2 q3q1

0

11

0, 
1

0 1
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q2 q3q1
0

11

0, 
1

0 1

• R110= l R120= 0 R130= f
• R210= 0 R220= l + 1 R230= 0 + 1
• R310= f R320= 1 R330= l + 1

• R111= l R121= 0 R131= f
• R211= 0 R221= l + 1 + 00 R231= 0 + 1
• R311 = f R321= 1 R331= l + 1

• R112= l + 0(1+00)*0 R122= 0(1+00)* R132= 0(1+00)*(0+1)
• R212= (1+00)*0 R222= (1+00)* R232= (1+00)*(0+1)
• R312= 1(1+00)*0 R322= 1(1+00)* R332= l+1+1(1+00)*(0+1)

• L = R12
3= 

0(1+00)* + 0(1+00)*(0+1) (1+1(1+00)*(0+1))* 1(1+00)*
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State Ripping Concept
• This is similar to generalized automata approach but with fewer arcs 

than text. It actually gets some of its motivation from Rij
k approach 

as well
• Add a new start state and add a l–transition to existing start state
• Add a new final state qf and insert l–transitions from all existing final 

states to the new one; make the old final states non-final
• Leaving the start and final states, successively pick states to remove
• For each state to be removed, change the arcs of every pair of 

externally entering and exiting arcs to reflect the regular expression 
that describes all strings that could result is such a double transition; 
be sure to account for loops in the state being removed. Also, or (+) 
together expressions that have the same start and end nodes

• When have just start and final, the regular expression that leads 
from start to final describes the associated regular set
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State Ripping Details
• Let B be the node to be removed
• Let e1 be the regular expression on the arc from some node A to some 

node B (A≠B); e2 be the expression from B back to B (or l if there is no 
recursive arc); e3 be the expression on the arc from B to some other node 
C (C ≠B but C could be A); e4 be the expression from A to C

• Erase the existing arcs from A to B and A to C, adding a new arc from A to 
C labelled with the expression
e4 + e1 e2* e3

• Do this for all nodes that have edges to B until B has no more entering 
edges; at this point remove B and any edges it has to other nodes and itself

• Iterate until all but the start and final nodes remain
• The expression from start to final describes regular set that is equivalent to 

regular language accepted by original automaton
• Note: Your choices of the order of removal make a big difference in how 

hard or easy this is
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Use Ripping; Rip q3
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q2 q3q1

0

11

0+
1

0 1

qf
l

l
q0

q2q1

0

0 1+(0+1)1+

qf
l

l
q0
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Use Ripping; Rip q1
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q2q1

0

0 1+(0+1)1+

qf
l

l
q0

q2
0

1+(0+1)1++0
0

qf
l

q0
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Use Ripping; Rip q2
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q2
0

1+(0+1)1++0
0

qf
l

q0

0 
(1+(0+1)1++0
0)*

qf

l

q0

L = 0 (1+(0+1)1++00)* = 0 
(1+(0+1)1++00)*  
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Regular Equations
• Assume that R, Q and P are sets such that P 

does not contain the string of length zero, and R 
is defined by

• R = Q + RP
• We wish to show that
• R = QP*
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Show QP* is a Solution
• We first show that QP* is contained in R. By 

definition, R = Q + RP.
• To see if QP* is a solution, we insert it as the 

value of R in Q + RP and see if the equation 
balances

• R = Q + QP*P = Q(λ+P*P) = QP*
• Hence QP* is a solution, but not necessarily the 

only solution.
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Uniqueness of Solution
• To prove uniqueness, we show that R is contained in QP*. 
• By definition, R = Q+RP = Q+(Q+RP)P 
• = Q+QP+RP2 = Q+QP+(Q+RP)P2

• = Q+QP+QP2+RP3

• ... 
• = Q(λ+P+P2+ ... +Pi)+RPi+1, for all i>=0
• Choose any w in R, where |W| = k. Then, from above,
• R = Q(λ+P+P2+ ... +Pk)+RPk+1

• but, since P does not contain the string of length zero, w is not in 
RPk+1. But then w is in

• Q(λ+P+P2+ ... +Pk) and hence w is in QP*.
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Example
• We use the above to solve simultaneous regular equations. 

For example, we can associate regular expressions with finite 
state automata as follows 

• Hence,
• For A, Q=l+B1; P=0

A = QP* = (l+B1)0*
= B10* + 0*

• B = B10*1 + B0 + 0*1  
For B, Q=0*1; P= B10*1 + B0 = B(10*1 + 0)

• and therefore
• B = 0*1(10*1 + 0)*  
• Note: This technique fails if there are lambda transitions.
4/7/19 COT 4210 © UCF 89



Using Regular Equations

4/7/19 COT 4210 © UCF 90

B CA

0

11

0, 
1

0 1

A = l + B0
B = A0 + C1 + B1
C = B(0+1) + C1; C = B(0+1)1*
B = 0 + B00 + B(0+1)1+ + B1
B = 0 + B (00+(0+1) 1+ + 1); B = 0(00 +(0+1)1+ + 1)*

This is same form as with state ripping. It won’t always be 
so.



Practice NFAs
• Write NFAs for each of the following

– ( 111 + 000 )+

– (0+1)* 101 (0+1)+

– (1 (0+1)* 0) + (0 (0+1)* 1)
• Convert each NFA you just created to an 

equivalent DFA.
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DFAs to REs
• For each of the DFAs you created for the 

previous page, use ripping of states and 
then regular equations to compute the 
associated regular expression. Note: You 
obviously ought to get expressions that 
are equivalent to the initial expressions.
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State Minimization
• Text makes it an assignment on Page 299 in Sipser Edition 2.

• This is too important to defer, IMHO.

• First step is to remove any state that is unreachable from the start 
state; a depth first search rooted at start state will identify all 
reachable states

• One seeks to merge compatible states – states q and s are 
compatible if, for all strings x, δ*(q,x) and δ*(s,x) are either both an 
accepting or both rejecting states

• One approach is to discover incompatible states – states q and s are 
incompatible if there exists a string x such that one of δ*(q,x) and 
δ*(s,x) is an accepting state and the other is not

• There are many ways to approach this but my favorite is to do 
incompatible states via an n by n lower triangular matrix
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Sample Minimization
• This uses a transition 

table
• Just an X denotes

Immediately incompatible
• Pairs are dependencies 

for compatibility
• If a dependent is 

incompatible, so are pairs 
that depend on it

• When done, any not x--ed
out are compatible

• Here, new states are 
<1,3>, <2,4,5>, <6>; 
<1,3> is start and not 
accept; others are accept

• Write new diagram
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Reversal of Regular Sets
• It is easier to do this with regular sets than with DFAs
• Let E be some arbitrary expression; ER is formed by

– Primitives: ØR=Ø λR=λ aR=a
– Closure:

• (A � B)R = (BR � AR)
• (A + B)R = (AR + BR) 
• (A*)R = (AR*)

• Challenge: How would you do this with FSA models?
– Start with DFA; change all final to start states; change start 

to a final state; and reverse edges
– Note that this creates multiple start states; can create a 

new start state with l-transitions to multiple starts
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Substitution
• A substitution is a function, f, from each 

member, a, of an alphabet, Σ, to a language La

• Regular languages are closed under substitution 
of regular languages (i.e., each La is regular)

• Easy to prove by replacing each member of Σ in 
a regular expression for a language L with 
regular expression for La

• A homomorphism is a substitution where each 
La is a single string
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Quotient with Regular Sets
• Quotient of two languages B and C, denoted B/C, is defined as 

B/C = {x | ∃y∈C where xy∈B}
• Let B be recognized by DFA 

AB = (QB,Σ,δB,q1B,FB) and C by 
AC = (QC,Σ,δC,q1C,FC)

• Define the recognizer for B/C by 
AB/C = (QB∪QB�QC,Σ,δB/C,q1B, FB�FC)
δB/C(q,a) = {δB(q,a)} a∈Σ,q∈QB
δB/C(q,l) = {<q,q1C>} q∈QB
δB/C(<q,p>,l) = {δB(q,a),δC(p,a)} a∈Σ,q∈QB,p∈QC

• The basic idea is that we simulate B and then randomly decide it 
has seen x and continue by looking for y, simulating B continuing 
after x but with C starting from scratch 
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Quotient Again
• Assume some class of languages, C, is closed 

under concatenation, intersection with regular 
and substitution of members of C, show C is 
closed under Quotient with Regular

• L/R = { x |∃y∈R where xy∈L }
– Define Σ’ = { a’ | a∈Σ }
– Let h(a) = a; h(a’) = l where a∈Σ
– Let g(a) = a’ where a∈Σ
– Let f(a) = {a,a’} where a∈Σ
– L/R = h( f(L) ∩ ( Σ* � g(R) ) )
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Applying Meta Approach
• INIT(L) = { x |∃y∈Σ* where xy∈L }

– INIT(L) = h( f(L) ∩ ( Σ* � g(Σ*) ) )
– Also INIT(L) = L / Σ*

• LAST(L) = { y |∃x∈Σ* where xy∈L }
– LAST(L) = h( f(L) ∩ ( g(Σ*) � Σ* ) )

• MID(L) = { y |∃x,z∈Σ* where xyz∈L }
• MID(L) = h( f(L) ∩ ( g(Σ*) � Σ* � g(Σ*) ) )

• EXTERIOR(L) = { xz |∃y∈Σ* where xyz∈L }
– EXTERIOR(L) = h( f(L) ∩ ( Σ* � g(Σ*) � Σ* ) )
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Making Life Easy
• The key in proving closure is to always try to identify the 

“best” equivalent formal model for regular sets when 
trying to prove a particular property

• For example, how could you even conceive of proving 
closure under intersection and complement in regular 
expression notations?

• Note how much easier quotient is when have closure 
under concatenation, and substitution and intersection 
with regular languages than showing in FSA notation
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Reachable and Reaching
• Reachablefrom(q) = { p | ∃w ∍ δ(q,w)=p }

– Just do depth first search from q, marking all 
reachable states. Works for NFA as well.

• Reachingto(q) = { p | ∃w ∍ δ(p,w)=q }
– Do depth first from q, going backwards on 

transitions, marking all reaching states. Works 
for NFA as well.
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Min and Max
• Min(L) = { w | w∈L and no proper prefix of w is in L } = 

{ w | w∈L and if w=xy, x∈Σ*, y∈Σ+ then x∉L}
• Max(L) = { w | w∈L and w is not the proper prefix of any word in L } = 

{ w | w∈L and if y∈Σ+ then wy∉L }
• Examples:

– Min(0(0+1)*) = {0}
– Max(0(0+1)*) = {}
– Min(01 + 0 + 10) = {0,10}
– Max(01 + 0 + 10) = {01,10}
– Min({aibjck | i ≤ k or j ≤ k}) = {aibjck | | i,j ≥0, k = min(i, j)}
– Max({aibjck | i ≤ k or j ≤ k}) = {} because k has no bound
– Min({aibjck | i ≥ k or j ≥ k}) = {λ}
– Max({aibjck | i ≥ k or j ≥ k}) = {aibjck | | i,j ≥0, k = max(i, j)}
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Regular Closed under Min
• Assume L is regular then Min(L) is regular
• Let L= L(A), where A = (Q,Σ,δ,q0,F) is a DFA with no 

state unreachable from q0

• Define Amin = (Q∪{dead},Σ,δmin,q0,F), where for a∈Σ
δmin(q,a) = δ(q,a), if q∈Q-F; δmin(q,a) = dead, if q∈F;
δmin(dead,a) = dead

The reasoning is that the machine Amin accepts only elements in L that are not 
extensions of shorter strings in L. By making it so transitions from all final 
states in Amin go to the new “dead” state, we guarantee that extensions of 
accepted strings will not be accepted by this new automaton.

Therefore, Regular Languages are closed under Min.
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Regular Closed under Max
• Assume L is regular then Max(L) is regular

• Let L= L(A), where A = (Q,Σ,δ,q0,F) is a DFA with no state 

unreachable from q0

• Define Amax = (Q,Σ,δ,q0,Fmax), where 

Fmax= { f | f∈F and Reachablefrom+(f)∩F=Φ }

where Reachablefrom+(q) = { p | ∃w ∍ |w|>0 and δ(q,w) = p }

The reasoning is that the machine Amax accepts only elements in L that cannot be 

extended. If there is a non-empty string that leads from some final state f to any final 

state, including f, then f cannot be final in Amax. All other final states can be retained. 

The inductive definition of Reachablefrom+ is:

1. Reachablefrom+(q) contains { s | there exists an element of S, a, such that d(q,a) = s }

2. If s is in Reachablefrom+ (q) then Reachablefrom+ (q) contains 

{ t | there exists an element of S, a, such that d(s,a) = t }

3. No other states are in Reachablefrom+(q)

Therefore, Regular Languages are closed under Max.
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Practice Rij
k

105105

Convert the DFA below to a regular expression, first by using either the 
GNFA (or state ripping) or the Rij

k approach, and then by using regular 
equations. You must show all steps in each part of this solution.

AA:

0 1
01 0

1
B C D

1

0
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Practice Minimization

106106

Minimize the number of states in the following DFA, showing the 
determination of incompatible states (table on right).

Construct and write down your new, equivalent automaton!!

a b c

>1 2 3 5 2

2 5 4 4 3

3 2 4 5 4

4 6 4 2 5

5 5 2 4 6

6 5 4 2 >1 2 3 4 5

© UCF EECS



Pumping Lemma Concept
• Let A = (Q,Σ,δ,q1,F) be a DFA, where Q = {q1,q2, … , qN}
• The “pigeon hole principle” tells us that whenever we visit N+1 

or more states, we must visit at least one state more than 
once (loop)

• Any string, w, of length N or greater leads to us making N 
transitions after visiting the start state, and so we visit at least 
one state more than once when reading w
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Pumping Lemma For Regular
• Theorem: Let L be regular then there 

exists an N>0 such that, if w Î L and 
|w| ≥ N, then w can be written in the form 
xyz, where |xy| ≤ N, |y|>0, and for all i≥0, 
xyiz Î L

• This means that interesting regular 
languages (infinite ones) have a very 
simple self-embedding property that 
occurs early in long strings
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Pumping Lemma Proof
• If L is regular then it is recognized by some DFA, A=(Q,S,d,q0,F). Let |Q| = N 

states. For any string w, such that |w| ≥ N, A must make N+1 state visits to 
consume its first N characters, followed by |w|-N more state visits. 

• In its first N+1 state visits, A must enter at least one state two or more times.

• Let w = v1…vj…vk…vm, where m =|w|, and d(q0,v1…vj)=d(q0,v1…vk), k > j, 
and let this state represent the first one repeated while A consumes w.

• Define x = v1…vj, y = vi+1…vk, and z = vk+1…vm. Clearly w=xyz. Moreover, 
since k > j, |y| > 0, and since k ≤ N, |xy| ≤ N.

• Since A is deterministic, d(q0,xy)=d(q0,xyi), for all i ≥ 0.

• Thus, if w Î L, d(q0,xyz) Î F, and so d(q0,xyiz) Î F, for all i ≥ 0. 
• Consequently, if w Î L, |w|≥N, then w can be written in the form xyz, where 

|xy| ≤ N, |y| > 0, and for all i ≥ 0, xyiz Î L.
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Lemma’s Adversarial Process
• Assume L = {anbn | n>0 } is regular
• P.L.: Provides N > 0

– We CANNOT choose N; that’s the P.L.’s job

• Our turn: Choose aNbN Î L
– We get to select a string in L

• P.L.: aNbN = xyz, where |xy| ≤ N, |y| > 0, and for all i ≥ 0, xyiz Î L
– We CANNOT choose split, but P.L. is constrained by N

• Our turn: Choose i = 0.
– We have the power here

• P.L: aN-|y|bN Î L; just a consequence of P.L.
• Our turn: aN-|y|bN Ï L; just a consequence of L’s structure
• CONTRADICTION, so L is NOT regular
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xwx is not Regular (PL)
• L = { x w x | x,w∈{a,b}+} : 
• Assume that L is Regular.

• PL:    Let N > 0 be given by the Pumping Lemma.

• YOU: Let s be a string, s ∈ L, such that s = aNbaaNb

• PL:    Since s ∈ L and |s| ≥ N, s can be split into 3 pieces, s = xyz, such that 
|xy| ≤ N and |y| > 0 and ∀ i ≥ 0 xyiz ∈ L

• YOU: Choose i = 2

• PL:    xy2z = xyyz ∈ L 

• Thus, aN + |y|baaNb would be in L, but this is not so since N+|y| ≠ N

• We have arrived at a contradiction.

• Therefore L is not Regular.
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aFib(k) is not Regular (PL)
• L = {aFib(k) | k>0} : 
• Assume that L is regular
• Let N be the positive integer given by the Pumping Lemma
• Let s be a string s = aFib(N+3)Î L
• Since s Î L and |s| ≥ N (Fib(N+3)>N in all cases; actually Fib(N+2)>N as 

well), s is split by PL into xyz, where |xy| ≤ N  and |y| > 0 and for all i ≥ 0, 
xyiz Î L

• We choose i = 2; by PL: xy2z = xyyzÎ L
• Thus, aFib(N+3)+|y| would be Î L. This means that there is a Fibonacci number 

between Fib(N+3) and Fib(N+3)+N, but the smallest Fibonacci greater than 
Fib(N+3) is Fib(N+3)+Fib(N+2) and Fib(N+2)>N
This is a contradiction, therefore L is not regular  �

• Note: Using values less than N+3 could be dangerous because N could be 
1 and both Fib(2) and Fib(3) are within N (1) of Fib(1).
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Pumping Lemma Problems
• Use the Pumping Lemma to show each of 

the following is not regular
– { 0m 12n | m £ n }
– { wwR | w Î {a,b}+ }
– { 1n2 | n > 0 }
– { ww | w Î {a,b}+ }
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Myhill-Nerode Theorem
The following are equivalent:
1. L is accepted by some DFA
2. L is the union of some of the classes of a right invariant 

equivalence relation, R, of finite index.
3. The specific right invariance equivalence relation 

RL where x RL y iff "z [ xz Î L iff yz Î L ]
has finite index

Definition. R is a right invariant equivalence relation iff R is 
an equivalence relation and "z [ x R y implies xz R yz ].
Note: This is only meaningful for relations over strings.
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Myhill-Nerode 1 ⇒ 2
1. Assume L is accepted by some DFA, A = (Q,Σ,δ,q1,F) 
2. Define RA by x RA y iff δ*(q1,x) = δ*(q1,y). First, RA is 

defined by equality and so is obviously an equivalence 
relation (Clearly if δ*(q1,x) = δ*(q1,y) then "z δ*(q1,xz) = 
δ*(q1,yz) because A is deterministic. Moreover if "z 
δ*(q1,xz) = δ*(q1,yz) then δ*(q1,x) = δ*(q1,y), just by 
letting z = l.  Putting it together x RA y L iff "z xz RA yz. 
Thus, RA is right invariant; its index is |Q| which is finite; 
and L(A) = ∪δ*(x)∊F[x]RA, where [x]RA refers to the 
equivalence class containing the string x.
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Myhill-Nerode 2 ⇒ 3
2. Assume L is the union of some of the classes of a right 

invariant equivalence relation, R, of finite index.
3. Since x R y iff "z [ xz R yz ], R is right invariant and L is 

the union of some of the equivalence classes, then 
x R y ⇒ "z [ xz Î L iff yz Î L ] ⇒ x RL y. 
This means that the index of RL is less than or equal to 
that of R and so is finite. Note than the index of RL is 
then less than or equal to that of any other right 
invariant equivalence relation, R, of finite index that 
defines L.
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Myhill-Nerode 3 ⇒ 1
3. Assume the specific right invariance equivalence 

relation RL where x RL y iff "z [ xz Î L iff yz Î L ]
has finite index

1. Define the automaton A = (Q,Σ,δ,q1,F) by
Q = { [x]RL | x ∈ Σ* }
δ([x]RL,a) = [xa]RL
q1 = [l]
F = { [x]RL | x ∈ L }

Note: This is the minimum state automaton and all 
others are either equivalent or have redundant 
indistinguishable states
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Use of Myhill-Nerode
• L = {anbn | n>0 } is NOT regular. 
• Assume otherwise.
• M-N says that the specific r.i. equiv. relation RL has finite 

index, where x RL y iff  "z [ xz Î L iff yz Î L ].
• Consider the equivalence classes [aib] and [ajb], where 

i,j>0 and i ≠ j.
• aibbi-1 Î L  but  ajbbi-1 Ï L and so [aib] is not related to 

[ajb] under RL and thus [aib] ≠ [ajb].
• This means that RL has infinite index.
• Therefore L is not regular.
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xwx is not Regular (MN)
• L = { x a x | x∈{a,b}+} :
• We consider the right invariant equivalence class [aib], 

i>0.
• It’s clear that aibaaib is in the language, but akbaaib is 

not when k < i. 
• This shows that there is a separate equivalence class, 

[aib], induced by RL, for each i>0. Thus, the index of RL is 
infinite and Myhill-Nerode states that L cannot be 
Regular.
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aFib(k) is not Regular (MN)
• L = {aFib(k) | k>0} : 
• We consider the collection of right invariant equivalence 

classes [aFib(j)], j > 2.
• It’s clear that aFib(j)aFib(j+1) is in the language, but 

aFib(k)aFib(j+1) is not when k>2 and k≠j and k≠j+2
• This shows that there is a separate equivalence class 

[aFib(j)] induced by RL, for each j > 2.
• Thus, the index of RL is infinite and Myhill-Nerode states 

that L cannot be Regular.
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Myhill-Nerode and 
Minimization

• Corollary: The minimum state DFA for a 
regular language, L, is formed from the 
specific right invariance equivalence 
relation RL where 
x RL y iff "z [ xz Î L iff yz Î L ]

• Moreover, all minimum state machines 
have the same structure as the above, 
except perhaps for the names of states
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What is Regular So Far?
• Any language accepted by a DFA
• Any language accepted by an NFA
• Any language specified by a Regular 

Expression
• Any language representing the unique 

solution to a set of properly constrained 
regular equations
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What is NOT Regular?
• Well, anything for which you cannot write 

an accepting DFA or NFA, or a defining 
regular expression, or a right/left linear 
grammar, or a set of regular equations, but 
that’s not a very useful statement

• There are two tools we have:
– Pumping Lemma for Regular Lnaguges
– Myhill-Nerode Theorem
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Finite State Transducers
• A transducer is a machine with output
• Mealy Model

– M = (Q, S, G, d, g, q0)
G is the finite output alphabet
g: Q � S ® G is the output function

– Essentially a Mealy Model machine produced a character of 
output for each character of input it consumes, and it does so on 
the transitions from one state to the next.

– A Mealy Model represents a synchronous circuit whose output is 
triggered each time a new input arrives.
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Sample Mealy Model
• Write a Mealy finite state machine that 

produces the 2’s complement result of 
subtracting 1101 from a binary input 
stream (assuming at least 4 bits of input)
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C
1..1
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0011
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0
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1/
0

0/0,1/1

C
1..1
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1..1

0/1

1/
0

0/0,1/1

1/1,0/
0

0/1

1/0
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Finite State Transducers
• Moore Model

– M = (Q, S, G, d, g, q0)
G is the finite output alphabet
g: Q ® G is the output function

– Essentially a Moore Model machine produced a 
character of output whenever it enters a state, 
independent of how it arrived at that state.

– A Moore Model represents an asynchronous circuit 
whose output is a steady state until new input arrives.
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Practice MNT, Grammar, Mealy
1. For each of the following, prove it is not regular by using the Pumping 

Lemma or Myhill-Nerode. You must do at least one of these using the 
Pumping Lemma and at least one using Myhill-Nerode.

a. L = { x#y | x, yÎ {0,1}+ and y is the ones complement of x }
b. L = { aibjck | i > j * k }
c. L = { x w x | x, w Î {a,b}+ Here |x|>0 and |w|>0 } 

2. Write a regular (right linear) grammar that generates L = { w | w Î {0,1}+

and w interpreted as a binary number is divisible by either 2 or 3 or both. . 

3. Present a Mealy Model finite state machine that reads an input x Î {0, 1}+

and produces the binary number that represents the result of adding binary 
1001 to x (assumes all numbers are positive, including results).  Assume 
that x is read starting with its least significant digit.
Examples: 00010 ® 01011; 00101 ® 01110; 

00111 ® 10000; 00110 ® 01111
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Decision and Closure 
Properties

Regular Languages



Decidable Properties
• Membership (just run DFA over string)
• L = Ø: Minimize and see if minimum state DFA is

• L = Σ*: Minimize and see if minimum state DFA is 

• Finiteness: Minimize and see if there are no loops 
emanating from a final state

• Equivalence: Minimize both and see if isomorphic
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A

Σ

A

Σ
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Closure Properties
• Virtually everything with members of its own class as we 

have already shown

• Union, concatenation, Kleene *, complement, 
intersection, set difference, reversal, substitution, 
homomorphism, quotient with regular sets, Prefix, Suffix, 
Substring, Exterior, Min, Max and so much more
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Formal Languages

Includes and Expands on 
Chapter 2 of Sipser



History of Formal Language
• In 1940s, Emil Post (mathematician) devised rewriting systems as a 

way to describe how mathematicians do proofs. Purpose was to 
mechanize them.

• Early 1950s, Noam Chomsky (linguist) developed a hierarchy of 
rewriting systems (grammars) to describe natural languages.

• Late 1950s, Backus-Naur (computer scientists) devised BNF (a 
variant of Chomsky�s context-free grammars) to describe the 
programming language Algol.

• 1960s was the time of many advances in parsing. In particular, 
parsing of context free was shown to be no worse than O(n3). More 
importantly, useful subsets were found that could be parsed in O(n).
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Formalism for Grammars
Definition : A language is a set of strings of characters from some alphabet.

The strings of the language are called sentences or statements.

A string over some alphabet is a finite sequence of symbols drawn  from that 
alphabet.

A meta-language is a language that is used to describe another language.

A very well known meta-language is BNF (Backus Naur Form)

It was developed by John Backus and Peter Naur, in the late 50s, to describe 
programming languages.

Noam Chomsky in the early 50s developed context free grammars that can be 
expressed using BNF.
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Grammars
• G = (V, Σ, R, S) is a Phrase Structured Grammar (PSG) 

where
– V: Finite set of non-terminal symbols
– Σ: Finite set of terminal symbols
– R: finite set of rules of form α ® β, 

• α in (V È Σ)* V (V È Σ)*
• β in (V È Σ)*

– S: a member of V called the start symbol
• Right linear restricts all rules to be of forms

– α in V
– β of form ΣV, Σ or λ
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Derivations
• x Þ y reads as x derives y iff

– x = γαδ, y = γβδ and α ® β 
• Þ* is the reflexive, transitive closure of Þ
• Þ+ is the transitive closure of Þ
• x Þ* y iff x = y or x Þ* z and z Þ y
• Or, x Þ* y iff x = y or x Þ z and z Þ* y
• L(G) = { w | S Þ* w } is the language 

generated by G.
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Regular Grammars
• Regular grammars are also called right 

linear grammars
• Each rule of a regular grammar is 

constrained to be of one of the three 
forms:
A → a, A ∈ V, a ∈ Σ*
A → l, A ∈ V, a ∈ Σ*
A → aB, A, B ∈ V, a ∈ Σ*
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DFA to Regular Grammar
• Every language recognized by a DFA is 

generated by an equivalent regular 
grammar

• Given A = (Q,Σ,δ,q0,F), L(A) is generated 
by GA = (Q,Σ,R,q0) where R contains
q ® as iff δ(q,a) = s
q ® l iff q ∈ F
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Example of DFA to Grammar
• DFA

• Grammar
A ® 0 B | 1 B
B ® 0 A | 1 C | l
C ® 0 C | 1 A | l
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A CBA:

0

0,1

0

1

1
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Regular Grammar to NFA
• Every language generated by a regular grammar 

is recognized by an equivalent NFA
• Given G = (V, Σ, R, S), L(G) is recognized by 

AG = (V∪{f},Σ,δ,S,{f}) where δ is defined by
δ(A,a) ⊆{B} iff A → aB
δ(A,a) ⊆{f} iff A → a
δ(A,l) ⊆{f} iff A → l
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Example of Grammar to NFA
• Grammar
S ® 0 S | 1 A
A ® 0 S | 0 A | 1 B | l
B ® 1 S | 0 B
• DFA
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What More is Regular?
• Any language, L, generated by a right linear grammar
• Any language, L, generated by a left linear grammar 

(A → a, A → l, A → Ba)
– Easy to see L is regular as we can reverse these rules and get a 

right linear grammar that generates LR, but then L is the reverse 
of a regular language which is regular

– Similarly, the reverse LR of any regular language L is right linear 
and hence the language itself is left linear

• Any language, L, that is the union of some of the classes 
of a right invariant equivalence relation of finite index
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Mixing Right and Left Linear
• We can get non-Regular languages if we present 

grammars that have both right and left linear rules
• To see this, consider G = ({S,T}, Σ, R, S), where R is:

– S → aT
– T → Sb | b

• L(G) = { anbn | n > 0 } which is a classic non-regular, 
context-free language
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Context Free Languages



Context Free Grammar
G = (V, S, R, S) is a PSG where
Each member of R is of the form
A ® a where a is a strings (VÈS)*
Note that the left hand side of a rule is a letter in V;
The right hand side is a string from the combined alphabets
The right hand side can even be empty (e or λ) 
A context free grammar is denoted as a CFG and the language 
generated is a Context Free Language (CFL).
A CFL is recognized by a Push Down Automaton (PDA) to be 
discussed a bit later.
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Sample CFG
Example of a grammar for a small language: 

G = ({<program>, <stmt-list>, <stmt>, <expression>}, 
{begin, end, ident, ;, =, +, -}, R, <program>) where R is

<program> à begin <stmt-list> end

<stmt-list> à <stmt> | <stmt> ; <stmt-list>

<stmt> à ident = <expression>

<expression> à ident + ident | ident - ident | ident 

Here �ident� is a token return from a scanner, as are  �begin�, �end�, �;�, �=�, 
�+�, �-�

Note that �;� is a separator (Pascal style) not a terminator (C style).
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Derivation
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A sentence generation is called a derivation.

Grammar for a simple 
assignment statement:

R1  <assgn> à <id> := <expr>
R2  <id> à a | b | c
R3  <expr>    à <id> + <expr>
R4 |   <id> * <expr>
R5 |   ( <expr> )
R6                   | <id>

The statement a := b * ( a + c ) 
Is generated by the leftmost derivation:

<assgn> Þ <id> := <expr> R1
Þ a := <expr> R2
Þ a := <id> * <expr> R4
Þ a := b * <expr> R2
Þ a := b * ( <expr> )               R5
Þ a := b * ( <id> + <expr> )   R3
Þ a := b * ( a + <expr> ) R2
Þ a := b * ( a + <id> ) R6
Þ a := b * ( a + c ) R2In a leftmost derivation only the

leftmost non-terminal is replaced
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Parse Trees
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A parse tree is a graphical representation of a derivation
For instance the parse tree for the statement  a := b * ( a + c )  is:

<assign>

<id>      := <expr>

a <id> * <expr>

b ( <expr>            )

<id> +          <expr>

a <id>

c

Every internal node of a
parse tree is labeled with
a non-terminal symbol.

Every leaf is labeled with a 
terminal symbol.

The generated string is read 
left to right
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Ambiguity
A grammar that generates a sentence for which there are two or more 
distinct parse trees is said to be �ambiguous�

For instance, the following grammar is ambiguous because it generates 
distinct  parse trees for the expression a := b + c * a

<assgn> à <id> := <expr>
<id> à a | b | c
<expr>    à <expr> + <expr>

|   <expr> * <expr>
|   ( <expr> )
| <id>
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Ambiguous Parse
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This grammar generates two parse trees  for the same expression.

If a language structure has more than one parse tree, 
the meaning of the structure cannot be determined uniquely.

<assign>

<id> :=            <expr>

A               <expr>      +           <expr>

<id> <expr>     * <expr>

B <id> <id>

C A

<assign>

<id> :=             <expr>

A               <expr>        * <expr>

<expr>       +      <expr>             <id>

<id>                  <id> A

B C

© UCF EECS



Precedence
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Operator precedence:
If an operator is generated lower in the parse tree, it indicates that the 
operator has precedence over the operator generated higher up in the tree.

An unambiguous grammar for expressions:

<assign> à <id> := <expr>
<id> à a | b | c
<expr>    à <expr> + <term>

|  <term> 
<term>    à <term> * <factor>

|   <factor>
<factor>  à ( <expr> )

| <id>

This grammar indicates the usual 
precedence order of multiplication and 
addition operators.

This grammar generates unique parse
trees independently of doing a 
rightmost or leftmost derivation 

© UCF EECS



Left (right)most Derivations
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Rightmost derivation:
<assgn>  Þ <id> := <expr>

Þ <id> := <expr> + <term>
Þ <id> := <expr> + <term> *<factor> 
Þ <id> := <expr> + <term> *<id>
Þ <id> := <expr> + <term> *  a
Þ <id> := <expr> + <factor> *  a
Þ <id> := <expr> + <id> *  a
Þ <id> := <expr> + c  *  a
Þ <id> := <term> + c  *  a
Þ <id> := <factor> + c  *  a 
Þ <id> := <id> + c  *  a
Þ <id> :=  b + c  * a
Þ a := b +   c  *  a

Leftmost derivation:
<assgn> à <id> := <expr>

à a := <expr>
à a := <expr> + <term>
à a := <term> + <term>
à a := <factor> + <term>
à a := <id> + <term>
à a := b + <term>    
à a := b + <term> *<factor>       
à a := b + <factor> * <factor> 
à a := b + <id> * <factor>
à a := b +   c  * <factor>
à a := b +   c  * <id>
à a := b +   c  *   a
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Ambiguity Test
• A Grammar is Ambiguous if there are two 

distinct parse trees for some string
• Or, two distinct leftmost derivations 
• Or, two distinct rightmost derivations
• Some languages are inherently ambiguous but 

many are not
• Unfortunately (to be shown later) there is no 

systematic test for ambiguity of context free 
grammars
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Unambiguous Grammar
When we encounter ambiguity, we try to rewrite the grammar to avoid 
ambiguity.

The ambiguous expression grammar:

<expr> à <expr> <op> <expr> | id | int | (<expr>)
<op>    à + | - | * | /

Can be rewritten as:

<expr> à <term> | <expr> + <term> | <expr> - <term>
<term> à <factor> | <term> * <factor> | <term> / <factor>.
<factor> à id | int | (<expr>)
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Parsing Problem
The parsing Problem: Take a string of symbols in a language (tokens) 
and a grammar for that language to construct the parse tree or report 
that the sentence is syntactically incorrect.

For correct strings:

Sentence + grammar à parse tree

For a compiler,  a sentence is a program:

Program + grammar à parse tree

Types of parsers:

Top-down aka predictive (recursive descent parsing)

Bottom-up aka shift-reduce
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Removing Left Recursion if 
doing Top Down

Given left recursive and non left recursive rules
A ® Aa1 | … | Aan | b1 | … | bm

Can view as 
A ® (b1 | … | bm) (a1 | … | an )*
Star notation is an extension to normal notation with 
obvious meaning
Now, it should be clear this can be done right recursive as
A ® b1B | … | bm B
B ® a1B| … | anB | λ
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Right Recursive Expressions
Grammar: Expr à Expr + Term | Term

Term à Term * Factor | Factor
Factor à (Expr) | Int

Fix:           Expr à Term ExprRest
ExprRest à + Term ExprRest | l
Term à Factor TermRest
TermRest à * Factor TermRest | l
Factor à (Expr) | Int
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Bottom Up vs Top Down
• Bottom-Up: Two stack operations

– Shift (move input symbol to stack)
– Reduce (replace top of stack a with A, when A®a)
– Challenge is when to do shift or reduce and what reduce to do.

• Can have both kinds of conflict

• Top-Down:  
– If top of stack is terminal

• If same as input, read and pop
• If not, we have an error

– If top of stack is a non-terminal A
• Replace A with some a, when A®a
• Challenge is what A-rule to use
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Chomsky Normal Form
• Each rule of a CFG is constrained to be of 

one of the three forms:
A → a, A ∈ V, a ∈ Σ
A → BC, A,B,C ∈ V

• If the language contains l then we allow
S → l
and constrain all non-terminating rules of 
form to be
A → BC, A ∈ V, B,C ∈ V-{S}
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Nullable Symbols
• Let G = (V, S, R, S) be an arbitrary CFG
• Compute the set Nullable(G) = {A | A ⇒* l }
• Nullable(G) is computed as follows

Nullable(G) ⊇ { A | A → l }
Repeat

Nullable(G) ⊇ { B | B → a and a ∈ Nullable* } 
until no new symbols are added
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Removal of l-Rules
• Let G = (V, S, R, S) be an arbitrary CFG
• Compute the set Nullable(G)
• Remove all l-rules
• For each rule of form B → aAb where A is nullable, add 

in the rule B → ab 
• The above has the potential to greatly increase the 

number of rules and add unit rules 
(those of form B → C, where B,C∈V)

• If S is nullable, add new start symbol S0, as new start 
state, plus rules S0, → l and S0 → a, where S → a
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Chains (Unit Rules)
• Let G = (V, S, R, S) be an arbitrary CFG that has 

had its l-rules removed
• For A∈V, Chain(A) = { B | A ⇒* B, B∈V }
• Chain(A) is computed as follows

Chain(A) ⊇ { A }
Repeat

Chain(A) ⊇ { C | B → C and B ∈ Chain(A) }
until no new symbols are added
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Removal of Unit-Rules
• Let G = (V, S, R, S) be an arbitrary CFG that has had its 
l-rules removed, except perhaps from start symbol

• Compute Chain(A) for all A∈V
• Create the new grammar G = (V, S, R, S) where R is 

defined by including for each A∈V, all rules of the form
A → a, where B → a ∈ R, a ∉ V and B ∈ Chain(A)
Note: A∈Chain(A) so all its non unit-rules are included
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Non-Productive Symbols
• Let G = (V, S, R, S) be an arbitrary CFG that has had its 
l-rules and unit-rules removed

• Non-productive non-terminal symbols never lead to a 
terminal string (not productive)

• Productive(G) is computed by
Productive(G) ⊇ { A |  A → a, a∈S* }
Repeat

Productive(G) ⊇ { B | B → a, a∈(S∪Productive)* }
until no new symbols are added

• Keep only those rules that involve productive symbols
• If no rules remain, grammar generates nothing
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Unreachable Symbols
• Let G = (V, S, R, S) be an arbitrary CFG that has had its l-

rules, unit-rules and non-productive symbols removed
• Unreachable symbols are ones that are inaccessible from 

start symbol

• We compute the complement (Useful)
• Useful(G) is computed by

Useful(G) ⊇ { S }
Repeat

Useful(G) ⊇ { C | B → aCb, C∈V∪Σ, B∈ Useful(G) }
until no new symbols are added

• Keep only those rules that involve useful symbols

• If no rules remain, grammar generates nothing 
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Reduced CFG
• A reduced CFG is one without l-rules 

(except possibly for start symbol), no unit-
rules, no non-productive symbols and no 
useless symbols
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CFG to CNF
• Let G = (V, S, R, S) be arbitrary reduced CFG 
• Define G’=(V∪{<a>|a∈Σ}, S, R, S)
• Add the rules <a> → a, for all a∈Σ
• For any rule, A → a, |a| > 1, change each terminal 

symbol, a, in a to the non-terminal <a> 
• Now, for each rule A → BCa, |a| > 0, introduce the new 

non-terminal B<Ca>, and replace the rule A → BCa with 
the rule A → B<Ca> and add the rule <Ca> → Ca

• Iteratively apply the above step until all rules are in CNF 
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Example of CNF Conversion



Starting Grammars
• L = { ai bj ck | i=j or j=k }
• G = ({S,A,<B=C>,C,<A=B>}, {a,b}, R, S)
• R: 

– S à A | C
– A à a A | <B=C>
– <B=C> à b <B=C> c | λ
– C à C c | <A=B>
– <A=B> à a <A=B> b | λ
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Remove Null Rules
• Nullable = {<B=C>, <A=B>, A, C, S}

– S’ à S | λ // S’ added to V
– S à A | C
– A à a A | a |<B=C>
– <B=C> à b <B=C> c | b c
– C à C c | c | <A=B>
– <A=B> à a <A=B> b | ab
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Remove Unit Rules
• Chains= 

{[S’:S’,S,A,C,<A=B>,<B=C>],[S:S,A,C,<A=B>,<
B=C>], 
[A:A,<B=C>],[C:C,<B=C>],[<B=C>:<B=C>], 
[<A=B>:<A=B>]}
– S’ à λ | aA | a | b<B=C>c | bc | Cc | c | a<A=B>b | ab
– S à aA | a | b<B=C>c | bc | Cc | c | a<A=B>b | ab
– A à aA | a | b<B=C>c | bc
– <B=C> à b<B=C>c | bc
– C à Cc | c | a<A=B>b | ab
– <A=B> à a<A=B>b | ab
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Remove Useless Symbols
• All non-terminal symbols are productive (lead 

to terminal string)

• S is useless as it is unreachable from S’ (new 
start). 

• All other symbols are reachable from S’
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Normalize rhs as CNF
• S’ à λ | <a>A | a | <b><<B=C><c>> | <b><c> | 

C<c> | c | <a><<A=B><b>> | <a><b>
• A à <a>A | a |<b><<B=C><c>> | <b><c> 
• <B=C> à <b><<B=C><c>> | <b><c>
• C à C<c> | c | <a><<A=B><b>> | <a><b>
• <A=B> à <a> <<A=B><b>> | <a><b>
• <<B=C><c>> à <B=C><c>
• <<A=B><b>> à <A=B><b>
• <a> à a
• <b> à b
• <c> à c
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CKY (Cocke, Kasami, Younger)
O(N3) PARSING
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Dynamic Programming
To solve a given problem, we solve small parts of the problem (subproblems), 
then combine the solutions of the subproblems to reach an overall solution.

The Parsing problem for arbitrary CFGs was elusive, in that its complexity was 
unknown until the late 1960s. In the meantime, theoreticians developed notion 
of simplified forms that were as powerful as arbitrary CFGs. The one most 
relevant here is the Chomsky Normal Form – CNF. It states that the only rule 
forms needed are:

A  ® BC where B and C are non-terminals

A ® a where a is a terminal

This is provided the string of length zero is not part of the language.
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CKY (Bottom-Up Technique)
Let the input string be a sequence of n letters a1 ... an. 
Let the grammar contain r terminal and nonterminal symbols R1 ... Rr, 
Let R1 be the start symbol. 
Let P[n,n,r] be an array of Booleans. Initialize all elements of P to false. 
For each i = 1 to n 

For each unit production Rj → ai, set P[i,1,j] = true. 
For each i = 2 to n

For each j = 1 to n-i+1 
For each k = 1 to i-1 

For each production RA -> RB RC

If P[j,k,B] and P[j+k,i-k,C] then set P[j,i,A] = true 
If P[1,n,1] is true then a1 ... an is member of language 
else a1 ... an is not member of language 
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CKY Parser
Present the CKY recognition matrix for the string  abba assuming the Chomsky 
Normal Form grammar, G = ({S,A,B,C,D,E}, {a,b}, R, S), specified by the rules R:

S  ® AB  |  BA
A  ® CD  |  a
B  ® CE  |  b 
C  ® a      |  b
D  ® AC
E  ® BC 
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a b b a
1 A,C B,C B,C A,C
2 S,D E S,E
3 B B
4 S,E
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2nd CKY Example
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a - a + a - a
1 E M E P E M E

2 E, F E, F E, F

3 E E E

4 E, F E, F

5 E E

6 E, F

7 E

E  ® E F  | M E | P E | a 
F  ® M F | P F | M E | P E
P  ® + 
M  ® -
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Practice CFGs
1. Write a CFG for the following languages: 

L = {an bm ct | n < m or m > t or n = t }

2. Convert the following grammar to a CNF equivalent grammar. Show all steps.
G = ( { S, S1, S2, B, C} , { a , b, c } , R , S ), where R is:
S   ® S1 | S2
S1 ® a S1 b | S1 b | b
S2 ® c C a B
C   ® c C a | C a | a
B   ® a B b | l

3. Present the CKY recognition matrix for the string  b a a b a assuming the Chomsky Normal Form 
grammar G = ( { S,T, B } , { a,b } , R, S ), where R is specified by the rules
S  ® S T  | T S | a
T  ® B S |  b  
B  ® B T |  SS  | b
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CFL Pumping Lemma 
Concept

• Let L be a context free language the there is CNF grammar 
G = (V, Σ, R, S) such that L(G) = L.

• As G is in CNF all its rules that allow the string to grow are of the form 
A � BC, and thus growth has a binary nature.

• Any sufficiently long string z in L will have a parse tree that must have deep 
branches to accommodate z’s growth.

• Because of the binary nature of growth, the width of a tree with maximum 
branch length k at its deepest nodes is at most 2k; moreover, if the frontier 
of the tree is all terminal, then the string so produced is of length at most 
2k-1; since the last rule applied for each leaf is of the form A � a.

• Any terminal branch in a derivation tree of height > |V| has more than |V| 
internal nodes labelled with non-terminals. The “pigeon hole principle” tells 
us that whenever we visit |V| +1 or more nodes, we must use at least one 
variable label more than once. This creates a self-embedding property that 
is key to the repetition patterns that occur in the derivation of sufficiently 
long strings.
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Pumping Lemma For CFL
• Let L be a CFL then there exists an N>0 such 

that, if z Î L and |z| ≥ N, then z can be written in 
the form uvwxy, where |vwy| ≤ N, |vx|>0, and for 
all i≥0, uviwxiy Î L.

• This means that interesting context free 
languages (infinite ones) have a self-embedding 
property that is symmetric around some central 
area, unlike regular where the repetition has no 
symmetry and occurs at the start.
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Pumping Lemma Proof
• If L is a CFL then it is generated by some CNF grammar, G = (V, Σ, 

R, S). Let |V| = k. For any string z, such that |z| ≥ N = 2k, the 
derivation tree for z based on G must have a branch with at least 
k+1 nodes labelled with variables from G. 

• By the Pigeon Hole Principle at least two of these labels must be the 
same. Let the first repeated variable be T and consider the last two 
instances of T on this path.

• Let z = uvwxy, where S ⇒* uTy ⇒* uvTxy ⇒* uvwxy
• Clearly, then, we know S ⇒* uTy; T ⇒* vTx; and T ⇒* w
• But then, we can start with S ⇒* uTy; repeat T ⇒* vTx zero or more 

times; and then apply T ⇒* w.
• But then, S ⇒* uviwxiy for all i≥0, and thus uviwxiy Î L, for all i ≥0.

4/7/19 181© UCF EECS



Visual Support of Proof
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Lemma’s Adversarial Process
• Assume L = {anbncn | n>0 } is a CFL

• P.L.: Provides N>0 We CANNOT choose N; that’s the P.L.’s job

• Our turn: Choose aNbNcN Î L We get to select a string in L

• P.L.: aNbNcN = uvwxy, where |vwx| ≤ N, |vx|>0, and for all i≥0, 
uviwxiy Î L We CANNOT choose split, but P.L. is constrained by N

• Our turn: Choose i=0. We have the power here

• P.L: Two cases: 
(1) vwx contains some a’s and maybe some b’s. Because |vwx| ≤ N, it cannot 
contain c’s if it has a’s. i=0 erases some a’s but we still have N c’s so uwy∉L
(2) vwx contains no a’s. Because |vx|>0, vx contains some b’s or c’s or some of each. 
i=0 erases some b’s and/or c’s but we still have N a’s so uwy∉L

• CONTRADICTION, so L is NOT a CFL
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Practice CFL Pumping Lemma
1. Write a CFG to show the language is a CFL or use the Pumping 

Lemma for CFLs to prove that it is not for each of the following.
a) L = { aibj | j > i3 , I>0}
b) L = {aibj | j < 3*i , i>0}

2. Consider the context-free grammar G = { {S}, {a,b}, R, S }
R: 
S → a S b S b S | b S a S b S | b S b S a S | λ
Provide a proof that shows

L = { w | |wb| = 2|wa| }
That is, the number of b’s in w is twice that of the a’s
You will need to provide an inductive proof in both directions
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Non-Closure
• Intersection ({ anbncn | n≥0 } is not a CFL)

{ anbncn | n≥0 } = 
{ anbncm | n,m≥0 } ∩ { ambncn | n,m≥0 }
Both of the above are CFLs

• Complement
If closed under complement then would be 
closed under Intersection as 
A ∩ B = ~(~A ∪ ~B)
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Max and Min of CFL
• Consider the two operations on languages max and min, where

– max(L) = { x | x ∈ L and, for no non-null y does xy ∈ L } and
– min(L) = { x | x ∈ L and, for no proper prefix of x, y, does y ∈ L }

• Describe the languages produced by max and min. for each of :
– L1 = { ai bj ck | k ≤ i or k ≤ j } CFL

• max(L1) =     { ai bj ck | k =max(i, j)  } Non-CFL  
• min(L1) =      { λ } (string of length 0)  Regular 

– L2 = { ai bj ck | k > i or k > j } CFL
• max(L2) =     {  } (empty) Regular       
• min(L2) =      { ai bj ck | k =min(i, j)+1 } Non-CFL

• max(L1) shows CFL not closed under max
• min(L2) shows CFL not closed under min
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Complement of ww
• Let L = { ww | w ∈ {a,b}+ }. L is not a CFL
• Consider L’s complement, it must be of form xayx’by’ or xbyx’ay’, 

where |x|=|x’| and |y|=|y’|
• The above reflects that this language has one “transcription error”
• This seems really hard to write a CFG but it’s all a matter of how you 

view it
• We don’t care about what precedes or follows the errors so long as 

the lengths are right
• Thus, we can view above as xax’yby’ or xbx’y’ay’, 

where |x|=|x’| and |y|=|y’|
• The grammar for this has rules 

S � AB  |  BA ; A � XAX  |  a ; B � XBX  |  b 
X � a  |  b

4/7/19 187© UCF EECS



Solvable CFL Problems
• Let L be an arbitrary CFL generated by CFG G 

with start symbol S then the following are all 
decidable
– Is w in L? Run CKY

If S in final cell then w∈L
– Is L empty (non-empty)? Reduce G

If no rules left then empty
– Is L finite (infinite)? Reduce G

Run DFS(S) 
If no loops then finite
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Formalization of PDA
• A = (Q, Σ, Γ, δ, q0, Z0, F)
• Q is finite set of states
• Σ is finite input alphabet
• Γ is finite set of stack symbols
• δ : Q�Σe�Γe → 2Q�Γ* is transition function

– Note: Can limit stack push to Γe but it’s equivalent!!
• Z0 ∈ Γ is an optional initial symbol on stack
• F ⊆ Q is final set of states and can be omitted 

for some notions of a PDA
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Notion of ID for PDA
• An instantaneous description for a PDA is

[q, w, γ] where 
– q is current state
– w is remaining input 
– γ is contents of stack (leftmost symbol is top) 

• Single step derivation is defined by
– [q,ax,Zα] |— [p,x,βα] if δ(q,a,Z) contains (p,β)

• Multistep derivation (|—*) is reflexive transitive 
closure of single step.
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Language Recognized by PDA
• Given A = (Q, Σ, Γ, δ, q0, Z0, F)

there are three senses of recognition
• By final state 

L(A) = {w|[q0,w,Z0] |—* [f,λ,β]}, where f∈F
• By empty stack

N(A) = {w|[q0,w,Z0] |—* [q,λ,λ]} 
• By empty stack and final state 

E(A) = {w|[q0,w,Z0] |—* [f,λ,λ]}, where f∈F
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Top Down Parsing by PDA
• Given G = (V, Σ, R, S), define 

A = ({q}, Σ, Σ∪V, δ, q, S, ϕ)
• δ(q,a,a) = {(q,λ)} for all a ∈ Σ
• δ(q,λ,A) = {(q,α) |  A → α ∈ R (guess) }
• N(A) = L(G)

• Give just one state, this is essentially 
stateless, except for stack
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Top Down Parsing by PDA
E à E + T | T
T à T * F | F 
F à (E) | Int
•δ(q,+,+) = {(q,λ)}, δ(q,*,*) = {(q,λ)},
•δ(q,Int,Int) = {(q,λ)},
•δ(q,(,() = {(q,λ)}, δ(q,),)) = {(q,λ)} 
•δ(q,λ,E) = {(q,E+T), (q,T)}
•δ(q,λ,T) = {(q,T*F), (q,F)}
•δ(q,λ,F) = {(q,(E)), (q,Int)}
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Bottom Up Parsing by PDA
• Given G = (V, Σ, R, S), define 

A = ({q,f}, Σ, Σ∪V∪{$}, δ, q, $, {f})
• δ(q,a,λ) = {(q,a)} for all a ∈ Σ , SHIFT
• δ(q,λ,αR) ⊇ {(q,A)} if A → α ∈ R, REDUCE

Cheat: looking at more than top of stack
• δ(q,λ,S) ⊇ {(f,λ)}
• δ(f,λ,$) = {(f,λ)} , ACCEPT
• E(A) = L(G)
• Could also do δ(q,λ,S$)⊇{(q,λ)}, N(A) = L(G)
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Bottom Up Parsing by PDA
E à E + T | T
T à T * F | F 
F à (E) | Int
•δ(q,+,λ)={(q,+)}, δ(q,*,λ)={(q,*)}, δ(q,Int,λ)={(q,Int)},
δ(q,(,λ)={(q,()}, δ(q,),λ)={(q,))}  
•δ(q,λ,T+E) = {(q,E)}, δ(q,λ,T) ⊇ {(q,E)}
•δ(q,λ,F*T) ⊇ {(q,T)}, δ(q,λ,F) ⊇ {(q,T)}
•δ(q,λ,)E() ⊇ {(q,F)}, δ(q,λ,Int) ⊇ {(q,F)}
•δ(q,λ,E) ⊇ {(f,λ)}
•δ(f,λ,$) = {(f,λ)}
•E(A) = L(G)
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Challenge
• Use the two recognizers on some sets of 

expressions like
– 5 + 7 * 2
– 5 * 7 + 2
– (5 + 7) * 2
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Converting a PDA to CFG
• Book has one approach; here is another

• Let A = ( Q, S, G, d, q0, Z, F) accept L by empty stack and final state

• Define A’ = (QÈ{q0’,f}, S, GÈ{$}, d’, q0’, $, {f}) where
– d’(q0’, λ, $) = {(q0, PUSH(Z)) or in normal notation {(q0, Z$)}

– d’ does what d does but only uses PUSH and POP instructions, always reading top of stack 
Note1: we need to consider using the $ for cases of the original machine looking at empty 
stack, when using λ for stack check. This guarantees we have top of stack until very end.
Note2: If original adds stuff to stack, we do pop, followed by a bunch of pushes.

– We add (f, λ) = (f, POP) to d’(qf, λ, $) whenever qf is in F, so we jump to a fixed final state.

• Now, wlog, we can assume our PDA uses only POP and PUSH, has just 
one final state and accepts by empty stack and final state. We will assume 
the original machine is of this form and that its bottom of stack is $.

• Define G = (V, S, R, S) where

– V = {S} È { <q, X, p> | q,p Î Q, X Î G }

– R on next page
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Rules for PDA to CFG
• R contains rules as follows:

S ® <q0,$,f> where F = {f}
meaning: want to generate w whenever 
[q0,w,$] |¾*[f,λ,λ]

• Remaining rules are:
<q,X,p> ® a<s,Y,t><t,X,p>
whenever d(q,a,X) ⊇ {(s,PUSH(Y))}
<q,X,p> ® a
whenever d(q,a,X) ⊇ {(p,POP)}

• Want <q,X,p>Þ*w when [q,w,X] |¾*[p,λ,λ]
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Greibach Normal Form
• Each rule of a GNF is constrained to be of form:

A → aa, A ∈ V, a ∈ Σ, a ∈ V* 
• If the language contains l then we allow

S → l
and constrain S to not be on right hand side of any rule

• The beauty of this form is that, in a bottom up parse, 
every step consumes an input character and so parse is 
linear (if we guess right)

• We will not show details of conversion but it is 
dependent on starting in CNF and then removing left 
recursion, both of which we have already shown
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Closure Properties

Context Free Languages



Intersection with Regular
• CFLs are closed under intersection with Regular sets

– To show this we use the equivalence of CFGs generative power with the 
recognition power of PDAs.

– Let A0 = ( Q0, S, G, d0, q0, $, F0) be an arbitrary PDA
– Let A1 = ( Q1, S, d1, q1, F1) be an arbitrary DFA
– Define A2 = ( Q0 ´ Q1, S, G, d2, <q0,q1> $, F0 ´ F1) where

• d2(<q,s>, a, X) ⊇ {(<q�,s�>, a)}, aÎSÈ{l}, XÎG iff
d0(q, a, X) ⊇ {(q�, a)} and 
d1(s,a) = s� (if a=l then s� = s).

– Using the definition of derivations we see that
[<q0,q1>, w, $] |¾* [<t,s>, l, b] in A2 iff
[q0, w, $] |¾* [t, l, b] in A0 and
[q1, w] |¾* [s, l] in A1

But then wÎF(A2) iff tÎF0 and sÎF1 iff wÎF(A0) and wÎF(A1)
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Substitution
• CFLs are closed under CFL substitution

– Let G=(V,S,R,S) be a CFG.
– Let f be a substitution over S such that

• f(a) = La for a Î S
• Ga = (Va,Sa,Ra,Sa) is a CFG that produces La.
• No symbol appears in more than one of V or any Va

– Define Gf = (V ÈaÎSVa, ÈaÎSSa, R� ÈaÎSRa, S)
• R� = { A ® g(a) where A ® a is in R }
• g: (VÈS)* ® (V ÈaÎSSa )*
• g(l) = l; g(B) = B, B Î V; g(a) = Sa, a Î S
• g(aX) = g(a) g(X), |a| > 0, X Î VÈS

– Claim, f(L(G)) = L(Gf), and so CFLs closed under 
substitution and homomorphism.
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More on Substitution
• Consider G�f. If we limit derivations to the rules R� = { A ® g(a) 

where A ® a is in R } and consider only sentential forms over  the 
ÈaÎSSa , then S Þ* Sa1 Sa2 … San in G� iff S Þ* a1 a2 … an 
iff a1 a2 … an Î L(G). But, then w Î L(G) iff f(w) Î L(Gf) and, thus, 
f(L(G)) = L(Gf). 

• Given that CFLs are closed under intersection, substitution, 
homomorphism and intersection with regular sets, we can recast 
previous proofs to show that CFLs are closed under
– Prefix, Suffix, Substring, Quotient with Regular Sets

• Later we will show that CFLs are not closed under Quotient with 
CFLs.
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Context Sensitive



Context Sensitive Grammar
G = (V, S, R, S) is a PSG where
Each member of R is a rule whose right side is no shorter than its left 
side.
The essential idea is that rules are length preserving, although we do 
allow S ® λ so long as S never appears on the right hand side of any 
rule.
A context sensitive grammar is denoted as a CSG and the language 
generated is a Context Sensitive Language (CSL).
The recognizer for a CSL is a Linear Bounded Automaton (LBA), a form 
of Turing Machine (soon to be discussed), but with the constraint that it 
is limited to moving along a tape that contains just the input surrounded 
by a start and end symbol.
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CSG Example#1
L = { anbncn | n>0 }
G = ({A,B,C}, {a,b,c}, R, A) where R is
A   → aBbc | abc
B   → aBbC | abC
Note: A ⇒ aBbc ⇒n an+1(bC)n bc // n>0
Cb → bC // Shuttle C over to a c
Cc → cc // Change C to a c
Note: an+1(bC)n bc ⇒* an+1bn+1cn+1

Thus, A ⇒* anbncn , n>0
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CSG Example#2
L = { ww | w ∈{0,1}+ }
G = ({S,A,X,Z,<0>,<1>}, {0,1}, R, S) where R is
S   → 00 | 11 | 0A<0> | aA<1> | 1A<1>
A   → 0AZ | 1AX | 0Z | 1X
Z0 → 0Z Z1 → 1Z // Shuttle Z (for owe zero)
X0 → 0X X1 → 1X // Shuttle X (for owe one)
Z<0> → 0<0> Z<1> → 1<0> // New 0 must be on rhs of old 0/1’s
X<0> → 0<1> X<1> → 1<1> // New 1 must be on rhs of old 0/1’s
<0> → 0 // Guess we are done
<1> → 1 // Guess we are done
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Phrase Structured Grammar
We previously defined PSGs. The language generated by a 
PSG is a Phrase Structured Language (PSL) but is more 
commonly called a recursively enumerable (re) language. 
The reason for this will become evident a bit later in the 
course.

The recognizer for a PSL (re language) is a Turing 
Machine, a model of computation we will soon discuss.
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HISTORY

The Quest for Mechanizing 
Mathematics



4/7/19 © UCF EECS 210

Hilbert, Russell and Whitehead

• Until 1800’s there were no formal systems to 
reason about mathematical properties

• Major advances in late 1800’s/early 1900’s
• Axiomatic schemes

– Axioms plus sound rules of inference
– Much of focus on number theory

• First Order Predicate Calculus
– "x$y [y > x]

• Second Order (Peano’s Axiom)
– "P [[P(0) && "x[P(x) ÞP(x+1)]] Þ "xP(x)]

210
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Hilbert
• In 1900 declared there were 23 really 

important problems in mathematics.
• Belief was that the solutions to these 

would help address math’s complexity.
• Hilbert’s Tenth asks for an algorithm to 

find the integral zeros of polynomial 
equations with integral coefficients. This is 
now known to be impossible (In 1972, 
Matiyacevič showed this undecidable).

211
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Hilbert’s Belief
• All mathematics could be developed within 

a formal system that allowed the 
mechanical creation and checking of 
proofs. 

212
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Gödel
• In 1931 he showed that any first order theory 

that embeds elementary arithmetic is either 

incomplete or inconsistent.

• He did this by showing that such a first order 

theory cannot reason about itself. That is, there 

is a first order expressible proposition that 

cannot be either proved or disproved, or the 

theory is inconsistent (some proposition and its 

complement are both provable).

• Gödel also developed the general notion of 

recursive functions but made no claims about 

their strength.

213
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Turing (Post, Church, Kleene)
• In 1936, each presented a formalism for computability.

– Turing and Post devised abstract machines and 
claimed these represented all mechanically 
computable functions.

– Church developed the notion of lambda-computability 
from recursive functions (as previously defined by 
Gödel and Kleene) and claimed completeness for this 
model.

• Kleene demonstrated the computational equivalence of 
recursively defined functions to Post-Turing machines. 

• Church’s notation was the lambda calculus, which later 
gave birth to Lisp.

214
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More on Emil Post
• In the 1920’s, starting with notation developed by Frege and 

others in 1880s, Post devised the truth table form we all use 

now for Boolean expressions (propositional logic). This was a 

part of his PhD thesis in which he showed the axiomatic 

completeness of the propositional calculus (all tautologies can 

be deduced from a finite set of tautologies and a finite set of 

rules of inference).

• In the late 1930’s and the 1940’s, Post devised symbol 

manipulation systems in the form of rewriting rules 

(precursors to Chomsky’s grammars). He showed their 

equivalence to Turing machines.

• In 1940s, Post showed the complexity (undecidability) of 

determining what is derivable from an arbitrary set of 

propositional axioms. 
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Computability
The study of what can/cannot be 

done via purely mechanical 
means



Basic Definitions
The Preliminaries



4/7/19 218

Goals of Computability
• Provide precise characterizations (computational 

models) of the class of effective procedures / algorithms.
• Study the boundaries between complete and incomplete 

models of computation.
• Study the properties of classes of solvable and 

unsolvable problems.
• Solve or prove unsolvable open problems.
• Determine reducibility and equivalence relations among 

unsolvable problems.
• Our added goal is to apply these techniques and results 

across multiple areas of Computer Science.
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Effective Procedure
• A process whose execution is clearly specified to the 

smallest detail
• Such procedures have, among other properties, the 

following:
– Processes must be finitely describable and the language used to 

describe them must be over a finite alphabet.
– The current state of the machine model must be finitely 

presentable.
– Given the current state, the choice of actions (steps) to move to 

the next state must be easily determinable from the procedure�s 
description.

– Each action (step) of the process must be capable of being 
carried out in a finite amount of time.

– The semantics associated with each step must be clear and 
unambiguous.
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Algorithm
• An effective procedure that halts on all 

input
• The key term here is �halts on all input�
• By contrast, an effective procedure may 

halt on all, none or some of its input.
• The domain of an algorithm is its entire 

domain of possible inputs.
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Sets and Decision Problems
• Set -- A collection of atoms from some 

universe U.  Ø denotes the empty set.
• (Decision) Problem -- A set of questions, 

each of which has answer “yes” or “no”.
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Categorizing Problems (Sets)
• Solvable or Decidable -- A problem P is said to 

be solvable (decidable) if there exists an 
algorithm F which, when applied to a question q 
in P, produces the correct answer (�yes� or 
�no�).

• Solved -- A problem P is said to solved if P is 
solvable and we have produced its solution.

• Unsolved, Unsolvable (Undecidable) --
Complements of above
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Categorizing Problems (Sets) # 2
• Recursively enumerable -- A set S is recursively 

enumerable (re) if S is empty (S = Ø) or there exists an 
algorithm F, over the natural numbers N, whose range is 
exactly S.  A problem is said to be re if the set 
associated with it is re.

• Semi-Decidable -- A problem is said to be semi-
decidable if there is an effective procedure F which, 
when applied to a question q in P, produces the answer 
�yes� if and only if q has answer �yes�.  F need not halt 
if q has answer �no�.

• Semi-decidable is the same as the notion of 
recognizable used in the text.
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Immediate Implications
• P solved implies P solvable implies P

semi-decidable (re, recognizable).
• P non-re implies P unsolvable implies P

unsolved.
• P finite implies P solvable.
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Slightly Harder Implications
• P enumerable iff P semi-decidable.
• P solvable iff both SP and (U — SP) are re 

(semi-decidable).

• We will prove these later.
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Existence of Undecidables
• A counting argument

– The number of mappings from N to N is at least as 
great as the number of subsets of N. But the number 
of subsets of N is uncountably infinite (À1). However, 
the number of programs in any model of computation 
is countably infinite (À0). This latter statement is a 
consequence of the fact that the descriptions must be 
finite and they must be written in a language with a 
finite alphabet. In fact, not only is the number of 
programs countable, it is also effectively enumerable; 
moreover, its membership is decidable. 

• A diagonalization argument
– Will be shown later in class
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Hilbert�s Tenth

Diophantine Equations are 
Unsolvable

One Variable Diophantine 
Equations are Solvable
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Hilbert�s 10th

• In 1900 declared there were 23 really important 
problems in mathematics.

• Belief was that the solutions to these would help 
address math’s complexity.

• Hilbert’s Tenth asks for an algorithm to find the 
integral roots of polynomials with integral 
coefficients. For example
6x3yz2 + 3xy2 – x3 – 10 = 0 has roots
x = 5; y = 3; z = 0

• This is now known to be impossible (In 1970, 
Matiyacevič showed this undecidable).
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Hilbert�s 10th is Semi-Decidable

• Consider over one variable: P(x) = 0
• Can semi-decide by plugging in 

0, 1, -1, 2, -2, 3, -3, …
• This terminates and says �yes� if P(x) 

evaluates to 0, eventually. Unfortunately, it 
never terminates if there is no x such that 
P(x) =0.

• Can easily extend to P(x1,x2,..,xk) = 0.
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P(x) = 0 is Decidable

• cn xn + cn-1 xn-1 +… + c1 x + c0 = 0
• xn = -(cn-1 xn-1 + … + c1 x + c0)/cn

• |xn| £ cmax(|xn-1| + … + |x| + 1|)/|cn|
• |xn| £ cmax(n |xn-1|)/|cn|, since |x|³1
• |x| £ n´cmax/|cn|
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P(x) = 0 is Decidable
• Can bound the search to values of x in range [�

n * ( cmax / cn )], where
n = highest order exponent in polynomial
cmax = largest absolute value coefficient
cn = coefficient of highest order term 

• Once we have a search bound and we are 
dealing with a countable set, we have an 
algorithm to decide if there is an x.

• Cannot find bound when more than one 
variable, so cannot extend to P(x1,x2,..,xk) = 0.
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Undecidability

We Can’t Do It All



Classic Unsolvable Problem
Given an arbitrary program P, in some language L, and 
an input x to P, will P eventually stop when run with input 
x?
The above problem is called the “Halting Problem.” It is 
clearly an important and practical one – wouldn't it be 
nice to not be embarrassed by having your program run 
“forever” when you try to do a demo? 
Unfortunately, there’s a fly in the ointment as one can 
prove that no algorithm can be written in L that solves 
the halting problem for L.
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Some terminology
We will say that a procedure, f, converges on input x if it eventually 
halts when it receives x as input. We denote this as f(x)¯. 

We will say that a procedure, f, diverges on input x if it never halts 
when it receives x as input. We denote this as f(x)­. 

Of course, if f(x)¯ then f defines a value for x. In fact we also say 
that f(x) is defined if f(x)¯ and undefined if f(x)­.

Finally, we define the domain of f as {x | f(x)¯}. 
The range of f is {y | f(x)¯ and f(x) = y }.

4/7/19 234© UCF EECS



4/7/19 © UCF EECS 235

Halting Problem
Assume we can decide the halting problem.  Then there exists some total 

function Halt such that

1 if jx (y) ¯
Halt(x,y) =

0 if jx (y) ­
Here, we have numbered all programs and jx refers to the x-th program in 

this ordering.  Now we can view Halt as a mapping from  À into À by 

treating its input as a single number representing the pairing of two numbers 

via the one-one onto function

pair(x,y) = <x,y> = 2x (2y + 1) – 1

with inverses

<z>1 = log2(z+1)

<z>2 = ((( z + 1 ) // 2 <z>1 ) – 1 ) // 2
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The Contradiction
Now if Halt exist, then so does Disagree, where

0 if Halt(x,x) = 0, i.e, if jx (x) ­
Disagree(x) =

µy (y == y+1) if Halt(x,x) = 1, i.e, if jx (x) ¯

Since Disagree is a program from  À into À , Disagree can be 
reasoned about by Halt.  Let d be such that Disagree = jd, then
Disagree(d) is defined Û Halt(d,d) = 0 

Û jd (d) ­
Û Disagree(d) is undefined
But this means that Disagree contradicts its own existence.  Since 
every step we took was constructive, except for the original 
assumption, we must presume that the original assumption was in 
error.  Thus, the Halting Problem is not solvable.



Halting is recognizable
While the Halting Problem is not solvable, it is re, recognizable or 
semi-decidable. 
To see this, consider the following semi-decision procedure. Let P
be an arbitrary procedure and let x be an arbitrary natural number.  
Run the procedure P on input x until it stops. If it stops, say “yes.” If 
P does not stop, we will provide no answer. This semi-decides the 
Halting Problem. Here is a procedural description.

Semi_Decide_Halting() {
Read P, x;
P(x);
Print “yes”;

}
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Why not just algorithms?
A question that might come to mind is why we could not just have a 
model of computation that involves only programs that halt for all 
input. Assume you have such a model – our claim is that this model 
must be incomplete!

Here’s the logic. Any programming language needs to have an 
associated grammar that can be used to generate all legitimate 
programs. By ordering the rules of the grammar in a way that 
generates programs in some lexical or syntactic order, we have a 
means to recursively enumerate the set of all programs. Thus, the 
set of procedures (programs) is re. using this fact, we will employ 
the notation that jx is the x-th procedure and jx(y) is the x-th
procedure with input y. We also refer to x as the procedure’s index.
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The universal machine
First, we can all agree that any complete model of 
computation must be able to simulate programs in its 
own language. We refer to such a simulator (interpreter) 
as the Universal machine, denote Univ. This program 
gets two inputs. The first is a description of the program 
to be simulated and the second of the input to that 
program. Since the set of programs in a model is re, we 
will assume both arguments are natural numbers; the 
first being the index of the program. Thus,

Univ(x,y) = jx(y)
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Non-re Problems
• There are even “practical” problems that are worse than 

unsolvable -- they’re not even semi-decidable.  

• The classic non-re problem is the Uniform Halting 
Problem, that is, the problem to decide of an arbitrary 

effective procedure P, whether or not P is an algorithm.  

• Assume that the algorithms can be enumerated, and that 

F accomplishes this.  Then

F(x) = Fx

where F0, F1, F2, … is a list of indexes of all and only the 

algorithms
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The Contradiction
• Define G( x ) = Univ ( F(x) , x ) + 1 = jF(x)( x ) = Fx(x) + 1

• But then G is itself an algorithm.  Assume it is the g-th one

F(g) = Fg = G

Then, G(g) = Fg(g) + 1 = G(g) + 1

• But then G contradicts its own existence since G would need to be 
an algorithm.

• This cannot be used to show that the effective procedures are non-
enumerable, since the above is not a contradiction when G(g) is 
undefined.  In fact, we already have shown how to enumerate the 
(partial) recursive functions.



Consequences
• To capture all the algorithms, any model of computation 

must include some procedures that are not algorithms.

• Since the potential for non-termination is required, every 
complete model must have some for form of iteration 
that is potentially unbounded.

• This means that simple, well-behaved for-loops (the kind 
where you can predict the number of iterations on entry 
to the loop) are not sufficient. While type loops are 
needed, even if implicit rather than explicit.
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Insights



Non-re nature of algorithms
• No generative system (e.g., grammar) can produce 

descriptions of all and only algorithms
• No parsing system (even one that rejects by 

divergence) can accept all and only algorithms

• Of course, if you buy Church’s Theorem, the set of all 
procedures can be generated. In fact, we can build an 
algorithmic acceptor of such programs. 
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Many unbounded ways
• How do you achieve divergence, i.e., what are the 

various means of unbounded computation in each of 
our models?

• GOTO: Turing Machines and Register Machines
• Minimization: Recursive Functions

– Why not just simple finite iteration or recursion?
• Fixed Point: Ordered Petri Nets,  

(Ordered) Factor Replacement Systems
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Non-determinism
• It sometimes doesn’t matter

– Turing Machines, Finite State Automata, 
Linear Bounded Automata

• It sometimes helps
– Push Down Automata

• It sometimes hinders
– Factor Replacement Systems, Petri Nets
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Models of Computation

Turing Machines
Register Machines

Factor Replacement Systems
Recursive Functions



Turing Machines

1st Model
A Linear Memory Machine



Typical Textbook Description
• A Turing machine is a 7-tuple

(Q, Σ, Γ, δ, q0, qaccept, qreject)
• Q is finite set of states
• Σ, is a finite input alphabet not containing the 

blank symbol ⊔
• Γ is finite set of tape symbols that includes Σ and 
⊔ commonly Γ = Σ ∪ {⊔}

• δ: Q�Γ� Q�Γ�{R,L}
• q0 starts, qaccept accepts, qreject rejects
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Turing versus Post
• The Turing description just given requires you to write a new symbol 

and move off the current tape square
• Post had a variant where

δ: Q�Γ� Q�(Γ∪{R,L})
• Here, you either write or move, not both
• Also, Post did not have an accept or reject state – acceptance is 

giving an answer of 1; rejection is 0; this treats decision procedures 
as predicates (functions that map input into {0,1})

• The way we stop our machines from running is to omit actions for 
some discriminants making the transition function partial

• I tend to use Post’s notation and to create macros so machines are 
easy to create

• I am not a fan of having you build Turing tables
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Basic Description
• We will use a simplified form that is a variant of Post’s models.   
• Here, each machine is represented by a finite set of states Q, 

the simple alphabet {0,1}, where 0 is the blank symbol, and 
each state transition is defined by a 4-tuple of form 

q a X s
where q a is the discriminant based on current state q, 
scanned symbol a; X can be one of {R, L, 0, 1}, signifying 
move right, move left, print 0, or 1; and s is the new state.  

• Limiting the alphabet to {0,1} is not really a limitation.  We can 
represent a k-letter alphabet by encoding the j-th letter via j 
1�s in succession.  A 0 ends each letter, and two 0�s ends a 
word. 

• We rarely write quads.  Rather, we typically will build 
machines from simple forms. 

4/7/19 251© UCF EECS



Base Machines
• R -- move right over any scanned symbol
• L -- move left over any scanned symbol
• 0 -- write a 0 in current scanned square
• 1 -- write a 1 in current scanned square
• We can then string these machines together with 

optionally labeled arc.
• A labeled arc signifies a transition from one part of the 

composite machine to another, if the scanned square�s 
content matches the label.  Unlabeled arcs are 
unconditional.  We will put machines together without 
arcs, when the arcs are unlabeled. 
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Useful Composite Machines

R 1
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R -- move right to next 0 (not including current square)  
…?11…10… Þ …?11…10… 

L -- move left to next 0 (not including current square)  
…011…1?… Þ …011…1?… 

L 1
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Commentary on Machines
• These machines can be used to move 

over encodings of letters or encodings of 
unary based natural numbers.  

• In fact, any effective computation can 
easily be viewed as being over natural 
numbers.  We can get the negative 
integers by pairing two natural numbers.  
The first is the sign (0 for +, 1 for -). The 
second is the magnitude.
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Computing with TMs
A reasonably standard definition of a Turing 
computation of some n-ary function F is to 
assume that the machine starts with a tape 
containing the n inputs, x1, … , xn in the form

…01x101x20…01xn0…
and ends with

…01x101x20…01xn01y0…
where y = F(x1, … , xn).
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Addition by TM
Need the copy family of useful 
submachines, where Ck copies k-th 
preceding value.

The add machine is then
C2 C2 L 1 R L 0
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Turing Machine Variations
• Two tracks
• N tracks
• Non-deterministic *********
• Two-dimensional
• K dimensional
• Two stack machines
• Two counter machines
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Register Machines

2nd Model
Feels Like Assembly Language



Register Machine Concepts
• A register machine consists of a finite length program, 

each of whose instructions is chosen from a small 
repertoire of simple commands.

• The instructions are labeled from 1 to m, where there are 
m instructions.  Termination occurs as a result of an 
attempt to execute the m+1-st instruction.

• The storage medium of a register machine is a finite set 
of registers, each capable of storing an arbitrary natural 
number.

• Any given register machine has a finite, predetermined 
number of registers, independent of its input.
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Computing by Register Machines
• A register machine partially computing some n-

ary function F typically starts with its argument 
values in registers 1 to n and ends with the 
result in the 0-th register.

• We extend this slightly to allow the computation 
to start with values in its k+1-st through k+n-th
register, with the result appearing in the k-th
register, for any k, such that there are at least 
k+n+1 registers.
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Register Instructions
• Each instruction of a register machine is of 

one of two forms:
INCr[i] –

increment r and jump to i.
DECr[p, z] –

if register r > 0, decrement r and jump to p
else jump to z

• Note, we do not use subscripts if obvious.
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Addition by RM
Addition (r0 ¬ r1 + r2)
1. DEC0[1,2] : Zero result (r0) and work (r3) registers 
2. DEC3[2,3]
3. DEC1[4,6] : Add r1 to r0, saving original r1 in r3
4. INC0[5]
5. INC3[3]
6. DEC3[7,8] : Restore r1
7. INC1[6]
8. DEC2[9,11] : Add r2 to r0, saving original r2 in r3
9. INC0[10]
10. INC3[8]
11.DEC3[12,13] : Restore r2
12. INC2[11]
13. : Halt by branching here
In many cases we just assume registers, other those with input, are zero 
at start. That would remove need instructions 1 and 2.
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Limited Subtraction by RM
Subtraction (r0 ¬ r1 - r2, if r1≥r2; 0, otherwise)
1. DEC0[1,2] : Zero result (r0) and work (r3) registers 
2. DEC3[2,3]
3. DEC1[4,6] : Add r1 to r0, saving original r1 in r3
4. INC0[5]
5. INC3[3]
6. DEC3[7,8] : Restore r1
7. INC1[6]
8. DEC2[9,11] : Subtract r2 from r0, saving original r2 in r3
9. DEC0[10,10]   : Note that decrementing 0 does nothing
10. INC3[8]
11.DEC3[12,13] : Restore r2
12. INC2[11]
13. : Halt by branching here
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Factor Replacement 
Systems

3rd Model
Deceptively Simple
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Factor Replacement Concepts
• A factor replacement system (FRS) consists of a finite 

(ordered) sequence of fractions, and some starting 
natural number x.  

• A fraction a/b is applicable to some natural number x, 
just in case x is divisible by b.  We always chose the first 
applicable fraction (a/b), multiplying it times x to produce 
a new natural number x*a/b.  The process is then 
applied to this new number.  

• Termination occurs when no fraction is applicable.  
• A factor replacement system partially computing n-ary

function F typically starts with its argument encoded as 
powers of the first n odd primes.  Thus, arguments 
x1,x2,…,xn are encoded as 3x15x2…pn

xn.  The result 
then appears as the power of the prime 2.
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Addition by FRS
Addition is 3x15x2 becomes 2x1+x2

or, in more details, 203x15x2 becomes 2x1+x2 3050

2 / 3
2 / 5

Note that these systems are sometimes presented as 
rewriting rules of the form

bx ® ax
meaning that a number that has can be factored as bx
can have the factor b replaced by an a.  
The previous rules would then be written

3x  ® 2x
5x  ® 2x
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Limited Subtraction by FRS
Subtraction is 3x15x2 becomes 2max(0,x1-x2)

3×5x  ® x
3x     ® 2x
5x     ® x
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Ordering of Rules
• The ordering of rules are immaterial for the 

addition example but are critical to the workings 
of limited subtraction.

• In fact, if we ignore the order and just allow any 
applicable rule to be used, we get a form of non-
determinism that makes these systems 
equivalent to Petri nets.  

• The ordered kind are deterministic and are 
equivalent to a Petri net in which the transitions 
are prioritized.
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Why Deterministic?
To see why determinism makes a difference, consider

3×5x  ® x
3x     ® 2x
5x     ® x

Starting with 135 = 3351, deterministically we get
135 Þ 9 Þ 6 Þ 4 = 22

Non-deterministically we get a larger, less selective set.
135 Þ 9 Þ 6 Þ 4 = 22

135 Þ 90 Þ 60 Þ 40 Þ 8 = 23

135 Þ 45 Þ 3 Þ 2 = 21

135 Þ 45 Þ 15 Þ 1 = 20

135 Þ 45 Þ 15 Þ 5 Þ 1 = 20

135 Þ 45 Þ 15 Þ 3 Þ 2 = 21

135 Þ 45 Þ 9 Þ 6 Þ 4 = 22

135 Þ 90 Þ 60 Þ 40 Þ 8 = 23

… 
This computes 2z where 0 ≤ z≤x1. Think about it.
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More on Determinism
In general, we might get an infinite set 
using non-determinism, whereas 
determinism might produce a finite set.  To 
see this consider a system

2x  ® x
2x  ® 4x

starting with the number 2.
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Sample RM and FRS
Present a Register Machine that computes IsOdd. Assume R1=x at 
starts; at termination, set R0=1 if x is odd; 0 otherwise. We 
assume R0=0 at start. We also are not concerned about destroying 
input.
1. DEC1[2, 4]
2. DEC1[1, 3]
3. INC0[4]
4.
Present a Factor Replacement System that computes IsOdd. 
Assume starting number is 3^x; at termination, result is 2=2^1 if x 
is odd; 1= 2^0 otherwise.
3*3 x ® x
3 x ® 2 x
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Sample FRS
Present a Factor Replacement System that computes IsPowerOf2. 
Assume starting number is 3x 5; at termination, result is 2=21 if x is 
a power of 2; 1= 20 otherwise
32*5 x ® 5*7 x
3*5*7 x ® x
3*5 x ® 2 x
5*7 x ® 7*11 x
7*11 x ® 3*11 x
11 x ® 5 x
5 x ® x
7 x ® x

4/7/19 © UCF EECS 272



© UCF EECS 273

Systems Related to FRS
• Petri Nets:

– Unordered

– Ordered

– Negated Arcs

• Vector Addition Systems:
– Unordered

– Ordered

• Factors with Residues:

– a x + c   ® b x + d

• Finitely Presented Abelian Semi-Groups
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Petri Net Operation
• Finite number of places, each of which can hold zero of more 

markers.
• Finite number of transitions, each of which has a finite number of 

input and output arcs, starting and ending, respectively, at places.
• A transition is enabled if all the nodes on its input arcs have at least 

as many markers as arcs leading from them to this transition.
• Progress is made whenever at least one transition is enabled. 

Among all enabled, one is chosen randomly to fire.
• Firing a transition removes one marker per arc from the incoming 

nodes and adds one marker per arc to the outgoing nodes.
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Petri Net Computation
• A Petri Net starts with some finite number of markers distributed 

throughout its n nodes. 
• The state of the net is a vector of n natural numbers, with the i-th

component’s number indicating the contents of the i-th node. E.g., 
<0,1,4,0,6> could be the state of a Petri Net with 5 places, the 2nd, 
3rd and 5th, having 1, 4, and 6 markers, resp., and the 1st and 4th 
being empty.

• Computation progresses by selecting and firing enabled transitions. 
Non-determinism is typical as many transitions can be 
simultaneously enabled.

• Petri nets are often used to model coordination algorithms, 
especially for computer networks.
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Variants of Petri Nets
• A Petri Net is not computationally complete. In fact, its halting and 

word problems are decidable. However, its containment problem 
(are the markings of one net contained in those of another?) is not 
decidable.

• A Petri net with prioritized transitions, such that the highest priority 
transitions is fired when multiple are enabled is equivalent to an 
FRS. (Think about it).

• A Petri Net with negated input arcs is one where any arc with a 
slash through it contributes to enabling its associated transition only 
if the node is empty. These are computationally complete. They can 
simulate register machines. (Think about this also).
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Petri Net Example

Marker
Place
Transition
Arc

… …
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Vector Addition
• Start with a finite set of vectors in integer n-space.
• Start with a single point with non-negative integral 

coefficients.
• Can apply a vector only if the resultant point has non-

negative coefficients.
• Choose randomly among acceptable vectors.
• This generates the set of reachable points.
• Vector addition systems are equivalent to Petri Nets.
• If order vectors, these are equivalent to FRS. 
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Vectors as Resource Models
• Each component of a point in n-space 

represents the quantity of a particular 

resource.

• The vectors represent processes that 

consume and produce resources.

• The issues are safety (do we avoid bad 

states) and liveness (do we attain a 

desired state).

• Issues are deadlock, starvation, etc.
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Factors with Residues
• Rules are of form

– ai x + ci ® bi x + di

– There are n such rules
– Can apply if number is such that you get a residue 

(remainder) ci when you divide by ai

– Take quotient x and produce a new number 
bi x + di

– Can apply any applicable one (no order)
• These systems are equivalent to Register 

Machines.
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Abelian Semi-Group
S = (G, •) is a semi-group if

G is a set, • is a binary operator, and
1. Closure: If x,y Î G then x • y Î G 
2. Associativity: x • (y • z) = (x • y) • z

S is a monoid if
3. Identity: $e Î G "x Î G [e • x = x • e = x]

S is a group if 
4. Inverse: "x Î G $x-1 Î G [x-1 • x = x • x-1 = e]

S is Abelian if • is commutative
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Finitely Presented
• S = (G, •), a semi-group (monoid, group), is finitely 

presented if there is  a finite set of symbols, S, called the 
alphabet or generators, and a finite set of equalities 
(ai = bi), the reflexive transitive closure of which 
determines equivalence classes over G. 

• Note, the set G is the closure of the generators under the 
semi-group’s operator •.

• The problem of determining membership in equivalence 
classes for finitely presented Abelian semi-groups is 
equivalent to that of determining mutual derivability in an 
unordered FRS or Vector Addition System with inverses 
for each rule.
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Recursive Functions

Primitive and µ-Recursive



Primitive Recursive

An Incomplete Model
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Basis of PRFs
• The primitive recursive functions are defined by 

starting with some base set of functions and 
then expanding this set via rules that create new 
primitive recursive functions from old ones.

• The base functions are:
Ca(x1,…,xn) = a : constant functions

(x1,…,xn) = xi : identity functions
: aka projection 

S(x) = x+1 : an increment function

		 i
nI
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Building New Functions
• Composition:

If G, H1, … , Hk are already known to be primitive 
recursive, then so is F, where

F(x1,…,xn) = G(H1(x1,…,xn), … , Hk(x1,…,xn))
• Iteration (aka primitive recursion): 

If G, H are already known to be primitive recursive, then 
so is F, where

F(0, x1,…,xn) = G(x1,…,xn)
F(y+1, x1,…,xn) = H(y, x1,…,xn, F(y, x1,…,xn))

We also allow definitions like the above, except iterating 
on y as the last, rather than first argument.
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Addition & Multiplication
Example: Addition

+(0,y) =    (y)
+(x+1,y) = H(x,y,+(x,y))

where H(a,b,c) = S(    (a,b,c))
Example: Multiplication

*(0,y) = C0(y)
*(x+1,y) = H(x,y,*(x,y)) 

where H(a,b,c) = +(     (a,b,c),    (a,b,c)) 
= b+c = y + *(x,y) = (x+1)*y

		 23I

		 11I

		 3
3I

		 3
3I
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Basic Arithmetic
x + 1:

x + 1 = S(x)
x – 1:

0 - 1 = 0
(x+1) - 1 = x

x + y:
x + 0 = x
x+ (y+1) = (x+y) + 1

x – y: // limited subtraction
x – 0 = x 
x – (y+1) = (x–y) – 1
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2nd Grade Arithmetic
x * y:

x * 0 = 0
x * (y+1) = x*y + x

x!:
0! = 1
(x+1)! = (x+1) * x!
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Basic Relations
x == 0:

0 == 0 = 1
(y+1) == 0 = 0

x == y:
x==y = ((x – y) + (y – x )) == 0

x ≤y :
x≤y = (x – y) == 0

x ≥ y:
x≥y = y≤x

x > y :
x>y = ~(x≤y)  /* See ~ on next page */

x < y :
x<y = ~(x≥y)
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Basic Boolean Operations
~x:

~x = 1 – x  or  (x==0)

signum(x): 1 if x>0; 0 if x==0
~(x==0)

x && y:
x&&y = signum(x*y)

x || y:
x||y = ~((x==0) && (y==0))
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Definition by Cases 
One case

g(x) if P(x) 
f(x) = 

h(x) otherwise
f(x) = P(x) * g(x) + (1-P(x)) * h(x)

Can use induction to prove this is true for all k>0, where
g1(x) if P1(x) 
g2(x) if P2(x) && ~P1(x)

f(x) = …
gk(x) if Pk(x) && ~(P1(x) || … || ~Pk-1(x))
h(x) otherwise

4/7/19



© UCF EECS 293

Bounded Minimization 1
f(x) = µ z (z ≤ x) [ P(z) ] if $ such a z,

= x+1, otherwise
where P(z) is primitive recursive. 

Can show f is primitive recursive by 
f(0) = 1-P(0)
f(x+1) = f(x) if f(x) ≤ x 

= x+2-P(x+1) otherwise
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Bounded Minimization 2
f(x) = µ z (z < x) [ P(z) ] if $ such a z,

= x, otherwise
where P(z) is primitive recursive. 

Can show f is primitive recursive by 
f(0) = 0
f(x+1) = µ z (z ≤ x) [ P(z) ]  
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Intermediate Arithmetic
x // y:

x//0 = 0 : silly, but want a value
x//(y+1) = µ z (z<x) [ (z+1)*(y+1) > x ]

x | y: x is a divisor of y
x|y = ((y//x) * x) == y
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Primality
firstFactor(x): first non-zero, non-one factor of x.

firstfactor(x) = µ z  (2 ≤ z ≤ x) [ z|x ] , 
0 if none

isPrime(x):
isPrime(x) = firstFactor(x) == x && (x>1)

prime(i) = i-th prime:
prime(0) = 2
prime(x+1) = µ z(prime(x)< z ≤prime(x)!+1)[isPrime(z)]

We will abbreviate this as pi for prime(i)
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Exponents
x^y:

x^0 = 1
x^(y+1) = x * x^y

exp(x,i): the exponent of pi in number x.
exp(x,i) = µ z  (z<x) [ ~(pi^(z+1) | x) ]
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Pairing Functions
• pair(x,y) = <x,y> = 2x (2y + 1) – 1

• with inverses
<z>1 = exp(z+1,0)

<z>2 = ((( z + 1 ) // 2 <z>1 ) – 1 ) // 2
• These are very useful and can be extended to 

encode n-tuples
<x,y,z> = <x, <y,z> > (note: stack analogy)
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Pairing Function is 1-1 Onto
Prove that the pairing function <x,y> = 2^x (2y + 1) - 1 
is 1-1 onto the natural numbers.
Approach 1:
We will look at two cases, where we use the following 
modification of the pairing function, <x,y>+1, which implies 
the problem of mapping the pairing function to Z+.
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Case 1 (x=0)
Case 1:
For x = 0, <0,y>+1 = 20(2y+1) = 2y+1. But every odd 
number is by definition one of the form 2y+1, where y≥0; 
moreover, a particular value of y is uniquely associated 
with each such odd number and no odd number is 
produced when x=0. Thus, <0,y>+1 is 1-1 onto the odd 
natural numbers.
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Case 2 (x > 0)
Case 2:
For x > 0, <x,y>+1 = 2x(2y+1), where 2y+1 ranges over all odd number 
and is uniquely associated with one based on the value of y (we saw 
that in case 1). 2x must be even, since it has a factor of 2 and hence 
2x(2y+1) is also even. Moreover, from elementary number theory, we 
know that every even number except zero is of the form 2xz, where 
x>0, z is an odd number and this pair x,y is unique. Thus, <x,y>+1 is 1-
1 onto the even natural numbers, when x>0.

The above shows that <x,y>+1 is 1-1 onto Z+, but then <x,y> is 1-1 onto 
À, as was desired.
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Pairing Function is 1-1 Onto
Approach 2:
Another approach to show a function f over S is 
1-1 onto T is to show that 
f -1(f(x)) = x, for arbitrary xÎS and that 
f (f-1 (z)) = z, for arbitrary zÎT. 

Thus, we need to show that 
(<x,y>1,<x,y>2) = (x,y) for arbitrary (x,y)ÎÀ´À and 
<<z>1,<z>2> = z for arbitrary zÎÀ. 
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Alternate Proof
Let x,y be arbitrary natural number, then <x,y> = 2x(2y+1)-1. 
Moreover, <2x(2y+1)-1>1 = Factor(2x(2y+1),0) = x, since 2y+1 must be 
odd, and 
<2x(2y+1)-1>2 = ((2x(2y+1)/2^Factor(2x(2y+1),0))-1)/2 = 2y/2 = y.
Thus, (<x,y>1,<x,y>2) = (x,y), as was desired.
Let z be an arbitrary natural number, then the inverse of the pairing is 
(<z>1,<z>2)
Moreover, <<z>1,<z>2> = 2^<z>1 *(2<z>2+1)-1
= 2^Factor(z+1,0)*(2*((z+1)/ 2^Factor(z+1,0))/2-1+1)-1
= 2^Factor(z+1,0)*( (z+1)/ 2^Factor(z+1,0))-1
= (z+1) – 1
= z, as was desired.
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Application of Pairing
Show that prfs are closed under Fibonacci induction. Fibonacci 
induction means that each induction step after calculating the 
base is computed using the previous two values, where the 
previous values for f(1) are f(0) and 0; and for x>1, f(x) is based on 
f(x-1) and f(x-2). 

The formal hypothesis is: 
Assume g and h are already known to be prf, then so is f, where
f(0,x) = g(x); 
f(1,x) = h(f(0,x), 0); and 
f(y+2,x) = h(f(y+1,x), f(y,x))

Proof is by construction

4/7/19 © UCF EECS 304



Fibonacci Recursion
Let K be the following primitive recursive function, defined by induction 
on the primitive recursive functions, g, h, and the pairing function.
K(0,x) = B(x)
B(x) = < g(x), C0(x) > // this is just <g(x), 0>
K(y+1, x) = J(y, x, K(y,x))
J(y,x,z) = < h(<z>1, <z>2), <z>1 > 
// this is < f(y+1,x), f(y,x)>, even though f is not yet shown to be prf!!
This shows K is prf. 

f is then defined from K as follows:
f(y,x) = <K(y,x)>1 // extract first value from pair encoded in K(y,x)
This shows it is also a prf, as was desired.
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µ Recursive

4th Model
A Simple Extension to Primitive 

Recursive
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µ Recursive Concepts
• All primitive recursive functions are algorithms 

since the only iterator is bounded.  That’s a clear 
limitation.

• There are algorithms like Ackerman’s function 
that cannot be represented by the class of 
primitive recursive functions.  

• The class of recursive functions adds one more 
iterator, the minimization operator (µ), read “the 
least value such that.”
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Ackermann’s Function
• A(1, j)=2j for j ≥ 1 
• A(i, 1)=A(i-1, 2) for i ≥ 2 
• A(i, j)=A(i-1, A(i, j-1)) for i, j ≥ 2
• Wilhelm Ackermann observed in 1928 that this is not a 

primitive recursive function.

• Ackermann’s function grows too fast to have a for-loop 
implementation.

• The inverse of Ackermann’s function is important to 
analyze Union/Find algorithm. Note: A(4,4) is 
a supper exponential number involving six levels of 
exponentiation. a(n) = A-1(n, n) grows so slowly that it is 
less than 5 for any value of n that can be written.
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Union/Find
• Start with a collection S of unrelated elements –

singleton equivalence classes
• Union(x,y), x and y are in S, merges the class 

containing x ([x]) with that containing y ([y])
• Find(x) returns the canonical element of [x]
• Can see if xºy, by seeing if Find(x)==Find(y)
• How do we represent the classes? 
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The µ Operator
• Minimization: 

If G is already known to be recursive, then 

so is F, where

F(x1,…,xn) = µy (G(y,x1,…,xn) == 1)
• We also allow other predicates besides 

testing for one.  In fact any predicate that 

is recursive can be used as the stopping 

condition.
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Equivalence of Models

Equivalency of computation by 
Turing machines,
register machines, 

factor replacement systems, 
recursive functions
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Proving Equivalence
• Constructions do not, by themselves, 

prove equivalence. 
• To do so, we need to develop a notion of 

an “instantaneous description” (id) of each 
model of computation (well, almost as 
recursive functions are a bit different). 

• We then show a mapping of id’s between 
the models.
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Instantaneous Descriptions
• An instantaneous description (id) is a finite description of 

a state achievable by a computational machine, M.
• Each machine starts in some initial id, id0. 
• The semantics of the instructions of M define a relation 
ÞM such that, idi ÞM idi+1, i³0, if the execution of a 
single instruction of M would alter M’s state from idi to 
idi+1 or if M halts in state idi and idi+1=idi.

• Þ+
M is the transitive closure of ÞM

• Þ*M is the reflexive transitive closure of ÞM
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id Definitions
• For a register machine, M, an id is an s+1 tuple of the form 

(i, r1,…,rs)M specifying the number of the next instruction to be 
executed and the values of all registers prior to its execution.  

• For a factor replacement system, an id is just a natural number.
• For a Turing machine, M, an id is some finite representation of the 

tape, the position of the read/write head and the current state. This 
is usually represented as a string aqxb, where a (b) is the shortest 
string representing all non-blank squares to the left (right) of the 
scanned square, x is the symbol at the scanned square and q is the 
current state.

• Recursive functions do not have id’s, so we will handle their 
simulation by an inductive argument, using the primitive functions 
are the basis and composition, induction and minimization in the 
inductive step.
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Equivalence Steps
• Assume we have a machine M in one model of computation and a 

mapping of M into a machine M’ in a second model.
• Assume the initial configuration of M is id0 and that of M’ is id’0
• Define a mapping, h, from id’s of M into those of M’, such that, 

RM = { h(d) | d is an instance of an id of M }, and
– id’0Þ*M’ h(id0), and h(id0) is the only member of RM in the 

configurations encountered in this derivation.
– h(idi)Þ+

M’ h(idi+1), i³0, and h(idi+1) is the only member of RM in 
this derivation.

• The above, in effect, provides an inductive proof that 
– id0Þ*M id implies id’0Þ*M’ h(id), and
– If id’0Þ*M’ id’ then either id0Þ*M id, where id’ = h(id), or 

id’ Ï RM
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Our Plan of Attack

• We will now show 
TURING ≤ REGISTER ≤ FACTOR ≤ 

RECURSIVE ≤ TURING 
where by A ≤ B, we mean that every 
instance of A can be replaced by an 
equivalent instance of B. 

• The transitive closure will then get us the 
desired result.
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Encoding a TM’s State
• Assume that we have an n state Turing machine.  Let 

the states be numbered 0,…, n-1.  
• Assume our machine is in state 7, with its tape 

containing
… 0 0 1 0 1 0 0 1 1 q7 0 0 0 …

• The underscore indicates the square being read.  We 
denote this by the finite id
1 0 1 0 0 1 1 q7 0

• In this notation, we always write down the scanned 
square, even if it and all symbols to its right are blank.  
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More on Encoding of TM
• An id can be represented by a triple of natural numbers, 

(R,L,i), where R is the number denoted by the reversal 
of the binary sequence to the right of the qi, L is the 
number denoted by the binary sequence to the left, and i
is the state index.  

• So, 
… 0 0 1 0 1 0 0 1 1 q7 0 0 0 … 
is just (0, 83, 7).
… 0 0 1 0 q5 1 0 1 1 0 0 …
is represented as (13, 2, 5).

• We can store the R part in register 1, the L part in 
register 2, and the state index in register 3. 
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Simulation by RM
1. DEC3[2,q0] : Go to simulate actions in state 0
2. DEC3[3,q1] : Go to simulate actions in state 1
…
n. DEC3[ERR,qn-1] : Go to simulate actions in state n-1
…
qj. IF_r1_ODD[qj+2] : Jump if scanning a 1
qj+1. JUMP[set_k] : If (qj 0 0 qk) is rule in TM
qj+1. INC1[set_k] : If (qj 0 1 qk) is rule in TM
qj+1. DIV_r1_BY_2 : If (qj 0 R qk) is rule in TM

MUL_r2__BY_2
JUMP[set_k]

qj+1. MUL_r1_BY_2 : If (qj 0 L qk) is rule in TM
IF_r2_ODD then INC1
DIV_r2__BY_2[set_k]

…
set_n-1. INC3[set_n-2] : Set r3 to index n-1 for simulating state n-1
set_n-2. INC3[set_n-3] : Set r3 to index n-2 for simulating state n-2
…
set_0. JUMP[1] : Set r3 to index 0 for simulating state 0
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Fixups
• Need epilog so action for missing quad 

(halting) jumps beyond end of simulation 
to clean things up, placing result in r0.  

• Can also have a prolog that starts with 
arguments in registers r1 to rn and stores 
values in r1, r2 and r3 to represent Turing 
machines starting configuration.
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Prolog
Example assuming n arguments (fix as needed)
1. MUL_rn+1_BY_2[2] : Set rn+1 = 11…102, where, #1's = r1
2. DEC1[3,4] : r1 will be set to 0
3. INCn+1[1] : 
4. MUL_rn+1_BY_2[5] : Set rn+1 = 11…1011…102, where, #1's = r1, then r2
5. DEC2[6,7] : r2 will be set to 0
6. INCn+1[4] : 
…
3n-2. DECn[3n-1,3n+1] : Set rn+1 = 11…1011…1011…12, where, #1's = r1, r2,…
3n-1. MUL_rn+1_BY_2[3n] : rn will be set to 0
3n. INCn+1[3n-2] : 
3n+1 DECn+1[3n+2,3n+3] : Copy rn+1 to r2, rn+1 is set to 0
3n+2. INC2[3n+1] : 
3n+3. : r2 = left tape, r1 = 0 (right), r3 = 0 (initial state)
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Epilog

1. DEC3[1,2] : Set r3 to 0 (just cleaning up)
2. IF_r1_ODD[3,5] : Are we done with answer?
3. INC0[4] : putting answer in r0
4. DIV_r1_BY_2[2] : strip a 1 from r1
5. : Answer is now in r0
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Encoding a RM’s State
• This is a really easy one based on the fact that every member of Z+

(the positive integers) has a unique prime factorization.  Thus all 
such numbers can be uniquely written in the form

where the pi's are distinct primes and the ki's are non-zero values, 
except that the number 1 would be represented by 20. 

• Let R be an arbitrary n+1-register machine, having m instructions.

Encode the contents of registers r0,…,rn by the powers of p0,…pn . 

Encode rule number's 1,…,m by primes pn+1 ,…, pn+m

Use pn+m+1 as prime factor that indicates simulation is done.
• This is, in essence, a Gödel number of the RM’s state.

1i
1kp

2i
2kp …

ji
jkp
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Simulation by FRS
• Now, the j-th instruction (1≤j≤m) of R has 

associated factor replacement rules as follows:
j. INCr[i]

pn+jx ® pn+iprx
j. DECr[s, f]

pn+jprx ® pn+sx
pn+jx ® pn+fx

• We also add the halting rule associated with 
m+1 of

pn+m+1x ® x 
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Importance of Order
• The relative order of the two rules to 

simulate a DEC are critical.  
• To test if register r has a zero in it, we, in 

effect, make sure that we cannot execute 
the rule that is enabled when the r-th
prime is a factor.  

• If the rules were placed in the wrong order, 
or if they weren't prioritized, we would be 
non-deterministic.  
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Sample RM and FRS (repeat)
Present a Register Machine that computes IsOdd. Assume R1=x at 
starts; at termination, set R0=1 if x is odd; 0 otherwise. We 
assume R0=0 at start. We also are not concerned about destroying 
input.
1. DEC1[2, 4]
2. DEC1[1, 3]
3. INC0[4]
4.
Present a Factor Replacement System that computes IsOdd. 
Assume starting number is 3^x; at termination, result is 2=2^1 if x 
is odd; 1= 2^0 otherwise.
3*3 x ® x
3 x ® 2 x
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Example of Order
Consider the simple machine to compute 
r0:=r1 – r2 (limited)
1. DEC2[2,3]
2. DEC1[1,1]
3. DEC1[4,5]
4. INC0[3]
5.
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Subtraction Encoding
Start with 3x5y7

7 • 5 x ® 11 x
7 x ® 13 x
11 • 3 x ® 7 x
11 x ® 7 x
13 • 3 x ® 17 x
13 x ® 19 x
17 x ® 13 • 2 x
19 x ® x
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Analysis of Problem
• If we don't obey the ordering here, we could take 

an input like 35527 and immediately apply the 
second rule (the one that mimics a failed 
decrement).  

• We then have 355213, signifying that we will 
mimic instruction number 3, never having 
subtracted the 2 from 5.  

• Now, we mimic copying r1 to r0 and get 255219 . 
• We then remove the 19 and have the wrong 

answer.
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Universal Machine
• In the process of doing this reduction, we will 

build a Universal Machine.  
• This is a single recursive function with two 

arguments.  The first specifies the factor system 
(encoded) and the second the argument to this 
factor system.  

• The Universal Machine will then simulate the 
given machine on the selected input.
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Encoding FRS
• Let (n, ((a1,b1), (a2,b2), … ,(an,bn)) be 

some factor replacement system, where 
(ai,bi) means that the i-th rule is

aix ® bix
• Encode this machine by the number F,

pppp nnnn

n bababa nn

2212212117532 2211

++-
!
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Simulation by Recursive # 1
• We can determine the rule of F that applies to x by

RULE(F, x) = µ z (1 ≤ z ≤ exp(F, 0)+1) [ exp(F, 2*z-1) | x ]
• Note: exp(F,2*i-1) = ai where ai is the exponent of the prime factor 

p2i-1 of F. 

• If x is divisible by ai, and i is the least integer, 1≤i≤n, for which this is 
true, then RULE(F,x) = i. 

If x is not divisible by any ai, 1≤i≤n, then x is divisible by 1, and 
RULE(F,x) returns n+1.  That’s why we added p2n+1 p2n+2.

• Given the function RULE(F,x), we can determine NEXT(F,x), the 
number that follows x, when using F, by

NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x))
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Simulation by Recursive # 2
• The configurations listed by F, when started on x, are
CONFIG(F, x, 0) = x
CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))

• The number of the configuration on which F halts is
HALT(F, x) = µ y [CONFIG(F, x, y) == CONFIG(F, x, y+1)]
This assumes we converge to a fixed point as our 
means of halting. Of course, no applicable rule meets 
this definition as the n+1-st rule divides and then 
multiplies the latest value by 1.
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Simulation by Recursive # 3
• A Universal Machine that simulates an arbitrary Factor 

System, Turing Machine, Register Machine, Recursive 
Function can then be defined by 

Univ(F, x) =  exp ( CONFIG ( F, x, HALT ( F, x ) ), 0)

• This assumes that the answer will be returned as the 
exponent of the only even prime, 2.  We can fix F for any 
given Factor System that we wish to simulate.  It is that 
ability that makes this function universal.
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FRS Subtraction
• 203a5b Þ 2a-b

3*5x ® x or 1/15
5x ® x or 1/5
3x ® 2x or 2/3

• Encode F = 23 315 51 75 111 133 172 191 231

• Consider a=4, b=2
• RULE(F, x) = µ z (1 ≤ z ≤ 4) [ exp(F, 2*z-1) | x ]

RULE (F,34 52) = 1, as 15 divides 34 52

• NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x))
NEXT(F,34 52) = (34 52 // 15 * 1) = 3351

NEXT(F,33 51) = (33 51 // 15 * 1) = 32

NEXT(F,32) = (32 // 3 * 2) = 2131

NEXT(F, 2131) = (2131 // 3 * 2) = 22

NEXT(F, 22) = (22 // 1 * 1) = 22

4/7/19



© UCF EECS 340

Rest of simulation
• CONFIG(F, x, 0) = x

CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))
• CONFIG(F,34 52,0) = 34 52

CONFIG(F,34 52,1) = 3351

CONFIG(F,34 52,2) = 32

CONFIG(F,34 52,3) = 2131

CONFIG(F,34 52,4) = 22

CONFIG(F,34 52,5) = 22

• HALT(F, x)=µy[CONFIG(F,x,y)==CONFIG(F,x,y+1)] = 4
• Univ(F, x) =  exp ( CONFIG ( F, x, HALT ( F, x ) ), 0)

= exp(22,0) = 2
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Simplicity of Universal
• A side result is that every computable 

(recursive) function can be expressed in 
the form

F(x) = G(µ y H(x, y))

where G and H are primitive recursive. 
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Standard Turing Computation
• Our notion of standard Turing computability of 

some n-ary function F assumes that the 
machine starts with a tape containing the n
inputs, x1, … , xn in the form

…01x101x20…01xn0…

and ends with

…01x101x20…01xn01y0…

where y = F(x1, … , xn).
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More Helpers
• To build our simulation we need to construct some useful 

submachines, in addition to the R, L, R, L, and Ck machines already 
defined.

• T -- translate moves a value left one tape square 
…?01x0… Þ …?1x00… 

• Shift -- shift a rightmost value left, destroying value to its left
…01x101x20… Þ …01x20… 

• Rotk -- Rotate a k value sequence one slot to the left  
…01x101x20…01xk0… 

Þ …01x20…01xk01x10…

 R1 L0 R 

 
R 1 

L T 

R 

0 
k L k 

k+1 1 L k L 0 T k L k+1 

 
L 1 

T 
L 0 T 

0 
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Basic Functions
All Basis Recursive Functions are Turing 
computable:

• Ca
n(x1,…,xn) = a

(R1)aR
• (x1,…,xn) = xi

Cn-i+1
• S(x) = x+1

C11R

		 i
nI
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Closure Under Composition
If G, H1, … , Hk are already known to be Turing computable, then so 
is F, where

F(x1,…,xn) = G(H1(x1,…,xn), … , Hk(x1,…,xn))

To see this, we must first show that if E(x1,…,xn) is Turing 
computable then so is 

E<m>(x1,…,xn, y1,…,ym) = E(x1,…,xn)

This can be computed by the machine

Ln+m (Rotn+m)n Rn+m E  Ln+m+1 (Rotn+m)m Rn+m+1

Can now define F by 

H1 H2<1> H3<2> … Hk<k-1> G Shiftk
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Closure Under Induction
To prove that Turing Machines are closed under induction (primitive 
recursion), we must simulate some arbitrary primitive recursive function 
F(y,x1,x2, …, xn) on a Turing Machine, where
F(0, x1,x2, …, xn) = G(x1,x2, …, xn)
F(y+1, x1,x2, …, xn) = H(y, x1,x2, …, xn, F(y,x1,x2, …, xn))
Where, G and H are Standard Turing Computable.  We define the 
function F for the Turing Machine as follows:

Since our Turing Machine simulator can produce the same value for 
any arbitrary PRF, F, we show that Turing Machines are closed under 
induction (primitive recursion).
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Closure Under Minimization
If G is already known to be Turing 
computable, then so is F, where

F(x1,…,xn) = µy (G(x1,…,xn, y) == 1)

This can be done by
 

R G L 1 0 L 
0 

1 
4/7/19



© UCF EECS 349

Consequences of Equivalence

• Theorem: The computational power of 
Recursive Functions, Turing Machines, Register 
Machine, and Factor Replacement Systems are 
all equivalent.

• Theorem: Every Recursive Function (Turing 
Computable Function, etc.) can be performed 
with just one unbounded type of iteration.

• Theorem: Universal machines can be 
constructed for each of our formal models of 
computation.

4/7/19



Additional Notations

Includes comment on our notation 
versus that of others



© UCF EECS 351

Universal Machine
• Others consider functions of n arguments, whereas we 

had just one. However, our input to the FRS was actually 
an encoding of n arguments. 

• The fact that we can focus on just a single number that is 
the encoding of n arguments is easy to justify based on 
the pairing function.

• Some presentations order arguments differently, starting 
with the n arguments and then the Gödel number of the 
function, but closure under argument permutation follows 
from closure under substitution.

4/7/19



© UCF EECS 352

Universal Machine Mapping
• j(n)(f, x1,…,xn) = Univ (f,          )
• We will sometimes adopt the above and 

also its common shorthand
jf

(n)(x1,…,xn) = j(n)(f, x1,…,xn) 
and the even shorter version
jf(x1,…,xn) = j(n)(f, x1,…,xn) 

Õ =

n

i

x

ip
i

1
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SNAP and TERM
• Our CONFIG is essentially a snapshot 

function as seen in other presentations of 
a universal function
SNAP(f, x, t) = CONFIG(f, x, t)

• Termination in our notation occurs when 
we reach a fixed point, so
TERM(f, x) = (NEXT(f, x) == x)

• Again, we used a single argument but that can 
be extended as we have already shown.

4/7/19



© UCF EECS 354

STP Predicate
• STP(f, x1,…,xn, t ) is a predicate defined 

to be true iff jf (x1,…,xn) converges in at 
most t steps.

• STP is primitive recursive since it can be 
defined by
STP(f, x, s ) = TERM(f, CONFIG(f, x, s) )
Extending to many arguments is easily done as 
before.
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VALUE PRF
• VALUE(f, x1,…,xn, t ) is a primitive 

recursive function (algorithm) that returns 
jf (x1,…,xn) so long as 
STP(f, x1,…,xn, t ) is true.

• VALUE(f, x1,…,xn, t ) returns a value if 
STP(f, x1,…,xn, t ) is false, but the 
returned value is meaningless.
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Definition of re
• Some texts define re in the same way as I have defined 

semi-decidable. 
S Í À is semi-decidable iff there exists a partially 
computable function g where

S = { x Î À | g(x)¯ }
• I prefer the definition of re that says 

S Í À is re iff S = Æ or there exists a totally computable 
function f where 

S = { y | $x f(x) == y }
• We will prove these equivalent. Actually, f can be a 

primitive recursive function.
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Semi-Decidable Implies re
Theorem: Let S be semi-decided by GS. Assume 

GS is the gS–th function in our enumeration of 
effective procedures.  If S = Ø then S is re by 
definition, so we will assume wlog that there is 
some a Î S. Define the enumerating algorithm 
FS by
FS(<x,t>) = x * STP(gs, x, t ) 

+ a * (1-STP(gs, x, t ))
Note: FS is primitive recursive and it enumerates 
every value in S infinitely often. 
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re Implies Semi-Decidable
Theorem: By definition, S is re iff S == Ø or there 

exists an algorithm FS, over the natural numbers 
À, whose range is exactly S. Define 

µy [y == y+1] if S == Ø 
yS(x) =

signum((µy[FS(y)==x])+1), otherwise
This achieves our result as the domain of yS is 
the range of FS, or empty if S == Ø. Note that 
this is an existence proof in that we cannot test if 
S == Ø
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Domain of a Procedure
Corollary: S is re/semi-decidable iff S is the 

domain / range of a partial recursive predicate 
FS.

Proof: The predicate yS we defined earlier to semi-
decide S, given its enumerating function, can be 
easily adapted to have this property.

µy [y == y+1] if S == Ø 
yS(x) =

x*signum((µy[FS(y)==x])+1), otherwise
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Recursive Implies re 
Theorem: Recursive implies re.
Proof: S is recursive implies there is a total 

recursive function fS such that
S = { x Î À | fs(x) == 1 }

Define gs(x) = µy (fs(x) == 1)
Clearly 
dom(gs) = {x Î À | gs(x)¯} 

= { x Î À | fs(x) == 1 } 
= S
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Related Results
Theorem: S is re iff S is semi-decidable.
Proof: That’s what we proved.
Theorem: S and ~S are both re (semi-decidable)

iff S (equivalently ~S) is recursive (decidable).
Proof: Let fS semi-decide S and fS’ semi-decide ~S. We can 

decide S by gS

gS(x) = STP(fS, x, µt (STP(fS, x, t) || STP(fS’ ,x, t))
~S is decided by gS’(x) = ~gS(x) = 1- gS(x).
The other direction is immediate since, if S is decidable 
then ~S is decidable (just complement gS) and hence 
they are both re (semi-decidable).
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Enumeration Theorem
• Define 

Wn = { x Î À | j(n,x)¯ }
• Theorem: A set B is re iff there exists an n

such that B = Wn.
Proof: Follows from definition of j(n,x).

• This gives us a way to enumerate the 
recursively enumerable sets.

• Note: We will later show (again) that we 
cannot enumerate the recursive sets.
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The Set K
• K = { n Î À | n Î Wn }
• Note that 

n Î Wn Û j(n,n)¯ Û HALT(n,n)
• Thus, K is the set consisting of the indices 

of each program that halts when given its 
own index

• K can be semi-decided by the HALT
predicate above, so it is re.
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K is not Recursive
• Theorem: We can prove this by showing 

~K is not re.
• If ~K is re then ~K = Wi, for some i.
• However, this is a contradiction since

i Î K Û i Î Wi Û i Î ~K Û i Ï K
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re Characterizations
Theorem: If S ¹ Æ then the following are equivalent:
1. S is re
2. S is the range of a primitive rec. function
3. S is the range of a recursive function
4. S is the range of a partial rec. function
5. S is the domain of a partial rec. function
6. S is the range/domain of a partial rec. function whose domain 

is the same as its range and which acts as an identity when it 
converges. Below, assume fS enumerates S.
gS(x) = x*STP(fS, x, µt (STP(fS, x, t)) or
gS(x) = x* ∃t STP(fS, x, t)
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Parameter (S-m-n) Theorem
• Theorem: For each n,m>0, there is a prf

Sm
n(y, u1,…,un) such that

j(m+n)(y, x1,…,xm, u1,…,un) 
= j(m)(Sm

n(y,u1,…,un), x1,…, xm)
• The proof of this is highly dependent on 

the system in which you proved 
universality and the encoding you chose. 
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S-m-n for FRS
• We would need to create a new FRS, from an existing one F, that 

fixes the value of ui as the exponent of the prime pm+i. 
• Sketch of proof:

Assume we normally start with p1
x1 … pm

xm p1
u1 … pm+n

un s
Here the first m are variable; the next n are fixed; s denotes prime 
factors used to trigger first phase of computation.
Assume that we use fixed point as convergence.
We start with just p1

x1 … pm
xm, with q the first unused prime. 

q a x ® q b x replaces a x® b x in F, for each rule in F
q x ® q x ensures we loop at end
x ® q pm+1

u1 … pm+n
un s x
adds fixed input, start state and q
this is selected once and never again

Note: q = prime(max(n+m, lastFactor(Product[i=1 to r] ai bi ))+1)
where r is the number of rules in F.
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Details of S-m-n for FRS
• The number of F (called F, also) is 2r3a15b1…p2r-1

arp2r
br

• Sm,n(F, u1,…un) = 2r+23q´a15q´b1…p2r-1
q´arp2r

q´br 

p2r+1
qp2r+2

q p2r+3p2r+4 
q pm+1u1 … pm+nun s

• This represents the rules we just talked about. The first 
added rule pair means that if the algorithm does not use 
fixed point, we force it to do so. The last rule pair is the 
only one initially enabled and it adds the prime q, the 
fixed arguments u1,…un, the enabling prime q, and the s
needed to kick start computation. Note that s could be a 
1, if no kick start is required.

• Sm,n= Sm
n is clearly primitive recursive. I’ll leave the 

precise proof of that as a challenge to you.
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Quantification#1
• S is decidable iff there exists an algorithm cS (called S’s 

characteristic function) such that
x Î S Û cS(x)
This is just the definition of decidable.

• S is re iff there exists an algorithm AS where 
x Î S Û $t AS(x,t)
This is clear since, if gS is the index of the procedure yS
that semi-decides S then
x Î S Û $t STP(gS, x, t)
So, AS(x,t) = STPgS( x, t ), where STPgS is the STP
function with its first argument fixed. 

• Creating new functions by setting some one or more 
arguments to constants is an application of Sm

n.
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Quantification#2
• S is re iff there exists an algorithm AS such that

x Ï S Û "t AS(x,t)
This is clear since, if gS is the index of the procedure yS
that semi-decides S, then
x Ï S Û ~$t STP(gS, x, t) Û "t ~STP(gS, x, t)
So, AS(x,t) = ~STPgS( x, t ), where STPgS is the STP
function with its first argument fixed. 

• Note that this works even if S is recursive (decidable). 
The important thing there is that if S is recursive then it 
may be viewed in two normal forms, one with existential 
quantification and the other with universal quantification.

• The complement of an re set is co-re. A set is recursive 
(decidable) iff it is both re and co-re.
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Non-re Problems
• There are even “practical” problems that are worse than 

unsolvable -- they’re not even semi-decidable.  
• The classic non-re problem is the Uniform Halting 

Problem, that is, the problem to decide of an arbitrary 
effective procedure P, whether or not P is an algorithm.  

• Assume that the algorithms can be enumerated, and that 
F accomplishes this.  Then

F(x) = Fx

where F0, F1, F2, … is a list of all the algorithms
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The Contradiction
• Define G( x ) = Univ ( F(x) , x ) + 1 = j(F(x), x)+1 = Fx(x) + 1

• But then G is itself an algorithm.  Assume it is the g-th one

F(g) = Fg = G

Then, G(g) = Fg(g) + 1 = G(g) + 1

• But then G contradicts its own existence since G would need to be 
an algorithm.

• This cannot be used to show that the effective procedures are non-
enumerable, since the above is not a contradiction when G(g) is 
undefined.  In fact, we already have shown how to enumerate the 
(partial) recursive functions.
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The Set TOT
• The listing of all algorithms can be viewed 

as

TOT = { f Î À | "x j(f, x)¯ }
• We can also note that

TOT = { f Î À | Wf =À }
• Theorem: TOT is not re.
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Reduction Concepts
• Proofs by contradiction are tedious after you’ve 

seen a few.  We really would like proofs that 

build on known unsolvable problems to show 

other, open problems are unsolvable.  The 

technique commonly used is called reduction.  It 

starts with some known unsolvable problem and 

then shows that this problem is no harder than 

some open problem in which we are interested.



Diagonalization is a Bummer
• The issues with diagonalization are that it is tedious and 

is applicable as a proof of undecidability or non-re-ness 
for only a small subset of the problems that interest us.

• Thus, we will now seek to use reduction wherever 
possible.

• To show a set, S, is undecidable, we can show it is as 
least as hard as the set K0. That is, K0 ≤ S. Here the 
mapping used in the reduction does not need to run in 
polynomial time, it just needs to be an algorithm. 

• To show a set, S, is not re, we can show it is as least as 
hard as the set TOTAL (the set of algorithms). That is, 
TOTAL ≤ S. 
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Reduction to TOTAL
• We can show that the set K0 (Halting) is no harder than 

the set TOTAL (Uniform Halting).  Since we already 
know that K0 is unsolvable, we would now know that 
TOTAL is also unsolvable.  We cannot reduce in the 
other direction since TOTAL is in fact harder than K0.

• Let jF be some arbitrary effective procedure and let x be 
some arbitrary natural number.

• Define Fx(y) = jF(x), for all  y Î À
• Then Fx is an algorithm if and only if jF halts on x. 
• Thus, K0 ≤ TOTAL, and so a solution to membership in 

TOTAL would provide a solution to K0, which we know is 
not possible.
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Reduction to ZERO
• We can show that the set TOTAL is no harder 

than the set ZERO = { f | "x jf(x) = 0 }.  Since 
we already know that TOTAL is non-re, we 
would now know that ZERO is also non-re. 

• Let jf be some arbitrary effective procedure.
• Define Ff(y) = jf(x) – jf(x), for all  x Î À
• Then Ff is an algorithm that produces 0 for all 

input (is in the set ZERO) if and only if jf halts 
on all input x. Thus, TOTAL ≤ ZERO.

• Thus a semi-decision procedure for ZERO would 
provide one for TOTAL, a set already known to 
be non-re.
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Classic Undecidable Sets
• The universal language

K0 = Lu = { <f, x> | jf (x) is defined }

• Membership problem for Lu is the Halting Problem. 
• The sets Lne and Le, where

NON-EMPTY = Lne = { f | $ x jf (x) ¯ }

EMPTY = Le = { f | " x jf (x) ­ }

are the next ones we will study.
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Lne is re
• Lne is enumerated by 

F( <f, x, t> ) = f * STP( f, x, t )

• This assumes that 0 is in Lne since 0 probably 
encodes some trivial machine.  If this isn’t so, 
we’ll just slightly vary our enumeration of the 
recursive functions so it is true.  

• Thus, the range of this total function F is exactly 
the indices of functions that converge for some 
input, and that’s Lne.
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Lne is Non-Recursive
• Note in the previous enumeration that F is a function of 

just one argument, as we are using an extended pairing 
function <x,y,z> = <x,<y,z>>.

• Now Lne cannot be recursive, for if it were then Lu (K0)is 
recursive by the reduction we showed before.  

• In particular, from any index x and input y, we created a 
new function which accepts all input just in case the x-th
function accepts y. Recall Fx(y) = jF(x), for all  y Î À.

• Hence, this new function’s index is in Lne just in case 
<x, y> is in Lu (K0). 

• Thus, a decision procedure for Lne (equivalently for Le) 
implies one for Lu (K0).
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Lne is re by Quantification
• Can do by observing that

f Î Lne Û $ <x,t> STP( f, x, t)

• By our earlier results, any set whose 

membership can be described by an existentially 

quantified recursive predicate is re (semi-

decidable). 
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Le is not re
• If Le were re, then Lne would be recursive 

since it and its complement would be re.
• Can also observe that Le is the 

complement of an re set since

f Î Le Û " <x,t> ~STP( f, x, t) 
Û ~$ <x,t> STP( f, x, t)
Û f Ï Lne
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m-1, 1-1, Turing Degrees
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Many-One Reduction
• Let A and B be two sets. 
• We say A many-one reduces to B, 

A £m B, if there exists a total recursive function f
such that
x Î A Û f(x) Î B

• We say that A is many-one equivalent to B, 
A ºm B, if A £m B and B £m A

• Sets that are many-one equivalent are in some 
sense equally hard or easy.
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Many-One Degrees
• The relationship A ºm B is an equivalence 

relationship (why?)
• If A ºm B, we say A and B are of the same 

many-one degree (of unsolvability).
• Decidable problems occupy three m-1 degrees: 
Æ, À, all others.

• The hierarchy of undecidable m-1 degrees is an 
infinite lattice (I’ll discuss in class)
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One-One Reduction
• Let A and B be two sets. 
• We say A one-one reduces to B, A £1 B, 

if there exists a total recursive 1-1 function f
such that
x Î A Û f(x) Î B

• We say that A is one-one equivalent to B, 
A º1 B, if A £1 B and B £1 A

• Sets that are one-one equivalent are in a strong 
sense equally hard or easy.
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One-One Degrees
• The relationship A º1 B is an equivalence 

relationship (why?)
• If A º1 B, we say A and B are of the same one-

one degree (of unsolvability).
• Decidable problems occupy infinitely many 1-1 

degrees: each cardinality defines another 1-1 
degree (think about it).

• The hierarchy of undecidable 1-1 degrees is an 
infinite lattice.
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Turing (Oracle) Reduction
• Let A and B be two sets. 
• We say A Turing reduces to B, A £t B, if the 

existence of an oracle for B would provide us 
with a decision procedure for A.

• We say that A is Turing equivalent to B, 
A ºt B, if A £t B and B £t A

• Sets that are Turing equivalent are in a very 
loose sense equally hard or easy.
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Turing Degrees
• The relationship A ºt B is an equivalence 

relationship (why?)

• If A ºt B, we say A and B are of the same Turing 

degree (of unsolvability).

• Decidable problems occupy one Turing degree. 

We really don’t even need the oracle.

• The hierarchy of undecidable Turing degrees is 

an infinite lattice.
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Complete re Sets
• A set C is re 1-1 (m-1, Turing) complete if, for 

any re set A, A £1 (£m , £t ) C.
• The set HALT is an re complete set (in regard to 

1-1, m-1 and Turing reducibility).
• The re complete degree (in each sense of 

degree) sits at the top of the lattice of re 
degrees.
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The Set Halt = K0 = Lu

• Halt = K0 = Lu = { <f, x> | jf (x) ¯}
• Let A be an arbitrary re set. By definition, there exists an 

effective procedure ja, such that dom(ja) = A. Put 
equivalently, there exists an index, a, such that A = Wa.

• x Î A iff x Î dom(ja) iff ja(x)¯ iff <a,x> Î K0
• The above provides a 1-1 function that reduces A to K0

(A £1 K0) 
• Thus the universal set, Halt = K0 = Lu, is an re 

(1-1, m-1, Turing) complete set.
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The Set K
• K = { f | jf(f) is defined }
• Define fx(y) = jf(x), for all y. The index for fx can be 

computed from f and x using S1,1, where we add a 
dummy argument, y, to jf. Let that index be fx. (Yeah, 
that’s overloading.)

• <f,x> Î K0 iff x Î dom(jf) iff "y[jfx(y)¯] iff fx Î K.
• The above provides a 1-1 function that reduces K0 to K. 
• Since K0 is an re (1-1, m-1, Turing) complete set and K

is re, then K is also re (1-1, m-1, Turing) complete.
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Quantification#3
• The Uniform Halting Problem was already 

shown to be non-re. It turns out its complement 
is also not re. We’ll cover that later. In fact, we 
will show that TOT requires an alternation of 
quantifiers. Specifically,

f Î TOTÛ "x$t ( STP( f, x, t ) )
and this is the minimum quantification we can 
use, given that the quantified predicate is total 
recursive (actually primitive recursive here).
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Reduction and Rice’s
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Either Trivial or Undecidable
• Let P be some set of re languages, e.g. P = { L | L is infinite re }.  

• We call P a property of re languages since it divides the class of all 
re languages into two subsets, those having property P and those 
not having property P.  

• P is said to be trivial if it is empty (this is not the same as saying P
contains the empty set) or contains all re languages.  

• Trivial properties are not very discriminating in the way they divide 
up the re languages (all or nothing).
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Rice’s Theorem
Rice’s Theorem: Let P be some non-trivial 

property of the re languages. Then
LP = { x | dom [x] is in P (has property P) }

is undecidable.  Note that membership in LP is 
based purely on the domain of a function, not on 
any aspect of its implementation.
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Rice’s Proof-1
Proof:  We will assume, wlog, that P does not 

contain Ø.  If it does we switch our attention to 
the complement of P.  Now, since P is non-
trivial, there exists some language L with 
property P.  Let [r] be a recursive function 
whose domain is L (r is the index of a semi-
decision procedure for L).  Suppose P were 
decidable.  We will use this decision procedure 
and the existence of r to decide K0.  
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Rice’s Proof-2
First we define a function Fr,x,y for r and each 
function jx and input y as follows.

Fr,x,y( z ) = j( x , y ) + j( r , z )
The domain of this function is L if jx (y) 
converges, otherwise it’s Ø.  Now if we can 
determine membership in LP , we can use this 
algorithm to decide K0 merely by applying it to 
Fr,x,y.  An answer as to whether or not Fr,x,y has 
property P is also the correct answer as to 
whether or not jx (y) converges.
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Rice’s Proof-3
Thus, there can be no decision procedure for P.  
And consequently, there can be no decision 
procedure for any non-trivial property of re 
languages.

Note: This does not apply if P is trivial, nor does 
it apply if P can differentiate indices that 
converge for precisely the same values.



I/O Property
• An I/O property, P, of indices of recursive function is one 

that cannot differentiate indices of functions that produce 
precisely the same value for each input. 

• This means that if two indices, f and g, are such that jf
and  jg converge on the same inputs and, when they 
converge, produce precisely the same result, then both f
and g must have property P, or neither one has this 
property.

• Note that any I/O property of recursive function indices 
also defines a property of re languages, since the 
domains of functions with the same I/O behavior are 
equal. However, not all properties of re languages are 
I/O properties.
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Strong Rice’s Theorem
Rice’s Theorem: Let P be some non-trivial 

I/O property of the indices of recursive 
functions. Then

SP = { x | jx has property P) }
is undecidable.  Note that membership in 
SP is based purely on the input/output 
behavior of a function, not on any aspect 
of its implementation.
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Strong Rice’s Proof
• Given x, y, r, where r is in the set 

SP.= {f | jf has property P}, 
define the function 
fx,y,r(z) = jx(y) - jx(y) + jr(z). 

• fx,y,r(z) = jr(z) if jx(y)¯ ; = f if jx(y)­ . 
Thus, jx(y)¯ iff fx,y,r has property P, and so 
K0 £ SP.
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Corollaries to Rice’s
Corollary:  The following properties of re 
sets are undecidable

a) L = Ø
b) L is finite
c) L is a regular set
d) L is a context-free set
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Practice

Known Results:
HALT = { <f,x> | f(x)¯ } is re (semi-decidable) but undecidable
TOTAL = { f | "x f(x)¯ } is non-re (not even semi-decidable)
1. Use reduction from HALT to show that one cannot decide NonTrivial, where

NonTrivial = { f | for some x, y, x ≠ y, f(x)¯ and f(y)¯ and f(x) ≠ f(y) }
2. Show that Non-Trivial reduces to HALT. (1 plus 2 show they are equally hard)
3. Use Reduction from TOTAL to show that NoRepeats is not even re, where

NoRepeats = { f | for all x, y, f(x)¯ and f(y)¯, and x ≠ y ⇒ f(x) ≠ f(y) }
4. Show NoRepeats reduces to TOTAL. (3 plus 4 show they are equally hard)
5. Use Rice’s Theorem to show that NonTrivial is undecidable 
6. Use Rice’s Theorem to show that NoRepeats is undecidable 
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Practice Classifications

1. Use quantification of an algorithmic predicate to estimate the 
complexity (decidable, re, co-re, non-re) of each of the following, (a)-
(d):
a) NonTrivial = { f | for some x, y, x ≠ y, f(x)¯ and f(y)¯ and f(x) ≠ f(y) }
b) NoRepeats = { f | for all x, y, f(x)¯ and f(y)¯, and x ≠ y ⇒ f(x) ≠ f(y) }

c) FIN = { f | domain(f) is finite }

2. Let set A be non-empty recursive, and let B be re non-recursive.
Consider C = { z | z = x * y, where x Î A and y Î B }. . For (a)-(c), 
either show sets A and B with the specified property or demonstrate 
that this property cannot hold. 
a) Can C be recursive? 

b) Can C be re non-recursive (undecidable)? 

c) Can C be non-re? 
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Sample Question#1
1. Given that the predicate STP and the 

function VALUE are algorithms, show 
that we can semi-decide 

HZ = { f | jf evaluates to 0 for some input}

Note: STP( f, x, s ) is true iff jf(x) 
converges in s or fewer steps and, if so, 
VALUE(f, x, s) = jf(x).  
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Sample Questions#2,3
2. Use Rice’s Theorem to show that HZ is 

undecidable, where HZ is

HZ = { f | jf evaluates to 0 for some input}

3. Redo using Reduction from HALT.
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Sample Question#4
4. Let P = { f | $ x [ STP(f, x, x) ] }. Why 

does Rice’s theorem not tell us anything 
about the undecidability of P?
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Sample Question#5
5. Let S be an re (recursively enumerable), non-

recursive set, and T be an re, possibly 
recursive non-empty set. Let 
E = { z | z = x + y, where x Î S and y Î T }. 
Answer with proofs, algorithms or 
counterexamples, as appropriate, each of the 
following questions:
(a) Can E be non re?
(b) Can E be re non-recursive?
(c) Can E be recursive? 
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Constant time: 
Not amenable to Rice’s



Constant Time
• CTime = { M | $K [ M halts in at most K steps 

independent of its starting configuration ] }
• RT cannot be shown undecidable by Rice’s Theorem as 

it breaks property 2
– Choose M1 and M2 to each Standard Turing Compute (STC) 

ZERO
– M1 is R (move right to end on a zero)
– M2 is L R R (time is dependent on argument)
– M1 is in CTime; M2 is not , but they have same I/O behavior, so 

CTime does not adhere to property 2
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Quantifier Analysis
• CTime = { M | $K "C [ STP(M, C, K) ] }
• This would appear to imply that CTime is not 

even re. However, a TM that only runs for K 
steps can only scan at most K distinct tape 
symbols. Thus, if we use unary notation, CTime
can be expressed

• CTime = { M | $K "C|C|≤K [ STP(M, C, K) ] }
• We can dovetail over the set of all TMs, M, and 

all K, listing those M that halt in constant time.
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Complexity of CTime
• Can show it is equivalent to the Halting 

Problem for TM’s with Infinite Tapes (not 
unbounded but truly infinite)

• This was shown in 1966 to be 
undecidable.

• It was also shown to be re, just as we 
have done so for CTime.

• Details Later
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What We’ve Done in 
Computability
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List Minus Some Tedious Stuff
• A question with multiple parts that uses quantification (STP/VALUE)
• Various re and recursive equivalent definitions 
• Proofs of equivalence of definitions
• Consequences of recursiveness or re-ness of a problem
• Closure of recursive/re sets
• Gödel numbering (pairing functions and inverses)
• Models of computation/equivalences (not details but understanding)
• Primitive recursion and its limitation; bounded versus unbounded μ
• Notion of universal machine
• A proof by diagonalization (there are just two possibilities)
• A question about K and/or K0
• Many-one reduction(s)
• Rice’s Theorem (its proof and its variants)
• Applications of Rice’s Theorem and when it cannot be applied



More Practice Problems
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Sample Question#1
1. Prove that the following are equivalent

a) S is an infinite recursive (decidable) set.
b) S is the range of a monotonically 

increasing total recursive function. 
Note: f is monotonically increasing 
means that "x f(x+1) > f(x).
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Sample Question#2
2. Let A and B be re sets. For each of the 

following, either prove that the set is re, 
or give a counterexample that results in 
some known non-re set.

a) A È B
b) A Ç B
c) ~A
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Sample Question#3
3. Present a demonstration that the even

function is primitive recursive.
even(x) = 1 if x is even
even(x) = 0 if x is odd
You may assume only that the base 
functions are prf and that prf’s are closed 
under a finite number of applications of 
composition and primitive recursion.
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Sample Question#4
4. Given that the predicate STP and the 

function VALUE are prf’s, show that we 
can semi-decide 

{ f | jf evaluates to 0 for some input}

Note: STP( f, x, s ) is true iff jf(x) 
converges in s or fewer steps and, if so, 
VALUE(f, x, s) = jf(x).  
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Sample Question#5
5. Let S be an re (recursively enumerable), non-

recursive set, and T be an re, possibly 
recursive set. Let 
E = { z | z = x + y, where x Î S and y Î T }. 
Answer with proofs, algorithms or 
counterexamples, as appropriate, each of the 
following questions:
(a) Can E be non re?
(b) Can E be re non-recursive?
(c) Can E be recursive? 
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Sample Question#6
6. Assuming that the Uniform Halting 

Problem (TOTAL) is undecidable (it’s 
actually not even re), use reduction to 
show the undecidability of

{ f | "x jf (x+1) > jf (x) }
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Sample Question#7
7. Let Incr = { f | "x, jf(x+1)>jf(x) }. 

Let TOT = { f | "x, jf(x)¯ }.
Prove that Incr ºm TOT. Note Q#6 starts 
this one.
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Sample Question#8
8. Let Incr = { f | "x jf(x+1)>jf(x) }. Use 

Rice’s theorem to show Incr is not 
recursive.
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Sample Question#9
9. Let S be a recursive (decidable set), 

what can we say about the complexity 
(recursive, re non-recursive, non-re) of T, 
where T Ì S?
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Sample Question#10
10.Define the pairing function <x,y> and its 

two inverses <z>1 and <z>2, where if 
z = <x,y>, then x = <z>1 and y = <z>2.
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Sample Question#11
11.Assume A £m B and B £m C. 

Prove A £m C.
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Sample Question#12
12.Let P = { f | $ x [ STP(f, x, x) ] }. Why 

does Rice’s theorem not tell us anything 
about the undecidability of P?
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Thue Systems
• Devised by Axel Thue
• Just a string rewriting view of finitely 

presented monoids
• T = (S, R), where S is a finite alphabet and 

R is a finite set of bi-directional rules of 
form ai « bi , ai, biÎS*

• We define Û* as the reflexive, transitive 
closure of Û, where w Û x iff w=yaz and 
x=ybz, where a « b
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Semi-Thue Systems
• Devised by Emil Post
• A one-directional version of Thue systems
• S = (S, R), where S is a finite alphabet and 

R is a finite set of rules of form 
ai ® bi , ai, biÎS*

• We define Þ* as the reflexive, transitive 
closure of Þ, where w Þ x iff w=yaz and 
x=ybz, where a ® b
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Word Problems
• Let S = (S, R) be some Thue (Semi-Thue) 

system, then the word problem for S is the 
problem to determine of arbitrary words w and x 
over S, whether or not w Û* x (w Þ* x )

• The Thue system word problem is the problem 
of determining membership in equivalence 
classes. This is not true for Semi-Thue systems.

• We can always consider just the relation Þ* 
since the symmetric property of Û* comes 
directly from the rules of Thue systems.
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Post Canonical Systems
• These are a generalization of Semi-Thue systems.
• P = (S, V, R), where S is a finite alphabet, V is a finite set of 

“variables”, and R is a finite set of rules.
• Here the premise part (left side) of a rule can have many premise 

forms, e.g, a rule appears as
P1,1a1,1 P1,2… a1,n1

P1,n1
a1,n1+1 ,

P2,1a2,1 P2,2… a2,n2
P2,n2

a2,n2+1 ,
…

Pk,1ak,1 Pk,2… ak,nk
Pk,nk

ak,nk+1 ,
®Q1b1 Q2… bnk+1

Qnk+1
bnk+1+1

• In the above, the P’s and Q’s are variables, the a’s and b’s are 
strings over S, and each Q must appear in at least one premise.

• We can extend the notion of Þ* to these systems considering sets 
of words that derive conclusions. Think of the original set as axioms, 
the rules as inferences and the final word as a theorem to be 
proved.
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Examples of Canonical Forms
• Propositional rules

P, P É Q  ® Q
~P, P È Q ® Q
P Ç Q ® P oh, oh a Ç (b Ç c) Þ a Ç (b 
P Ç Q ® Q
(P Ç Q) Ç R « P Ç (Q Ç R) 
(P È Q) È R « P È (Q È R) 
~(~P) « P
P È Q ® Q È P 
P Ç Q ® Q Ç P 

• Some proofs over {a,b,(,),~,É,È,Ç}
{a È c, b É ~c, b} Þ {a È c, b É ~c, b, ~c} Þ
{a È c, b É ~c, b, ~c, c È a} Þ
{a È c, b É ~c, b, ~c, c È a, a} which proves “a”
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Simplified Canonical Forms
• Each rule of a Semi-Thue system is a canonical rule of 

the form
PaQ ® PbQ

• Each rule of a Thue system is a canonical rule of the 
form
PaQ « PbQ

• Each rule of a Post Normal system is a canonical rule of 
the form
aP ® Pb

• Tag systems are just Normal systems where all 
premises are of the same length (the deletion number), 
and at most one can begin with any given letter in S. 
That makes Tag systems deterministic.
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Examples of Post Systems
• Alphabet S = {a,b,#}. Semi-Thue rules:

aba ® b
#b# ® l
For above, #anbam#  Þ* l iff n=m

• Alphabet S = {0,1,c,#}. Normal rules:
0c ® 1
1c ® c0
#c ® #1 
0 ® 0
1 ® 1
# ® # 
For above, binaryc#  Þ* binary+1# where binary is some 
binary number.
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Simulating Turing Machines
• Basically, we need at least one rule for each 4-

tuple in the Turing machine’s description.
• The rules lead from one instantaneous 

description to another.
• The Turing ID aqab is represented by the string 

haqabh, a being the scanned symbol.
• The tuple q a b s leads to 

qa ® sb
• Moving right and left can be harder due to 

blanks. 
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Details of Halt(TM) £ Word(ST)
• Let M = (Q, {0,1}, T), T is Turing table.
• If qabs Î T, add rule qa ® sb
• If qaRs Î T, add rules 

– q1b ® 1sb a=1, "bÎ{0,1}
– q1h ® 1s0h a=1
– cq0b ® c0sb a=0, "b,cÎ{0,1}
– hq0b ® hsb a=0, "bÎ{0,1}
– cq0h ® c0s0h a=0, "cÎ{0,1}
– hq0h ® hs0h a=0

• If qaLs Î T, add rules 
– bqac ® sbac "a,b,cÎ{0,1}
– hqac ® hs0ac "a,cÎ{0,1}
– bq1h ® sb1h a=1, "bÎ{0,1}
– hq1h ® hs01h a=1
– bq0h ® sbh a=0, "bÎ{0,1}
– hq0h ® hs0h a=0
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Clean-Up
• Assume q1 is start state and only one accepting state exists q0
• We will start in h1xq10h, seeking to accept x (enter q0) or reject (run 

forever).
• Add rules 

– q0a ® q0 "aÎ{0,1}
– bq0 ® q0 "bÎ{0,1}

• The added rule allows us to “erase” the tape if we accept x.
• This means that acceptance can be changed to generating hq0h.

• The next slide shows the consequences.
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Semi-Thue Word Problem
• Construction from TM, M, gets:
• h1xq10h Þå(M)* hq0h iff xÎL(M).
• hq0h ÞÕ(M)* h1xq10h iff xÎL(M).
• hq0h Ûå (M)* h1xq10h iff xÎL(M).
• Can recast both Semi-Thue and Thue

Systems to ones over alphabet {a,b} or 
{0,1}. That is, a binary alphabet is 
sufficient for undecidability.
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Post Correspondence Problem
• Many problems related to grammars can be shown to be 

no more complex than the Post Correspondence 
Problem (PCP).  

• Each instance of PCP is denoted: Given n>0, S a finite 
alphabet, and two n-tuples of words  
( x1, … , xn ), ( y1, … , yn ) over S, 
does there exist a sequence i1, … , ik , k>0, 1 ≤ ij ≤ n, 
such that
xi1 … xik = yi1 … yik ?  

• Example of PCP: 
n = 3, S = { a , b }, ( a b a , b b , a ),  ( b a b , b , b a a ).
Solution 2 , 3, 1 , 2    
b b   a   a b a   b b   =   b   b a a   b a b   b
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PCP Example#2
• Start with Semi-Thue System

– aba ® ab; a ® aa; b ® a
– Instance of word problem: bbbb Þ*? aa

• Convert to PCP
– [bbbb* ab ab aa aa a a ]

[ aba aba a a b b *aa]
– And * * a a b b

* * a a b b
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How PCP Construction Works?

• Using underscored letters avoids solutions 
that don’t relate to word problem instance. 
E.g.,

aba a
ab aa

• Top row insures start with [W0*
• Bottom row insures end with *Wf]
• Bottom row matches Wi, while top 

matches Wi+1 (one is underscored)
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Ambiguity of CFG
• Problem to determine if an arbitrary CFG 

is ambiguous 
S® A  |  B
A® xi A [i]  |   xi [i] 1 ≤ i ≤ n
B® yi B [i]  |   yi [i] 1 ≤ i ≤ n
A Þ* xi1 … xik [ik] … [i1] k > 0
B Þ* yi1 … yik [ik] … [i1] k > 0

• Ambiguous if and only if there is a solution 
to this PCP instance. 
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Intersection of CFLs
• Problem to determine if arbitrary CFG’s 

define overlapping languages
• Just take the grammar consisting of all the 

A-rules from previous, and a second 
grammar consisting of all the B-rules.  Call 
the languages generated by these 
grammars, LA and LB. 
LA Ç LB ≠  Ø, if and only there is a solution 
to this PCP instance.
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CSG Produces Something
S ® xi S yi

R | xi T yi
R 1 ≤ i ≤ n

a T a ® * T *
* a ® a *
a * ® * a
T ® *

• Our only terminal is *.  We get strings of 
form *2j+1, for some j’s if and only if there is 
a solution to this PCP instance.
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Traces

• A valid trace
– # C1 # C2 # C3 # C4 … # Ck-1 # Ck #, 

where k ³ 1 and Ci ÞM Ci+1, for 1 £ i < k. 
Here, ÞM means derive in M, and C is a valid 
ID (Instantaneous Description)

• An invalid trace
– # C1 # C2 # C3 # C4 … # Ck-1 # Ck #, 

where k ³ 1 and for some i, it is false that 
Ci ÞM Ci+1. 
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Traces (Valid Computations)
• A terminating trace of a machine M, is a word of the form

# C0 # C1 # C2 # C3 # … # Ck-1 # Ck #

where Ci Þ Ci+1 0 ≤ i < k, X0 is a starting configuration and Ck is a 
terminating configuration.  

• We allow some laxness, where the configurations might be encoded 
in a manner appropriate to the machine model.  Now, a context free 
grammar can be devised which approximates traces by either 
getting the even-odd pairs right, or the odd-even pairs right.  The 
goal is to then intersect the two languages, so the result is a trace.  
This then allows us to create CFLs L1 and L2, where L1 Ç L2 ≠ Ø , 
just in case the machine has an element in its domain.  Since this is 
undecidable, the non-emptiness of the intersection problem is also 
undecidable. This is an alternate proof to one we already showed 
based on PCP.

• Additionally, if L1 Ç L2 = Ø, the complement (bad traces + non-
traces) is Σ*. As this can be shown to be a CFL, determining if a 
CFG generates Σ* is undecidable as well. 
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What’s Undecidable?
• We cannot decide if the set of valid 

terminating traces of an arbitrary machine 
M is non-empty.

• We cannot decide if the complement of the 
set of valid terminating traces of an 
arbitrary machine M is everything. In fact, 
this is not even semi-decidable.
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What’s a CSL or CFL?
• Given some machine M (I’ll talk about specific 

models later)

– The set of valid traces of M is Context Sensitive

(can prove by fact that intersection of two CFLs is a 

CSG or by direct construction)

– The complement of the valid traces of M is Context 

Free; that is, the set of invalid traces of M is Context 

Free (just one mistake required)

– The set of valid terminating traces of M is Context 

Sensitive (same as above)

– The complement of the valid terminating traces of M 
is Context Free; again, this requires just one mistake
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L = S*?
• If L is regular, then L = S*? is decidable

– Easy – Reduce to minimal deterministic FSA, 
AL accepting L. L = S* iff AL is a one-state 
machine, whose only state is accepting

• If L is context free, then L = S*? is 
undecidable
– Just produce the complement of a machine’s 

valid terminating traces; if it’s S* then the 
original machine accepted nothing
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Traces are NOT CFLs
• In the previous, we assumed that a trace is NOT a CFL, 

but we never proved that.

• To show  the trace language for a TM, M, 

{ # C1 # C2 # C3 # C4 … # Ck-1 # Ck # | 

k ³ 1 and Ci ÞM Ci+1, for 1 £ i < k } is not a CFL, we can 

focus on a simple machine that has just one non-blank 

{1} and one state {q} and the rules

q 0 0 q

q 1 1 q

• This machine has traces of the form

{ # C # C # C # C  … # C # C # } as it never changes the 

tape contents or its state.
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Using Pumping Lemma
• From previous slide, assume that language of traces, 

L = { # C # C # C # C  … # C # C # }, 
involving no changes in the ID is Context Free

• Pumping Lemma gives me an N>0
• I choose the valid trace in L that is # q 1N #  q 1N # q 1N #
• PL breaks this up into uvwxy, |vwx| ≤ N, |vx|>0 and

∀i≥0 uviwxiy ∈ L
• Case 1: vx contains some 1’s. Due to fact that |vwx| ≤ N, the 1’s can come 

from at most two consecutive sequences of 1’s. If i=0, then we reduce 1’s in 
at most two subsequences, but not in the third, leading to an imbalance, 
and so the result is not in L.

• Case 2:  vx contains no 1’s, then it must be either ‘q’, ‘#’, or ‘#q’. In any 
case, if i=1 then we remove a state or a divider or both and the result is not 
a sequence of fixed configuration, so is not in L.

• By PL, L is not a CFL.
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Language of Traces is a CSL 
• The easiest way to show this for Turing machine traces is to describe an 

LBA that is given a string and wants to check if it is a valid trace.
• The LBA could make a pass over to be sure the string starts with a #, ends 

with a #, has no 0’s immediately following a #, has a leading 0 immediately 
prior to a # only if the character preceding that 0 is a state, and has exactly 
one state between each pair of #’s.

• The LBA could then check each pair by copying the second member of a 
pair under the first (2 tracks) and then marching over the two one character 
at a time until a state is found in one or the other. It can then do checks that 
are based on the Turing machine rules with there being a need to look at 
only 4 characters in each track – state, character to immediate left of state 
and up to two characters to immediate right of state on each track (think 
about it). Of course, all parts of configuration that are not altered must be 
checked to be sure they match on both tracks.
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Non-Traces is a CFL 
• There are two ways that a string might not be a valid trace. 
• First, it might be ill-formed, but we can easily check if a word looks like a 

trace. If not, it is in the complement of valid traces
• Second, we can check pairs of configurations, # Ci # Ci+1 to  see if there is a 

transcription error; that is, we can check to see if it is the case that Ci+1 does 
not follow from Ci in a valid trace. This is a non-deterministic process where 
we “guess” which pair might be in error and then, if the guess is correct, we 
accept the string as a bad one that just looks like a trace.

• How hard is it to check for one bad transcription? Well, as noted above it 
starts with a guess, but then we must check. If it’s a TM trace, we use 
alternating ID reversals, so such a pair is either # Ci # Ci+1R or # CiR # Ci+1. 
Checking an error here is just looking as was described with the LBA single 
step check and can be done with a stack. What the stack cannot do is look 
at sequences longer than single pairs.
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Traces of FRS with Residues
• I have chosen, once again to use the Factor Replacement Systems, 

but this time, Factor Systems with Residues.  
The rules are unordered and each is of the form
a x + b  ® c x + d

• These systems need to overcome the lack of ordering when 
simulating Register Machines.  This is done by
j. INCr[i] pn+j x ® pn+i pr x 
j. DECr[s, f] pn+j pr x ® pn+s x 

pn+j pr x + k pn+j ® pn+f pr x + k pn+f , 1 ≤ k <  pr
We also add the halting rule associated with m+1 of

pn+m+1 x ® 0 
• Thus, halting is equivalent to producing 0.  We can also add one 

more rule that guarantees we can reach 0 on both odd and even 
numbers of moves

0 ® 0
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Intersection of CFLs
• Let (n, ((a1,b1,c1,d1) , … ,(ak,bk,ck,dk) ) be some factor replacement 

system with residues.  Define grammars G1 and G2 by using the 4k+2 rules
G : Fi ® 1aiFi1ci |  1ai+bi#1ci+di 1 ≤ i ≤ k

S1 ® # Fi S1 |  # Fi # 1 ≤ i ≤ k
S2 ® # 1x0S11z0# Z0 is 0 for us

G1 starts with S1 and G2 with S2
• Thus, using the notation of writing Y in place of 1Y, 

L1 =  L( G1 ) = { #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }
where Y2i Þ Y2i+1 , 0 ≤ i ≤ j.  
This checks the even/odd steps of an even length computation.
But, L2 =  L( G2 ) = { #X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # }
where X2i-1 Þ X2i , 1 ≤ i ≤ k.  
This checks the odd/even steps of an even length computation.

• Given that the intersection of two CFLs is at worst a CSL, we now have an 
indirect way of showing that the valid terminating traces are a CSL.

4/7/19 © UCF EECS



468

Intersection Continued
Now, X0 is chosen as some selected input value to the 
Factor System with Residues, and Z0 is the unique value 
(0 in our case) on which the machine halts.  But,
L1 Ç L2  = {#X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # }
where Xi Þ Xi+1 , 0 ≤ i < 2k, and X2k Þ Z0 .  This checks 
all steps of an even length computation.  But our original 
system halts if and only if it produces 0 (Z0) in an even 
(also odd) number of steps.  Thus the intersection is 
non-empty just in case the Factor System with residue 
eventually produces 0 when started on X0, just in case 
the Register Machine halts when started on the register 
contents encoded by X0.
This is an independent proof of the undecidability of the 
non-empty intersection problem for CFGs and the non-
emptiness problem for CSGs.
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What’s a CSL or CFL?
• Given an FRS with Residue

– The set of valid traces is Context Sensitive

(can prove by fact that intersection of two CFLs is a 

CSG or by direct construction or by describing an 

LBA that accepts this language)

– The complement of the valid traces is Context Free; 

that is, the set of invalid traces of M is Context Free 

(just one mistake required)

– The set of valid terminating traces is Context 

Sensitive (same as above)

– The complement of the valid terminating traces is 

Context Free; again, this requires just one mistake



Quotients of CFLs (concept)
Let L1 =  L( G1 ) = { $ # Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }
where Y2i Þ Y2i+1 , 0 ≤ i ≤ j.  
This checks the even/odd steps of an even length computation.
Now, let L2=L( G2 )={X0 $ # X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 #}
where X2i-1 Þ X2i , 1 ≤ i ≤ k and Z is a unique halting configuration.
This checks the odd/steps of an even length computation and includes 
an extra copy of the starting number prior to its $.
Now, consider the quotient of L2 / L1 .  The only way a member of L1 
can match a final substring in L2 is to line up the $ signs.  But then 
they serve to check out the validity and termination of the 
computation.  Moreover, the quotient leaves only the starting point 
(the one on which the machine halts.)  Thus,
L2 / L1  = { X0 | the system being traced halts}. 
Since deciding the members of an re set is in general undecidable, we 
have shown that membership in the quotient of two CFLs is also 
undecidable. 
Note: Intersection of two CFLs is a CSL but quotient of two CFLs is an 
re set and, in fact, all re sets can be specified by such quotients.
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Quotients of CFLs (precise)

• Let (n, ((a1,b1,c1,d1) , … ,(ak,bk,ck,dk) ) be some factor replacement system with 
residues.  Define grammars G1 and G2 by using the 4k+4 rules

G : Fi ® 1aiFi1
ci |  1ai+bi#1ci+di 1 ≤ i ≤ k

T1 ® # Fi T1 |  # Fi # 1 ≤ i ≤ k

A ® 1 A 1 | $ #

S1 ® $T1

S2 ® A T1 # 1z0 # Z0 is 0 for us

G1 starts with S1 and G2 with S2

• Thus, using the notation of writing Y in place of 1Y, 
L1 =  L( G1 ) = { $ #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }

where Y2i Þ Y2i+1 , 0 ≤ i ≤ j.  

This checks the even/odd steps of an even length computation.

But, L2 =  L( G2 ) = { X $ #X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # }

where X2i-1 Þ X2i , 1 ≤ i ≤ k and X = X0

This checks the odd/steps of an even length computation, and includes 

an extra copy of the starting number prior to its $.  
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Summarizing Quotient
Now, consider the quotient L2 / L1 where L1 and 
L2 are the CFLs on prior slide.  The only way a 
member of L1 can match a final substring in L2 
is to line up the $ signs.  But then they serve to 
check out the validity and termination of the 
computation.  Moreover, the quotient leaves only 
the starting number (the one on which the 
machine halts.)  Thus,
L2 / L1  = { X | the system F halts on zero }. 
Since deciding the members of an re set is in 
general undecidable, we have shown that 
membership in the quotient of two CFLs is also 
undecidable.
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Traces and Type 0 
• Here, it is easier to show a simulation of a Turing machine than of an FRS.  
• Assume we are given some machine M, with Turing table T (using Post notation). We 

assume a tape alphabet of S that includes a blank symbol B.
• Consider a starting configuration C0. Our rules will be

S ® # C0 # where C0 = αq0aβ is initial ID
q a ® s b if q a b s Î T
b q a x ® b a s x if q a R s Î T, a,b,x Î S
b q a # ® b a s B # if q a R s Î T, a,b Î S
# q a x ® # a s x if q a R s Î T, a,x Î S, a≠B
# q a # ® # a s B # if q a R s Î T, a Î S, a≠B
# q a x ® # s x # if q a R s Î T, x Î S, a=B
# q a # ® # s B # if q a R s Î T, a=B
b q a x ® s b a x if q a L s Î T, a,b,x Î S
# q a x ® # s B a x if q a L s Î T, a,x Î S
b q a # ® s b a # if q a L s Î T, a,b Î S, a≠B
# q a # ® # s B a # if q a L s Î T, a Î S, a≠B
b q a # ® s b # if q a L s Î T, b Î S, a=B
# q a # ® # s B # if q a L s Î T, a=B
f ® l if f is a final state
# ® l just cleaning up the dirty linen 
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CSG and Undecidability
• We can almost do anything with a CSG that can be done with a Type 0 

grammar.  The only thing lacking is the ability to reduce lengths, but we can 
throw in a character that we think of as meaning “deleted”.  Let’s use the 
letter d as a deleted character and use the letter e to mark both ends of a 
word.

• Let G = ( V, T, P , S) be an arbitrary Type 0 grammar.
• Define the CSG G’ = (V È {S’, D}, T È {d, e}, S’, P’), where P’ is

S’ ® e S e
D x ® x D when x Î V È T
D e ® e d push the delete characters to far right
a ® b where a ® b Î P and |a| ≤ |b|
a ® bDk where a ® b Î P and |a| - |b| = k > 0

• Clearly, L(G’) = { e w e dm | w Î L(G) and m≥0 is some integer }
• For each w Î L(G), we cannot, in general, determine for which values of m, 

e w e dm Î L(G’).  We would need to ask a potentially infinite number of 
questions of the form 
“does e w e dm Î L(G’)” for some m≥0 to determine if w Î L(G).  
That’s a semi-decision procedure because m can be unbounded above.
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Some Consequences
• CSGs are not closed under Init, Final, Mid, quotient with 

regular sets, substitution and homomorphism (okay for 

l-free homomorphism and non-length reducing 

substitutions)

• We also have that the emptiness problem is undecidable 

from this result.  That gives us two proofs of this one 

result.

• For Type 0, emptiness and even the membership 

problems are undecidable.
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Summary of Grammar 
Results
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Decidability
• Everything about regular
• Membership in CFLs and CSLs

– CKY for CFLs
• Emptiness for CFLs
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Undecidability
• Is L =Æ, for CSL, L?
• Is L=S*, for CFL (CSL), L?
• Is L1=L2 for CFLs (CSLs), L1, L2?
• Is L1ÍL2 for CFLs (CSLs ), L1, L2?
• Is L1ÇL2=Æ for CFLs (CSLs ), L1, L2?
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More Undecidability
• Is CFL, L, ambiguous?
• Is L=L2, L a CFL?
• Does there exist a finite n, Ln=LN+1?
• Is L1/L2 finite, L1 and L2 CFLs?
• Membership in L1/L2, where L1 and L2 are  

CFLs?
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Word to Grammar Problem
• Recast semi-Thue system making all 

symbols non-terminal, adding S and V to 
non-terminals and terminal set S={a}
G: S ® h1xq10h

hq0h ® V
V ® aV
V ® l

• xÎL(M) iff L(G) ≠ Ø iff L(G) infinite 
iff l Î L(G) iff a Î L(G) iff L(G) = S*
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Consequences for PSG
• Unsolvables
– L(G) = Ø
– L(G) = S*
– L(G) infinite
– w Î L(G), for arbitrary w
– L(G) Ê L(G2)
– L(G) = L(G2)

• Latter two results follow when have
– G2: S ® aS | l aÎS
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Finite Convergence for 
Concatenation of Context-Free 

Languages
Relation to Real-Time 

(Constant Time) Execution



Powers of CFLs

Let G be a context free grammar.
Consider L(G)n

Question1: Is L(G) = L(G)2?
Question2: Is L(G)n = L(G)n+1, for some 

finite n>0?
These questions are both undecidable.
Think about why question1 is as hard as 

whether or not L(G) is S*. 
Question2 requires much more thought.
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L(G) = L(G)2?

• The problem to determine if L = S* is Turing 
reducible to the problem to decide if 
L • L Í L, so long as L is selected from a 
class of languages C over the alphabet S for 
which we can decide if S È {l} Í L. 

• Corollary 1: 
The problem “is L • L = L, for L context free 
or context sensitive?” is undecidable 
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L(G) = L(G)2? is undecidable

• Question: Does L • L get us anything new?
– i.e., Is L • L = L?

• Membership in a CFL is decidable.
• Claim is that L = S* iff

(1) S È {l} Í L ; and
(2) L • L = L 

• Clearly, if L = S* then (1) and (2) trivially hold.
• Conversely, we have S* Í L*= È n³0 Ln Í L

– first inclusion follows from (1); second 
from (2)
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Finite Power Problem
• The problem to determine, for an arbitrary 

context free language L, if there exist a finite 
n such that Ln = Ln+1 is undecidable.

• L1 = { C1# C2
R $ | 

C1, C2 are configurations },
• L2 = { C1#C2

R$C3#C4
R … $C2k-1#C2k

R$ | where 
k ³ 1 and, for some i, 1 £ i < 2k, Ci ÞM Ci+1 is 
false },

• L = L1 È L2 È {l}.
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Undecidability of $n Ln = Ln+1

• L is context free. 
• Any product of L1 and L2, which contains L2 at least 

once, is L2. For instance, L1 • L2 = L2 • L1 = L2 • L2 = 
L2.  

• This shows that (L1 È L2)n = L1
n È L2. 

• Thus, Ln = {l} È L1 È L1
2 …  È L1

n È L2. 
• Analyzing L1 and L2 we see that L1

n È L2 ¹ L2 just in 
case there is a word C1 # C2

R $ C3 # C4
R … $ C2n-1 # 

C2n
R $ in L1

n that is not also in L2. 
• But then there is some valid trace of length 2n. 
• L has the finite power property iff M executes in 

constant time.
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Missing Step
• We have that CT (Constant-Time) is many-one 

reducible to Finite Power Problem (FPC) for 
CFLs

• This means that if CT is unsolvable, so is FPC
for CFLs.

• However, we still lack a proof that CT is 
unsolvable. I am keeping that open as one of the 
problems that you folks can attack in your 
presentation. It takes two papers to get here. I’ll 
document that.
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Propositional Calculus

Axiomatizable Fragments
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Propositional Calculus
• Mathematical of unquantified logical 

expressions

• Essentially Boolean algebra

• Goal is to reason about propositions

• Often interested in determining

– Is a well-formed formula (wff) a tautology?

– Is a wff refutable (unsatisfiable)?

– Is a wff satisfiable? (classic NP-complete)



4/7/19 © UCF EECS 491

Tautology and Satisfiability
• The classic approaches are:

– Truth Table
– Axiomatic System (axioms and inferences)

• Truth Table
– Clearly exponential in number of variables

• Axiomatic Systems Rules of Inference
– Substitution and Modus Ponens
– Resolution / Unification
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Proving Consequences
• Start with a set of axioms (all tautologies)

• Using substitution and MP 

(P, P ÉQ Þ Q)

derive consequences of axioms (also 

tautologies, but just a fragment of all)

• Can create complete sets of axioms

• Need 3 variables for associativity, e.g., 

(p1 Ú p2) Ú p3   É p1 Ú (p2 Ú p3)
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Some Undecidables
• Given a set of axioms,

– Is this set complete?
– Given a tautology T, is T a consequent?

• The above are even undecidable with one 
axiom and with only 2 variables. I will 
show this result shortly.



4/7/19 © UCF EECS 494

Refutation
• If we wish to prove that some wff, F, is a 

tautology, we could negate it and try to 

prove that the new formula is refutable 

(cannot be satisfied; contains a logical 

contradiction).

• This is often done using resolution.
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Resolution
• Put formula in Conjunctive Normal Form 

(CNF)
• If have terms of conjunction

(P Ú Q), (R  Ú ~Q)
then can determine that (P Ú R)

• If we ever get a null conclusion, we have 
refuted the proposition

• Resolution is not complete for derivation, 
but it is for refutation
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Axioms
• Must be tautologies
• Can be incomplete
• Might have limitations on them and on 

WFFs, e.g.,
– Just implication
– Only n variables

– Single axiom
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Simulating Machines
• Linear representations require 

associativity, unless all operations can be 
performed on prefix only (or suffix only)

• Prefix and suffix-based operations are 
single stacks and limit us to CFLs

• Can simulate Post normal Forms with just 
3 variables.
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Diadic PIPC
• Diadic limits us to two variables

• PIPC means Partial Implicational 

Propositional Calculus, and limits us to 

implication as only connective

• Partial just means we get a fragment

• Problems

– Is fragment complete?

– Can F be derived by substitution and MP?
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Living without Associativity
• Consider a two-stack model of a TM

• Could somehow use one variable for left 

stack and other for right

• Must find a way to encode a sequence as 

a composition of forms – that’s the key to 

this simulation
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Composition Encoding
• Consider (p É p), (p É (p É p) ), 

(p É (p É (p É p) ) ), …
– No form is a substitution instance of any of the 

other, so they can’t be confused
– All are tautologies

• Consider ((X É Y) É Y)
– This is just X Ú Y
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Encoding
• Use (p É p) as form of bottom of stack
• Use (p É (p É p)) as form for letter 0
• Use (p É (p É (p É p))) as form for 1
• Etc.
• String 01 (reading top to bottom of stack) is

– (   ( (p É p) É ( (p É p) É ( (p É p) É (p É p) ) ) ) É
( ( (p É p) É ( (p É p) É ( (p É p) É (p É p) ) ) ) É
( (p É p) É ( (p É p) É ( (p É p) É (p É p) ) ) ) ) )



Encoding
I(p) abbreviates [p É p]
F0(p) is [p É I(p)] which is [p É [p É p]]
F1(p) is [p É F0(p)]
x1(p) is [p É F1(p)]
x2(p) is [p É x1 (p)]
x3(p) is [p É x2 (p)]
y1(p) is [p É x3 (p)]
y2(p) is [p É y1 (p)]
…
ym(p) is [p É ym-1 (p)]
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Creating Terminal IDs
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Reversing Print and Left
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Reversing Right 



Exam Prep



507

Sample Question

Let A and B be re sets. For each of the following, either 
prove that the set is re, or give a counterexample that 
results in some known non-re set.
Let A be semi decided by fA and B by fB

a) A È B: must be re as it is semi-decided by
fA È B (x) = $t [stp(fA, x, t) || stp(fB, x, t) ]

b) A Ç B: must be re as it is semi-decided by
fA Ç B (x) = $t [stp(fA, x, t) && stp(fB, x, t) ]

c) ~A: can be non-re. If ~A is always re, then all re 
are recursive as any set that is re and whose 
complement is re is decidable. However, A = K 
is a non-rec, re set and so ~A is not re.
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Sample Question
Given that the predicate STP and the 
function VALUE are prf’s, show that we can 
semi-decide 
{ f | jf evaluates to 0 for some input}

This can be shown re by the predicate
{f | $<x,t> [stp(f,x,t) && value(f,x,t) = 0] } 
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Sample Question
Let S be an re (recursively enumerable), non-recursive 
set, and T be re, non-empty, possibly recursive set. 
Let E = { z | z = x + y, where x Î S and y Î T }. 

(a) Can E be non re? No as we can let S and T 
be semi-decided by fS and fT, resp., E is then 
semi-dec. by
fE (z) = $<x,y,t> [stp(fS, x, t) && stp(fT, y, t) && 
(z = value(fS, x, t) + value(fT, y, t)) ]
(b) Can E be re non-recursive? Yes, just let T = 
{0}, then E = S which is known to be re, non-
rec.
(c) Can E be recursive? Yes, let T = À, then 
E = { x | x ≥ min (S) } which is a co-finite set 
and hence rec.
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Sample Question
Assuming TOTAL is undecidable, use 
reduction to show the undecidability of 
Incr = { f | "x jf (x+1) > jf (x) }

Let f be arb.
Define Gf (x) = jf (x) - jf (x) + x
f Î TOTAL iff "xjf (x)¯ iff "x Gf(x)¯ iff
"x jf (x) - jf (x) + x = x iff Gf Î Incr
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Sample Question

Let Incr = { f | "x, jf(x+1)>jf(x) }. 
Let TOTAL = { f | "x, jf(x)¯ }.
Prove that Incr ≤m TOTAL. 

Let f be arb.
Define Gf (x) = $t[stp(f,x,t) && 
stp(f,x+1,t) && (value(f,x+1,t) > 
value(f,x,t))]
f Î Incr iff "x jf(x+1)>jf(x) iff
"x Gf (x)¯ iff Gf Î TOT
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Sample Question

Let Incr = { f | "x jf(x+1)>jf(x) }. 
Use Rice’s theorem to show Incr is not 
recursive.
Non-Trivial as

C0(x)=0 Ï Incr; S(x)=x+1 Î Incr

Let f,g be arb. Such that "x jf(x)=jg(x) 

f Î Incr iff "x jf(x+1)>jf(x) iff

"x jg(x+1)>jg(x)  iff g Î Incr
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Sample Question
Let S be a recursive (decidable set), what 
can we say about the complexity (recursive, 
re non-recursive, non-re) of T, where T Ì S?

Nothing. Just let S = À, then T could be 
any subset of À. There are an 
uncountable number of such subsets 
and some are clearly in each of the 
categories above.
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Sample Question

Let P = { f | $ x [ STP(f, x, x) ] }. Why does 
Rice’s theorem not tell us anything about the 
undecidability of P?

This is not an I/O property as we can 

have implementations of C0 that are 

efficient and satisfy P and others that 

do not. 
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Notion of “Order”
Throughout the complexity portion of this course, 
we will be interested in how long an algorithm 
takes on the instances of some arbitrary "size" 
n. Recognizing that different times can be 
recorded for two instance of size n, we only ask 
about the worst case. 

We also understand that different languages, 
computers, and even skill of the implementer 
can alter the "running time."
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Notion of “Order”
As a result, we really can never know "exactly" 
how long anything takes.

So, we usually settle for a substitute function, 
and say the function we are trying to measure is 
"of the order of" this new substitute function.  
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Notion of “Order”
"Order" is something we use to describe an upper bound 
upon something else (in our case, time, but it can apply 
to almost anything).

For example, let f(n) and g(n) be two functions. We say 
"f(n) is order g(n)" when there exists constants c and N
such that f(n) ≤ cg(n) for all n ≥ N.

What this is saying is that when n is 'large enough,' f(n)
is bounded above by a constant multiple of g(n).
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Notion of “Order”
This is particularly useful when f(n) is not known 
precisely, is complicated to compute, and/or difficult to 
use. We can, by this, replace f(n) by g(n) and know we 
aren't "off too far."

We say f(n) is "in the order of g(n)" or, simply, 
f(n) Î O(g(n)).

Usually, g(n) is a simple function, like nlog(n), n3, 2n, 
etc., that's easy to understand and use.
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Notion of “Order”
Order of an Algorithm: The maximum 
number of steps required to find the 
answer to any instance of size n, for any 
arbitrary value of n. 

For example, if an algorithm requires at 
most 6n2+3n–6 steps on any instance of 
size n, we say it is "order n2" or, simply, 
O(n2).
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Order
Let the order of algorithm X be in O(fx(n)).

Then, for algorithms A and B and their respective order 
functions, fA(n) and fB(n), consider the limit of fA(n)/fB(n)
as n goes to infinity.

If this value is

0 A is faster than B
constant A and B are "equally slow/fast"
infinity  A is slower than B.
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Order of a Problem
Order of a Problem 

The order of the fastest algorithm that can 
ever solve this problem. (Also known as 
the "Complexity" of the problem.)

Often difficult to determine, since this allows 
for algorithms not yet discovered.
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Decision vs Optimization
Two types of problems are of particular interest: 

Decision Problems   ("Yes/No" answers)

Optimization problems  ("best" answers)

(there are other types)
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Vertex Cover (VC)
• Suppose we are in charge of a large network (a graph where edges 

are links between pairs of cities (vertices). Periodically, a line fails. 
To mend the line, we must call in a repair crew that goes over the  
line to fix it. To minimize down time, we station a repair crew at one 
end of every line. How many crews must you have and where 
should they be stationed?

• This is called the Vertex Cover Problem. (Yes, it sounds like it  
should be called the Edge Cover problem – something else already 
had that name.)

• An interesting problem – it is among the hardest problems, yet is 
one of the easiest of the hard problems.
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VC Decision vs Optimization
• As a Decision Problem:

• Instances: A graph G and an integer k.
• Question: Does G possess a vertex Cover with at most k vertices?

• As an Optimization Problem:

• Instances: A graph G.
• Question: What is the smallest k for which G possesses a vertex 

cover?
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Relation of VC Problems
• If we can (easily) solve either one of these problems, we can (easily) 

solve the other. (To solve the optimization version, just solve the  
decision version with several different values of k. Use a binary 
search on  k between 1 and  n.  That is log(n) solutions  of the  
decision problem solves the  optimization problem. It's simple to 
solve the  decision version if we can  solve the  optimization version.

• We say their time complexity differs by no more than a multiple of 
log(n).

• If one is polynomial then so is the other.
• If one is exponential, then so is the other.

• We say they are equally difficult (both poly. or both exponential).
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Smallest VC
• A "stranger version"

• Instances: A graph G and an integer k.
• Question: Does the smallest vertex cover of G have exactly k

vertices?
• This is a decision problem. But, notice that it does not seem to be 

easy to verify either Yes or No instances!! (We can easily verify No 
instances for which the VC number is less than k, but not when it is 
actually greater than k.)

• So, it would seem to be in a different category than either of the  
other two. Yet, it also has the property that if we can easily solve 
either of the first two versions, we can easily solve this one.
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Natural Pairs of Problems
Interestingly, these usually come in pairs 

a decision problem, and

an optimization problem.

Equally easy, or equally difficult, to solve.

Both can be solved in polynomial time, or both require 
exponential time.
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A Word about Time
An algorithm for a problem is said to be polynomial if 
there exists integers k and N such that t(n), the 
maximum number of steps required on any instance of 
size n, is at most nk, for all n ≥ N.

Otherwise, we say the algorithm is exponential. Usually, 
this is interpreted to mean t(n) ≥ cn for an infinite set of 
size n instances, and some constant c > 1 (often, we 
simply use c = 2).
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A Word about “Words”
Normally, when we say a problem is "easy" we mean 
that it has a polynomial algorithm. 

But, when we say a problem is "hard" or “apparently 
hard" we usually mean no polynomial algorithm is 
known, and none seems likely. 

It is possible a polynomial algorithm exists for "hard" 
problems, but the evidence seems to indicate otherwise.
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A Word about Abstractions
Problems we will discuss are usually "abstractions" of 
real problems. That is, to the extent possible, non-
essential features have been removed, others have been 
simplified and given variable names, relationships have 
been replaced with mathematical equations and/or 
inequalities, etc.

If an abstraction is hard, then the real problem is 
probably even harder!!
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A Word about Toy Problems
This process, Mathematical Modeling, is a field of study 
in itself, and not our interest here. 

On the other hand, we sometimes conjure up artificial 
problems to put a little "reality" into our work. This results 
in what some call "toy problems."

Again, if a toy problem is hard, then the real problem is 
probably harder.
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Very Hard Problems
Some problems have no algorithm (e. g., Halting 
Problem.) 

No mechanical/logical procedure will ever solve all 
instances of any such problem!!

Some problems have only exponential algorithms 
(provably so – they must take at least order 2n steps) So 
far, only a few have been proven, but there may be 
many. We suspect so.
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Easy Problems
Many problems have polynomial algorithms 
(Fortunately). 

Why fortunately? Because, most exponential 
algorithms are essentially useless for problem 
instances with n much larger than 50 or 60. 
We have algorithms for them, but the best of 
these will take 100's of years to run, even on 
much faster computers than we now envision.
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Three Classes of Problems
Problems proven to be in these three groups 
(classes) are, respectively,

Undecidable, Exponential, and Polynomial.

Theoretically, all problems belong to exactly 
one of these three classes. 
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Unknown Complexity
Practically, there are a lot of problems (maybe, most) 
that have not been proven to be in any of the classes 
(Yet, maybe never will be). 

Most currently "lie between" polynomial and 
exponential – we know of exponential algorithms, 
but have been unable to prove that exponential 
algorithms are necessary. 

Some may have polynomial algorithms, but we have 
not yet been clever enough to discover them.
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Why do we Care?
If an algorithm is O(nk), increasing the size of an 
instance by one gives a running time that is O((n+1)k)

That’s really not much more.

With an increase of one in an exponential algorithm, 
O(2n) changes to O(2n+1) = O(2*2n) = 2*O(2n) – that is, it 
takes about twice as long.
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A Word about “Size”
Technically, the size of an instance is the minimum number of 
bits (information) needed to represent the instance – its 
"length." 

This comes from early Formal Language researchers who 
were analyzing the time needed to 'recognize' a string of 
characters as a function of its length (number of 
characters).

When dealing with more general problems there is usually a 
parameter (number of vertices, processors, variables, etc.) 
that is polynomially related to the length of the instance. 
Then, we are justified in using the parameter as a measure 
of the length (size), since anything polynomially related to 
one will be polynomially related to the other. 
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The Subtlety of “Size”
But, be careful.

For instance, if the "value" (magnitude) of n is both 
the input and the parameter, the 'length' of the input 
(number of bits) is log2(n). So, an algorithm that 
takes n time is running in n = 2log2(n) time, which is 
exponential in terms of the length, log2(n), but linear 
(hence, polynomial) in terms of the "value," or 
magnitude, of n.

It's a subtle, and usually unimportant difference, but 
it can bite you.
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Subset Sum
• Problem – Subset Sum

• Instances: A list L of n integer values and an integer B.

• Question: Does L have a subset which sums exactly to B?

• No one knows of a polynomial (deterministic) solution to this  problem.

• On the other hand, there is a very simple (dynamic programming) algorithm 

that runs in O(nB) time.

• Why isn't this "polynomial"? 

• Because, the "length" of an instance is nlog(B) and

• nB > (nlog(B))^k for any fixed k.
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Why do we Care?
When given a new problem to solve (design an algorithm 
for), if it's undecidable, or even exponential, you will 
waste a lot of time trying to write a polynomial solution 
for it!!

If the problem really is polynomial, it will be worthwhile 
spending some time and effort to find a polynomial 
solution.

You should know something about how hard a problem 
is before you try to solve it.
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Research Territory
Decidable – vs – Undecidable     

(area of Computability Theory)

Exponential – vs – polynomial   
(area of Computational Complexity)

Algorithms for any of these         
(area of Algorithm Design/Analysis)
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Complexity Theory

Second Part of Course



Models of Computation
NonDeterminism

Since we can't seem to find a model of computation 
that is more powerful than a TM, can we find one that 
is 'faster'?

In particular, we want one that takes us from 
exponential time to polynomial time.

Our candidate will be the NonDeterministic Turing 
Machine (NDTM).
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NDTM's
In the basic Deterministic Turing Machine (DTM) we 
make one major alteration (and take care of a few 
repercussions): 

The 'transition functon' in DTM's is allowed to 
become a 'transition mapping' in NDTM's.

This means that rather than the next action being 
totally specified (deterministic) by the current state 
and input character, we now can have many next 
actions - simultaneously. That is, a NDTM can be in 
many states at once. (That raises some interesting 
problems with writing on the tape, just where the 
tape head is, etc., but those little things can be 
explained away).
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NDTM's
We also require that there be only one halt state - the 
'accept' state. That also raises an interesting 
question - what if we give it an instance that is not 
'acceptable'? The answer - it blows up (or goes into 
an infinite loop). 

The solution is that we are only allowed to give it 
'acceptable' input. That means

NDTM's are only defined for decision problems
and, in particular, only for Yes instances.
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NDTM's
We want to determine how long it takes to get to the 
accept state - that's our only motive!!

So, what is a NDTM doing?

In a normal (deterministic) algorithm, we often have 
a loop where each time through the loop we are 
testing a different option to see if that "choice" leads 
to a correct solution. If one does, fine, we go on to 
another part of the problem. If one doesn't, we return 
to the same place and make a different choice, and 
test it, etc.
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NDTM's
If this is a Yes instance, we are guaranteed that an 
acceptable choice will eventually be found and we 
go on.

In a NDTM, what we are doing is making, and testing, 
all of those choices at once by 'spawning' a different 
NDTM for each of them. Those that don't work out, 
simply die (or something).

This is kind of like the ultimate in parallel 
programming.
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NDTM's
To allay concerns about not being able 
to write on the tape, we can allow each 
spawned NDTM to have its own copy of 
the tape with a read/write head. 

The restriction is that nothing can be 
reported back except that the accept 
state was reached.
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NDTM's
Another interpretation of nondeterminism:

From the basic definition, we notice that out of 
every state having a nondeterministic choice, at 
least one choice is valid and all the rest sort of die 
off. That is they really have no reason for being 
spawned (for this instance - maybe for another). 
So, we station at each such state, an 'oracle' (an 
all knowing being) who only allows the correct 
NDTM to be spawned.

An 'Oracle Machine.'
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NDTM's
This is not totally unreasonable. We can look 
at a non deterministic decision as a 
deterministic algorithm in which, when an 
"option" is to be tested, it is very lucky, or 
clever, to make the correct choice the first 
time.

In this sense, the two machines would work 
identically, and we are just asking "How long 
does a DTM take if it always makes the 
correct decisions?"

4/7/19 © UCF EECS 552



NDTM's
As long as we are talking magic, we might as 
well talk about a 'super' oracle stationed at 
the start state (and get rid of the rest of the 
oracles) whose task is to examine the given 
instance and simply tell you what sequence 
of transitions needs to be executed to reach 
the accept state. 

He/she will write them to the left of cell 0 (the 
instance is to the right).
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NDTM's
Now, you simply write a DTM to run back and 
forth between the left of the tape to get the 
'next action' and then go back to the right half 
to examine the NDTM and instance to verify 
that the provided transition is a valid next 
action. As predicted by the oracle, the DTM will 
see that the NDTM would reach the accept 
state and can report the number of steps 
required.
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NDTM's
All of this was originally designed with 
Language Recognition problems in mind. It 
is not a far stretch to realize the Yes 
instances of any of our more real word-like 
decision problems defines a language, and 
that the same approach can be used to 
"solve" them.

Rather than the oracle placing the sequence 
of transitions on the tape, we ask him/her to 
provide a 'witness' to (a 'proof' of) the 
correctness of the instance. 
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NDTM's
For example, in the SubsetSum problem, we 
ask the oracle to write down the subset of 
objects whose sum is B (the desired sum). 
Then we ask "Can we write a deterministic 
polynomial algorithm to test the given 
witness." 

The answer for SubsetSum is Yes, we can, 
i.e., the witness is verifiable in deterministic 
polynomial time.
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NDTM's - Witnesses
Just what can we ask and expect of a 

"witness"?

The witness must be something that 
(1) we can verify to be accurate (for the given 

problem and instance) and
(2) we must be able to "finish off" the solution.

All in polynomial time.
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NDTM's - Witnesses
The witness can be nothing!

Then, we are on our own. We have to "solve the 
instance in polynomial time."

The witness can be "Yes."
Duh. We already knew that. We have to now 
verify the yes instance is a yes instance (same 
as above).

The witness has to be something other than nothing 
and Yes.
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NDTM's - Witnesses
The information provided must be something we could 
have come up with ourselves, but probably at an 
exponential cost. And, it has to be enough so that we 
can conclude the final answer Yes from it.

Consider a witness for the graph coloring problem:

Given: A graph G = (V, E) and an integer k.
Question: Can the vertices of G be assigned colors so 
that adjacent vertices have different colors and use at 
most k colors?
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NDTM's - Witnesses
The witness could be nothing, or Yes.

But that's not good enough - we don't know of 
a polynomial algorithm for graph coloring.

It could be "vertex 10 is colored Red." 
That's not good enough either.  Any single 
vertex can be colored any color we want.

It could be a color assigned to each vertex. 
That would work, because we can verify its 
validity in polynomial time, and we can 
conclude the correct answer of Yes.
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NDTM's - Witnesses
What if it was a color for all vertices but one?

That also is enough. We can verify the 
correctness of the n-1 given to us, then we can 
verify that the one uncolored vertex can be 
colored with a color not on any neighbor, and 
that the total is not more than k.

What if all but 2, 3, or 20 vertices are colored
All are valid witnesses.

What if half the vertices are colored? 
Usually,  No. There's not enough information. 
Sure, we can check that what is given to us is 
properly colored, but we don't know how to 
"finish it off."
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NDTM's - Witnesses
An interesting question: For a given 
problem, what are the limits to what 
can be provided that still allows a 
polynomial verification?
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NDTM's
A major question remains: Do we have, in 
NDTMs, a model of computation that solves all 
deterministic exponential (DE) problems in 
polynomial time (nondeterministic polynomial 
time)??

It definitely solves some problems we think are 
DE in nondeterministic polynomial time.
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NDTM's
But, so far, all problems that have been proven
to require deterministic exponential time also 
require nondeterministic exponential time.

So, the jury is still out. In the meantime, NDTMs 
are still valuable, because they might identify a 
larger class of problems than does a 
deterministic TM - the set of decision problems 
for which Yes instances can be verified in 
polynomial time.
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Problem Classes
We now begin to discuss several different classes of 
problems. The first two will be: 

NP 'Nondeterministic' Polynomial
P   'Deterministic' Polynomial,

The 'easiest' problems in NP

Their definitions are rooted in the depths of 
Computability Theory as just described, but it is worth 
repeating some of it in the next few slides.
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Problem Classes
We assume knowledge of Deterministic and 
Nondeterministic Turing Machines. (DTM's and 
NDTM's)

The only use in life of a NDTM is to scan a string of 
characters X and proceed by state transitions until an 
'accept' state is entered.

X must be in the language the NDTM is designed to 
recognize. Otherwise, it blows up!!
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Problem Classes
So, what good is it? 

We can count the number of transitions on the 
shortest path (elapsed time) to the accept 
state!!!

If there is a constant k for which the number of 
transitions is at most |X|k, then the language is 
said to be 'nondeterministic polynomial.'
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Problem Classes
The subset of YES instances of the set of instances of a decision 
problem, as we have described them above, is a language.

When given an instance, we want to know that it is in the subset of 
Yes instances. (All answers to Yes instances look alike - we don't 
care which one we get or how it was obtained).

This begs the question "What about the No instances?"

The answer is that we will get to them later. (They will actually 
form another class of problems.)
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Problem Classes
This actually defines our first Class, NP, the set of decision 
problems whose Yes instances can be solved by a 
Nondeterministic Turing Machine in polynomial time.

That knowledge is not of much use!! We still don't know 
how to tell (easily) if a problem is in NP. And, that's our 
goal.

Fortunately, all we are doing with a NDTM is tracing the 
correct path to the accept state. Since all we are interested 
in doing is counting its length, if someone just gave us the 
correct path and we followed it, we could learn the same 
thing - how long it is.
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Problem Classes
It is even simpler than that (all this has been proven 
mathematically). Consider the following problem:

You have a big van that can carry 10,000 lbs. You 
also have a batch of objects with weights w1, w2, …, 
wn lbs. Their total sum is more than 10,000 lbs, so 
you can't haul all of them.

Can you load the van with exactly 10,000 lbs?
(WOW. That's the SubsetSum problem.)
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Problem Classes
Now, suppose it is possible (i.e., a Yes instance) and 
someone tells you exactly what objects to select.

We can add the weights of those selected objects and 
verify the correctness of the selection.

This is the same as following the correct path in a 
NDTM. (Well, not just the same, but it can be proven to 
be equivalent.)

Therefore, all we have to do is count how long it takes 
to verify that a "correct" answer" is in fact correct.
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Class – NP

First Significant Class of Problems: 
The Class NP



Class – NP
We have, already, an informal definition 
for the set NP. We will now try to get a 
better idea of what NP includes, what it 
does not include, and give a formal 
definition.
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Class – NP
Consider two seemingly closely related statements 
(versions) of a single problem. We show they are 
actually very different. Let G = (V, E) be a graph.

Definition: X Í V(G) is a vertex cover if 
every edge in G has at least one endpoint in 
X.
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Class – NP
Version 1. Given a graph G and an integer k.

Does G contain a vertex cover 
with at most k vertices?

Version 2. Given a graph G and an integer k. 
Does the smallest vertex cover of G 
have exactly k vertices?
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Class – NP
Suppose, for either version, we are 
given a graph G and an integer k for 
which the answer is "yes." Someone 
also gives us a set X of vertices and 
claims 

"X satisfies the conditions."
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Class – NP
In Version 1, we can fairly easily check 
that the claim is correct – in polynomial 
time.

That is, in polynomial time, we can 
check that X has k vertices, and that X 
is a vertex cover.
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Class – NP
In Version 2, we can also easily check that X has 
exactly k vertices and that X is a vertex cover. 

But, we don't know how to easily check that there is 
not a smaller vertex cover!!

That seems to require exponential time.

These are very similar looking "decision" problems 
(Yes/No answers), yet they are VERY different in 
this one important respect.
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Class – NP
In the first: We can verify a correct answer 
in polynomial time.

In the second: We apparently can not verify
a correct answer in polynomial time. 

(At least, we don't know how to verify 
one in polynomial time.)
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Class – NP

Could we have asked to be given something 
that would have allowed us to easily verify 
that X was the smallest such set?

No one knows what to ask for!! 

To check all subsets of k or fewer vertices 
requires exponential time (there can be an 
exponential number of them).
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Class – NP
Version 1 problems make up the class called NP

Definition: The Class NP is the set of all decision problems for 
which answers to Yes instances can be verified in polynomial 
time. 

{Why not the NO instances? We'll answer that later.}

For historical reasons, NP means 
"Nondeterministic Polynomial." 

(Specifically, it does not mean "not polynomial").
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Class – NP
Version 2 of the Vertex Cover problem is not unique. 
There are other versions that exhibit this same 
property. For example,

Version 3: Given:    A graph G = (V, E) and an 
integer k.

Question: Do all vertex covers of G 
have more than k vertices?

What would/could a 'witness' for a Yes instance be? 
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Class – NP
Again, no one knows except to list all 
subsets of at most k vertices. Then we would 
have to check each of the possible 
exponential number of sets.

Further, this is not isolated to the Vertex 
Cover problem. Every decision problem has 
a  'Version 3,' also known as the 
'complement' problem (we will discuss these 
further at a later point).
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Class – NP
All problems in NP are decidable. 

That means there is an algorithm.

And, the algorithm is no worse than 
O(2n).
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Class – NP
Version 2 and 3 problems are apparently not in NP.

So, where are they?? 

We need more structure! {Again, later.} 

First we look inward, within NP.
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Class – P

Second Significant Class of 
Problems: The Class P



Class – P
Some decision problems in NP can be solved 
(without knowing the answer in advance) - in 
polynomial time. That is, not only can we verify a 
correct answer in polynomial time, but we can 
actually compute the correct answer in polynomial 
time - from "scratch." 

These are the problems that make up the class P.

P is a subset of NP.
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Class – P
Problems in P can also have a witness – we 
just don't need one. But, this line of thought 
leads to an interesting observation. Consider 
the problem of searching a list L for a key X.

Given: A list L of n values and a key X.
Question: Is X in L?
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Class – P
We know this problem is in P. But, we can 
also envision a nondeterministic solution. An 
oracle can, in fact, provide a "witness" for a 
Yes instance by simply writing down the 
index of  where X is located.

We can verify the correctness with one 
simple comparison and reporting, Yes the 
witness is correct.
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Class – P
Now, consider the complement (Version 3) of 
this problem:

Given: A list L of n values and a key X.
Question: Is X not in L?

Here, for any Yes instance, no 'witness' seems 
to exist, but if the oracle simply writes down 
"Yes" we can verify the correctness in 
polynomial time by comparing X with each of 
the n values and report "Yes, X is not in the 
list."
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Class – P
Therefore, both problems can be verified in 
polynomial time and, hence, both are in NP.

This is a characteristic of any problem in P -
both it and its complement can be verified in 
polynomial time (of course, they can both be 
'solved' in polynomial time, too.)

Therefore, we can again conclude P Í NP.
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Class – P
There is a popular conjecture that if any problem and 
its complement are both in NP, then both are also in P.

This has been the case for several problems that for 
many years were not known to be in P, but both the 
problem and its complement were known to be in NP.

For example, Linear Programming (proven to be in P in 
the 1980's), and Prime Number (proven in 2006 to be in  
P). 

A notable 'holdout' to date is Graph Isomorphism.
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Class – P
There are a lot of problems in NP that we do not 
know how to solve in polynomial time. Why? 

Because they really don't have polynomial 
algorithms? 

Or, because we are not yet clever enough to have 
found a polynomial algorithm for them?
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Class – P
At the moment, no one knows. 

Some believe all problems in NP have polynomial algorithms. 
Many do not (believe that).

The fundamental question in theoretical computer science is: 
Does P = NP?

There is an award of one million dollars for a proof. 
– Either way, True or False.
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Other Classes
We now look at other classes of problems.

Hard appearing problems can turn out to be 
easy to solve. And, easy looking problems can 
actually be very hard (Graph Theory is rich 
with such examples).

We must deal with the concept of "as hard as," 
"no harder than," etc. in a more rigorous way.
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"No harder than"
Problem A is said to be 'no harder than' problem B when the 
smallest class containing A is a subset of the smallest class 
containing B.

Recall that fX(n) is the order of the smallest complexity class 
containing problem X.  

If, for some constant a, 
fA(n)  ≤ na fB(n), 

the time to solve A is no more than some polynomial multiple 
of the time required to solve B, i.e., A is 'no harder than' B.
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"No harder than"
The requirement for determining the relative difficulty 
of two problems A and B requires that we know, at 
least, the order of the fastest algorithm for problem B 
and the order of some algorithm for Problem A.

We may not know either!!

In the following we exhibit a technique that can allow 
us to determine this relationship without knowing 
anything about an algorithm for either problem.
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The "Key" to 
Complexity Theory

'Reductions,' 
'Reductions,' 
'Reductions.' 



Reductions
For any problem X, let X(IX, AnswerX) 
represents an algorithm for problem X – even 
if none is known to exist.

IX is an arbitrary instance given to the 
algorithm and AnswerX is the returned 
answer determined by the algorithm.

4/7/19 © UCF EECS 599



Reductions
Definition: For problems A and B, a (Polynomial) 
Turing Reduction is an algorithm A(IA, AnswerA) for 
solving all instances of problem A and satisfies the 
following:

(1) Constructs zero or more instances of problem B 
and invokes algorithm B(IB, AnswerB), on each.

(2) Computes the result, AnswerA, for IA.

(3) Except for the time required to execute algorithm 
B, the execution time of algorithm A must be 
polynomial with respect to the size of IA.
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Reductions
Proc A(IA, AnswerA) 

For i = 1 to alpha
• Compute IB
•

B(IB, AnswerB)
•

End For
Compute AnswerA

End proc

4/7/19 © UCF EECS 601



Reductions
We may assume a 'best' algorithm for 
problem B without actually knowing it. 

If A(IA, AnswerA) can be written without 
algorithm B, then problem A is simply a 
polynomial problem.
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Poly Turing Reductions
The existence of a Turing reduction is often 
stated as:

"Problem A reduces to problem B" or, 
simply,

"A ≤P B"      
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PolyTime Reductions

Theorem. If A ≤P B and problem B is 
polynomial, then problem A is 
polynomial.

Corollary. If A ≤P B and problem A is 
exponential, then problem B is 
exponential.
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PT Reductions
The previous theorem and its corollary do not 
capture the full implication of Turing reductions. 

Regardless of the complexity class problem B is 
in, a Turing reduction implies problem A is in a 
subclass.

Regardless of the class problem A might be in, 
problem B is in a super class.
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PT Reductions
Theorem. If A ≤P B , then problem  A is "no 
harder than" problem B.
Proof: Let tA(n) and tB(n) be the maximum times 
for algorithms A and B per the definition. Thus, 
fA(n) ≤ tA(n). Further, since we assume the best 
algorithm for B,  tB(n) = fB(n). Since A ≤P B, there 
is a constant k such that tA(n) ≤ nktB(n). Therefore, 
fA(n) ≤ tA(n) ≤ nktB(n) =  nkfB(n). That is, A is no 
harder than B.
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PT Reductions
Theorem. 

If A ≤P B and B ≤P C then A ≤P C.

Definition. 
If A ≤P B and B ≤P A, then A and B are 
polynomially equivalent.
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Polynomial Reductions

A ≤P B  means:

'Problem A is no harder within a 
polynomial factor than problem B,' and

'Problem B is as hard within a 
polynomial factor as is problem A.'
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An Aside
Without condition (3) of the definition, a simple 
Reduction results. 

If problem B is decidable, 
then so is problem A. 
Equivalently, 
If problem A is undecidable, 
then problem B is undecidable.
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NP–Complete

Third Significant Class of Problems: 
The Class NP–Complete



NP–Complete
Polynomial Transformations enforce an equivalence 
relationship on all decision problems, particularly, 
those in the Class NP. Class P is one of those classes 
and is the "easiest" class of problems in NP. 

Is there a class in NP that is the hardest class in NP?

A problem B in NP such that A ≤P B for every A in 
NP.
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NP–Complete

In 1971, Stephen Cook proved there 
was. Specifically, a problem called 

Satisfiability (or, SAT).
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Satisfiability

U = {u1, u2,…, un}, Boolean variables.

C = {c1, c2,…, cm}, "OR clauses"
For example:

ci = (u4 Ú u35 Ú ~u18 Ú u3… Ú ~u6)
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Satisfiability

Can we assign Boolean values to the 
variables in U so that every clause is 
TRUE?

There is no known polynomial time 
algorithm!!
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NP–Complete
Cooks Theorem:

1) SAT is in NP
2) For every problem A in NP,

A ≤P SAT

Thus, SAT is as hard as every problem in
NP.
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NP–Complete
Since SAT is itself in NP, that means SAT is a 
hardest problem in NP (there can be more 
than one.).

A hardest problem in a class is called the 
"completion" of that class. 

Therefore, SAT is NP–Complete.
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NP–Complete
Today, there are 1,000’s of problems that 
have been proven to be NP–Complete. (See 
Garey and Johnson, Computers and 
Intractability: A Guide to the Theory of NP–
Completeness, for a list of over 300 as of the 
early 1980's).



P = NP?
If P = NP then all problems in NP are 
polynomial problems.

If P ≠ NP then all NP–C problems are at 
least super-polynomial and perhaps 
exponential. That is, NP-C problems could 
require sub-exponential super-polynomial 
time. (Example of super-polynomial, sub-
exponential is o(2o(n)), e.g., 2∛n
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P = NP?
Why should P equal NP?
• There seems to be a huge "gap" between the known 

problems in P and Exponential. That is, almost all 
known polynomial problems are no worse than n3 or 
n4. 

• Where are the O(n50) problems?? O(n100)? Maybe 
they are the ones in NP–Complete? 

• It's awfully hard to envision a problem that would 
require n100, but surely they exist?

• Some of the problems in NP–C just look like we 
should be able to find a polynomial solution (looks 
can be deceiving, though). 
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P ≠ NP?
Why should P not equal NP?
• P = NP would mean, for any problem in NP, that it is 

just as easy to solve an instance form "scratch," as it is 
to verify the answer if someone gives it to you. That 
seems a bit hard to believe.

• There simply are a lot of awfully hard looking problems 
in NP–Complete (and Co–NP-Complete) and some just 
don't seem to be solvable in polynomial time.

• Many smart people have tried for a long time to find 
polynomial algorithms for some of the problems in NP-
Complete - with no luck.
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NP-Complete; NP-Hard
A decision problem, C, is NP-complete if:

C is in NP and 
C is NP-hard. That is, every problem in NP is polynomially
reducible to C.

D polynomially reduces to C means that there is a deterministic 
polynomial-time many-one algorithm, f, that transforms each instance x
of D into an instance f(x) of C, such that the answer to f(x) is YES if and 
only if the answer to x is YES. 
To prove that an NP problem A is NP-complete, it is sufficient to show 
that an already known NP-complete problem polynomially reduces to A. 
By transitivity, this shows that A is NP-hard.
A consequence of this definition is that if we had a polynomial time 
algorithm for any NP-complete problem C, we could solve all problems 
in NP in polynomial time. That is, P = NP.
Note that NP-hard does not necessarily mean NP-complete, as a given 
NP-hard problem could be outside NP.



4/7/19 COT 6410 © UCF 622

Returning to SAT
• SAT is the problem to decide of an arbitrary 

Boolean formula (wff in the propositional 
calculus) whether or not this formula is 
satisfiable (has a set of variable assignments 
that evaluate the expression to true).

• SAT clearly can be solved in time k2n, where k is 
the length of the formula and n is the number of 
variables in the formula.

• What we now show is that SAT is NP-complete, 
providing us our first concrete example of an 
NP-complete decision problem.



Simulating NDTM
• Given a NDTM, M, and an input w, we need to create a 

formula, jM,w, containing a polynomial number of terms 
that is satisfiable just in case M accepts w in polynomial 
time.

• The formula must encode within its terms a trace of 
configurations that includes
– A term for the starting configuration of the TM
– Terms for all accepting configurations of the TM
– Terms that ensure the consistency of each configuration
– Terms that ensure that each configuration after the first follows 

from the prior configuration by a single move 
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Tableaus
A tableau is an array of tape alphabet 
symbols.

It represents a configuration history of one 
branch of our NDTM’s nondeterminism.
If the NDTM runs in nk time, the tableau is an 
(nk ´ nk) tableau.

It’s big enough downward because, well, the 
TM runs in nk.
…and rightward because the TM can only 
count to nk.

We assume that every configuration starts and 
ends with a # symbol.
We think of our tableau as looking like this in 
the “beginning”: the starting configuration 
across the top, and the other configurations 
blank.

(We quote “beginning” because SAT isn’t really 
a stateful algorithm, but just go with it for now.)

But we’ve assumed that we can “represent” 
alphabet symbols.  How do we do that, in 
SAT?

# q0 w1 w2 … wn □ … □ #

↑nk↓

# #

# #

# #

# #

# #

# #

# #

# #

# #

← nk →
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Encoding the Tableau: Basics
Consider a set comprised of:

The tape alphabet
The state set
The separator character

C = G È Q È { # }
Consider a cell variable:

xi,j,c

Turning this variable on corresponds to 
setting cell (i, j) = c, for some c Î C.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #
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Encoding the Tableau: Cells

Consider our tableau alphabet:
C = G È Q È { # }

Consider a cell and corresponding 
variable:

xi,j,c
Now we need to make sure the tableau is 
consistently encoded.

Create a clause for each cell (i, j).

The left demands xi,j,c be true for some c.
The right demands xi,j,c be true for only 
one c.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

!"#$%&" ', ) = +
,∈.

/0,1,, ∧ 3
,,4∈.
,54

/0,1,, ⋁ /0,1,4
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Encoding the Tableau: The 
Tableau

Tableau alphabet: C = G È Q È { # }
Cell variable: xi,j,c
Create an encoding clause for each cell (i, j).

Now repeat the clause across the tableau.

This is our cell formula.  It ensures that each 
cell in the tableau is assigned a single 
symbol.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

!"#$%&" ', ) = +
,∈.

/0,1,, ∧ 3
,,4∈.
,54

/0,1,, ⋁ /0,1,4

!$"778 = 3
9:0,1:;<

!"#$%&" ', )
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Encoding the Tableau: 
Complexity

We can create the single-cell 
encoding  formula in polynomial time 
with a |C|2 iteration.

We can create the entire cell formula 
in polynomial time with an n2k

iteration around that.
So we can say that fcells is satisfied 
by, and only by, a properly 
encoded tableau, and is created in 
polynomial time.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

!"#$%&" ', ) = +
,∈.

/0,1,, ∧ 3
,,4∈.
,54

/0,1,, ⋁ /0,1,4

!$"778 = 3
9:0,1:;<

!"#$%&" ', )
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Starting and Accepting
Starting and accepting are (comparatively) easy.  
To start, take the start configuration padded to nk

length with blanks…
S = #q0w1w2…wn�…�# so that |S| = nk

…and require the first row be equal to the start 
configuration:

Then to accept, just require an accept state 
somewhere in the tableau.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # w1 w2 … qA … □ … □ #
6 # #
7 # #
8 # #
9 # #
10 # #

!"#$%# = '
()*)+,

-(,*,/0

!$1123# = 4
()5,*)+,

-5,*,67
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Starting and Accepting

We can generate the start and accept 
formulas in nk and (nk)2 time, both 
polynomial.
So now we can say that:
fstart is satisfied by, and only by, a 
tableau with the starting configuration 
of M on w encoded as its first row, 
and is created in polynomial time.

…and…
faccept is satisfied by, and only by, a 
tableau encoding an accepting 
configuration as one of its rows, and 
is created in polynomial time.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # z1 z2 … qA … □ … □ #
6 # #
7 # #
8 # #
9 # #
10 # #

!"#$%# = '
()*)+,

-(,*,/0 !$1123# = 4
()5,*)+,

-5,*,67
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Transitions

Now, for transitions.  Recall the discussions 
we had about ID changes being limited to 
three characters or six, when looking at 
transitions..

A given 2x3 window is legal if it does not 
violate our machine’s transition function.
Given the linear sets of states and tape 
symbols, and the finite size of 2x3 windows, 
we can make a polynomial-sized set of all 
legal windows.

Let a sequence A = (a1, …, a6) be a 2x3 
window, with a1 the top left cell, a2 the top 
middle, etc.

We say that A is legal if it represents a legal 
window. Here we have q0 a R q1

1 2 3 4 5 6 7 8 9 10
1 # q0 a b c a □ □ □ #
2 # a q1 b c a □ □ □ #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #
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Transitions
A given 2x3 window is legal if it does not 
violate our machine’s transition function.  We 
have a polynomial-sized set of all legal 
windows.

Let a sequence A = (a1, …, a6) be a 2x3 
window. A is legal if it represents a legal 
window.

Now we can come up with a formula to say that 
the window top-centered at cell (i, j) is legal.

Don’t be intimidated by this formula!
It’s just counting off the six cells of the 
window and demanding that each be equal to 
the corresponding cell in some legal window.

1 2 3 4 5 6 7 8 9 10

1 # q0 a b c a □ □ □ #

2 # a q1 b c a □ □ □ #

3 # #

4 # #

5 # #

6 # #

7 # #

8 # #

9 # #

10 # #

!"#$%"(', )) = ,
-. /0,…,/2
34 "#$%"

56,789,/0 ∧ 56,7,/; ∧ 56,7<9,/= ∧
56<9,789,/> ∧ 56<9,7,/? ∧ 56<9,7<9,/2
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Transitions
A given 2x3 window is legal if it does 
not violate our machine’s transition 
function.
We have a polynomial-sized set of all 
legal windows.
Let a sequence A = (a1, …, a6) be a 
2x3 window. A is legal if it represents 
a legal window.

Since we have a polynomial number of 
legal windows, this formula is also 
polynomial.  So we can say:
flegal (i, j) is satisfied by, and only by, a 
tableau whose window top-centered at 
(i, j) is legal; and is created in 
polynomial time. 

1 2 3 4 5 6 7 8 9 10

1 # q0 a b c a □ □ □ #

2 # a q1 b c a □ □ □ #

3 # #

4 # #

5 # #

6 # #

7 # #

8 # #

9 # #

10 # #

!"#$%"(', )) = ,
-. /0,…,/2
34 "#$%"

56,789,/0 ∧ 56,7,/; ∧ 56,7<9,/= ∧
56<9,789,/> ∧ 56<9,7,/? ∧ 56<9,7<9,/2
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Windows and Configurations

Consider any upper and lower configuration in the 
tableau, so that the lower configuration is the one 
immediately below – that is, following – the upper.
If all the windows top-centered on cells in the upper 
configuration are legal, then:

The legality of the windows that don’t involve the state 
symbol easily ensures the legality of the configuration 
below them.
The window top-centered on the state symbol in the 
upper configuration is sufficient to ensure that the state 
symbol in the lower configuration makes a legal move.

The upper configuration yields the lower one if 
and only if all the windows top-centered on cells 
in the upper configuration are legal – and that 
holds all the way down the tableau.

1 2 3 4 5 6 7 8 9 10
1 # q0 a b c a □ □ □ #
2 # a q1 b c a □ □ □ #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #
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Windows and Configurations

flegal (i, j) is satisfied by, and only by, a tableau 
whose window top-centered at (i, j) is legal; and 
is created in polynomial time. 
An upper configuration yields a lower one iff all 
the windows top-centered within the upper are 
legal.

This holds all the way down the tableau.
Then we have:

And can say fmove is satisfied by, and only by, 
a tableau that does not violate the machine’s 
transition function; and is created in 
polynomial time.

1 2 3 4 5 6 7 8 9 10
1 # q0 a b c a □ □ □ #
2 # a q1 b c a □ □ □ #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

!"#$%"(', )) = ,
-. /0,…,/2
34 "#$%"

56,789,/0 ∧ 56,7,/; ∧ 56,7<9,/= ∧
56<9,789,/> ∧ 56<9,7,/? ∧ 56<9,7<9,/2

!@AB# = C
9D6EFG,
9E7EFG

!"#$%"(', ))
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Pulling It Together
We have:
fcells is satisfied by, and only by, a 
properly encoded tableau.
fstart is satisfied by, and only by, a 
tableau with the starting configuration of 
M on w encoded as its first row.
faccept is satisfied by, and only by, a 
tableau encoding an accepting 
configuration as one of its rows.
fmove is satisfied by, and only by, a 
tableau that does not violate the 
machine’s transition function.
All are created in polynomial time.

Then fNDTM is satisfied by, and only by, 
a tableau encoding an accepting 
computation history of M on w, and is 
created in polynomial time.

!"#$$% = '
()*,,)-.

!#/"01# 2, 3

!%4564 = '
(),)-.

7(,,,89

!5""#:4 = ;
()*,,)-.

7*,,,<=

!>0?# = '
()*@-.,
(@,@-.

!$#A5$(2, 3)

!DEFG= !"#$$% ∧ !%4564 ∧ !5""#:4 ∧ !>0?#
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SAT is NP-Complete

fNDTM created from NDTM M and 
input w is satisfied by, and only by, 
a tableau encoding an accepting 
computation history of M on w, 
and is created in polynomial time.
This means that:

SAT accepts fNDTM if and only if 
such a tableau exists…
…if and only if the NDTM we are 
encoding into fNDTM accepts w.

We’ve just polynomially reduced 
every possible NP language to 
SAT.

Let’s convince ourselves of that a bit 
more.

By definition, any NP language has an 
NDTM M that decides it in polynomial 
time.

We can decide any NP language 
with a result from SAT using the 
following algorithm:
On input <M, w>:

Create fNDTM from M and w.
Run the decider for SAT on fNDTM.
Accept if SAT accepts, reject if it 
rejects.

SAT is NP-complete.

!"#$% = !'())* ∧ !*,-., ∧ !-''(/, ∧ !012(
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Cook’s Theorem
• jM,w = fcells Ù fstart Ù faccept Ù fmove

• See the following for another detailed 
description  and discussion of the four 
terms that make up this formula.

• http://www.cs.tau.ac.il/~safra/Complexity/Cook.ppt



NP–Complete
Within a year, Richard Karp added 22 problems to this 
special class.

We will focus on: 
3-SAT
Integer Linear Programming
SubsetSum
Partition
Vertex Cover
Independent Set
K-Color
Multiprocessor Scheduling 
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Co-NP
• A problem is in co-NP if its complement is in NP 

– this is like co-RE, wrt RE problems.
• An example is the problem to determine if a 

Boolean expression is a tautology.
– If the answer to the problem "is B in TAUT ?" is NO, 

then ¬A is in SAT. 
• A more direct example of a co-NP problem is to 

determine if a Boolean expression is self-
contradictory.
– This is the complement of satisfiability.

• Both of the above are co-NP Complete
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SAT to 3SAT
• 3-SAT means that each clause has exactly three 

terms
• If one term, e.g., (p), expand to (pÚpÚp)
• If two terms, e.g., (pÚq), expand to (pÚqÚp)
• Any clause with three terms is fine
• If n > three terms, can reduce to two clauses, one 

with three terms and one with n-1 terms, e.g., 
(p1Úp2Ú…Úpn) to 
(p1Úp2Úz) & (p3Ú…ÚpnÚ~z), where z is a new 
variable. If n=4, we are done, else apply this 
approach again with the clause having n-1 terms
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Integer Linear Programming
• Show for 0-1 integer linear programming by constraining 

solution space. Start with an instance of SAT (or 3SAT), 
assuming variables v1,…, vn and clauses c1,…, cm

• For each variable vi, have constraint that 0 ≤ vi ≤ 1
• For each clause we provide a constraint that it must be 

satisfied (evaluate to at least 1). For example, if clause cj
is v2 � ~v3 � v5 � v6 then add the constraint 
v2 � (1-v3) � v5 + v6 ≥ 1

• A solution to this set of integer linear constraints implies 
a solution to the instance of SAT and vice versa
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SubsetSum
S = {s1, s2, …, sn} 

set of positive integers
and an integer B.

Question: Does S have a subset whose 
values sum to B?

No one knows of a polynomial algorithm.

{No one has proven there isn’t one, either!!}
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SubsetSum ≡p Partition

Theorem. SAT ≤P 3SAT

Theorem. 3SAT ≤P SubsetSum

Theorem. SubsetSum ≤P Partition

Theorem. Partition ≤P SubsetSum

Therefore, not only is Satisfiability in NP–Complete, but so is 
3SAT, Partition, and SubsetSum.
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3SAT ≤p SubsetSum
Assuming a 3SAT expression (a + ~b + c) (~a + b + ~c)

a b c a+~b+c ~a+b+~c
a 1 0 0 1 0

~a 1 0 0 0 1
b 0 1 0 0 1

~b 0 1 0 1 0
c 0 0 1 1 0

~c 0 0 1 0 1
C1 0 0 0 1 0
C1’ 0 0 0 1 0
C2 0 0 0 0 1
C2’ 0 0 0 0 1

1 1 1 3 3
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SubsetSum≡pPartition Details
• Partition is polynomial equivalent to SubsetSum

– Let i1, i2, .., in , G be an instance of SubsetSum. This 
instance has answer �yes� iff
i1, i2, .., in , 2*Sum(i1, i2, .., in ) – G,Sum(i1, i2, .., in ) + G
has answer �yes� in Partition. Here we assume that 
G ≤ Sum(i1, i2, .., in ), for, if not, the answer is �no.�

– Let i1, i2, .., in be an instance of Partition. This instance 
has answer �yes� iff
i1, i2, .., in , Sum(i1, i2, .., in )/2 
has answer �yes� in SubsetSum
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SubsetSum ≡p Partition
• [(15, 17, 27, 11, 4, 12, 33, 5, 6, 21, 2), 57]
• A solution is 15, 17, 11, 12, 2 
• Sum of all is 153
• Mapping to Partition is

– (15, 17, 27, 11, 4, 12, 33, 5, 6, 21, 2, 306-57, 153+57)
– (15, 17, 27, 11, 4, 12, 33, 5, 6, 21, 2, 249, 210)
– (15+17+11+12+2+249) = 306
– (27+4+33+5+6+21+210) = 306

• Going other direction map above to 
– [(15, 17, 27, 11, 4, 12, 33, 5, 6, 21, 2, 249, 210), 306]
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VERTEX COVERING (VC) 
DECISION PROBLEM IS NP-HARD
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3SAT to Vertex Cover

• Vertex cover seeks a set of vertices that cover every edge in some 

graph

• Let I3-SAT be an arbitrary instance of 3-SAT. For integers n and m, 

U = {u1, u2, …, un} and Ci = {zi1, zi2, zi3} for 1 ≤ i ≤ m, 

where each zij is either a uk or uk' for some k.

• Construct an instance of VC as follows.

• For each i, 1 ≤ i ≤ n, construct two vertices, ui and ui' with an edge 

between them.

• For each clause Ci = {zi1, zi2, zi3}, 1 ≤ i ≤ m, construct three vertices zi1, 

zi2, and zi3 and form a "triangle on them. Each zij is one of the Boolean 

variables uk or its complement uk'. Draw an edge between zij and the 

Boolean variable (whichever it is). Each zij has degree 3. Finally, set k 

= n+2m.

• Theorem. The given instance of 3-SAT is satisfiable if and only if the 

constructed instance of VC has a vertex cover with at most k vertices.

4/7/19 © UCF EECS 649



VC Variable Gadget

X ~X
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VC Clause Gadget

a ~c

b

a + b + ~c
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VC Gadgets Combined
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Independent Set
• Independent Set

– Given Graph G = (V, E), a subset S of the vertices is 
independent if there are no edges between vertices in 
S

– The k-IS problem is to determine for a k>0 and a 
graph G, whether or not G has an independent set of 
k nodes

• Note there is a related NP-Hard optimization 
problem to find a Maximum Independent Set. It 
is even hard to approximate a solution to the 
Maximum Independent Set Problem.
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IS (VC) Clause Gadget
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a ~c

b

a + b + ~c



3SAT to IS
(a + ~b + c) (~a + b + ~c)(a + b + c), k=3 
(k=number of clauses, not variables)

a c

~b
~a ~c

b

a c

b

4/7/19 © UCF EECS 655



K-COLOR (KC) DECISION 
PROBLEM IS NP-HARD
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K-Coloring
Given: 
A graph G = (V, E) and an integer k.
Question: 
Can the vertices of G be assigned colors 
from a palette of size k, so that adjacent 
vertices have different colors and use at 
most k colors?

3Coloring (3C) uses k=3
4/7/19 © UCF EECS 657



3C Super Gadget

T F

B
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KC Super + Variables Gadget
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KC Clause Gadget
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Consider ~a, ~b, ~c

F TB

F

T / B
B / T

F but not 
legal
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Consider a || b, ~c

F TB

F

TB/F

F/B
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Consider ~a, ~b, c

T TF

B

F
B,T

T, BF

F
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Consider one of a || b, c

T TF

B

T
B/F

F/B
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Consider a, b, c

T TF

B

T
B/F

F/BT

T
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KC Gadgets Combined

B

K = 3

(u + ~v + w) (v + x + ~y)
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Register Allocation
• Liveness: A variable is live if its current assignment may be used at 

some future point in a program’s flow
• Optimizers often try to keep live variables in registers
• If two variables are simultaneously live, they need to be kept in 

separate registers
• Consider the K-coloring problem (can the nodes of a graph be colored 

with at most K colors under the constraint that adjacent nodes must 
have different colors?)

• Register Allocation reduces to K-coloring by mapping each variable to 
a node and inserting an edge between variables that are 
simultaneously live

• K-coloring reduces to Register Allocation by interpreting nodes as 
variables and edges as indicating concurrent liveness

• This is a simple mapping because it’s an isomorphism
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PROCESSOR SCHEDULING
IS NP-HARD
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Processor Scheduling

• A Process Scheduling Problem can be described by 
– m processors P1, P2, …, Pm,

– processor timing functions S1, S2, …, Sm, each describing how the 
corresponding processor responds to an execution profile,

– additional resources R1, R2, …, Rk, e.g., memory

– transmission cost matrix Cij (1 £ i , j £ m), based on proc. data sharing,

– tasks to be executed T1, T2, …, Tn,

– task execution profiles A1, A2, …, An,

– a partial order defined on the tasks such that Ti < Tj means that Ti must 
complete before Tj can start execution,

– communication matrix Dij (1 £ i , j £ n); Dij can be non-zero only if Ti < 
Tj,

– weights W1, W2, …, Wn -- cost of deferring execution of task.
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Complexity Overview
• The intent of a scheduling algorithm is to minimize the sum of 

the weighted completion times of all tasks, while obeying the 
constraints of the task system. Weights can be made large to 
impose deadlines.

• The general scheduling problem is quite complex, but even 
simpler instances, where the processors are uniform, there are 
no additional resources, there is no data transmission, the 
execution profile is just processor time and the weights are 
uniform, are very hard.

• In fact, if we just specify the time to complete each task and we 
have no partial ordering, then finding an optimal schedule on 
two processors is an NP-complete problem. It is essentially the 
subset-sum problem. 
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2 Processor Scheduling
The problem of optimally scheduling n tasks T1, T2, …, Tn onto 2 
processors with an empty partial order < is the same as that of 
dividing a set of positive whole numbers into two subsets, such that 
the numbers are as close to evenly divided.  So, for example, given the 
numbers
3, 2, 4, 1
we could try a “greedy” approach as follows:
put 3 in set 1
put 2 in set 2
put 4 in set 2 (total is now 6)
put 1 in set 1 (total is now 4)
This is not the best solution.  A better option is to put 3 and 2 in one 
set and 4 and 1 in the other.  Such a solution would have been attained 
if we did a greedy solution on a sorted version of the original 
numbers.  In general, however, sorting doesn’t work. 
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2 Processor Nastiness
Try the unsorted list (2-1/m)
7, 7, 6, 6, 5, 4, 4, 5, 4
Greedy (Always in one that is least used)
7, 6, 5, 5 = 23
7, 6, 4, 4, 4 = 25
Optimal
7, 6, 6, 5 = 24
7, 4, 4, 4, 5 = 24
Sort it (non-increasing) (4/3-1/3m) Sort it (non-decreasing) (2-1/m)
7, 7, 6, 6, 5, 5, 4, 4, 4 4, 4, 4, 5, 5, 6, 6, 7, 7
7, 6, 5, 4, 4 = 26 4, 4, 5, 6, 7 = 26
7, 6, 5, 4 = 22 4, 5, 6, 7 = 22

Both sorts are even worse than greedy unsorted !! (not a general result)
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Challenge Problem
Consider the simple scheduling problem where we have a set of independent tasks 
running on a fixed number of processors, and we wish to minimize finishing time.
How would a list (first fit, no preemption) strategy schedule tasks with the following IDs 
and execution times onto four processors?  Answer using Gantt chart.
(T1,4) (T2,1) (T3,3) (T4,6) (T5,2) (T6,1) (T7,4) (T8,5) (T9,7) (T10,3) (T11,4) (2-1/m)

Now show what would happen if the times were sorted non-decreasing. (2-1/m)

Now show what would happen if the times were sorted non-increasing. (4/3-1/3m)
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2 Processor with partial order
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Anomalies everywhere
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More anomalies
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Critical path or level strategy
A UET is a Unit Execution Tree.  Our Tree is funny.  It has a 
single leaf by standard graph definitions.

1. Assign L(T) = 1, for the leaf task T
2. Let labels 1, …, k-1 be assigned.  If T is a task with lowest 

numbered immediate successor then define L(T) = k (non-
deterministic)
This is an order n labeling algorithm that can easily be 
implemented using a breadth first search.

Note: This can be used for a forest as well as a tree.  Just add a 
new leaf.  Connect all the old leafs to be immediate successors of 
the new one.  Use the above to get priorities, starting at 0, rather 
than 1.  Then delete the new node completely.
Note: This whole thing can also be used for anti-trees.  Make a 
schedule, read it backwards.  You cannot just reverse priorities. 
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Level strategy and UET
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Theorem:  Level Strategy is optimal for unit execution, m arbitrary, forest 
precedence 



Level – DAG with unit time 
1. Assign L(T) = 1, for an arbitrary leaf task T
2. Let labels 1, …, k-1 be assigned.  For each task T such that

{ L(T’) is defined for all T’ in Successor(T) }

Let N(T) be decreasing sequence of set members in
{S(T’) | T’ is in S(T)}

Choose T* with least N(T*).
Define L(T*) = K.
This is an order n2 labeling algorithm. Scheduling with it involves n union / 
find style operations.  Such operations have been shown to be 
implementable in nearly constant time using an “amortization” algorithm.

Theorem: Level Strategy is optimal for unit execution, m=2, dag precedence. 
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Assignment#5
Looking back at page 678, consider adding two additional tasks 
numbered 15 and 16 that are siblings of 13 and 14. These four 
tasks must be completed before 12 is started. 
a) Show the Gantt chart that reflects the new schedule associated 
with this enhanced tree
b) Show the Gantt chart that is associated with the corresponding 
anti-tree, in which all arcs are turned in the opposite direction. Use 
the technique of reversing the schedule from (a)
c) Show the Gantt chart associated with the anti-tree of b), where 
we now use the priorities obtained by treating lower numbered 
tasks as higher priority ones
d) Comment on the results seen in (b) versus (c), providing insight 
as to why they are different and why one is better than the other.
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NP Co-NP

UNIVERSE OF SETS

PNP-
Complete



HAMILTONIAN CIRCUIT (HC) 
DECISION PROBLEM IS NP-HARD
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HC Variable Gadget
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This has many Hamiltonian Circuits



HC Gadgets Combined
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This has a Hamiltonian Circuit iff all clauses are 
satisfied with consistent assignments to each variable

We will set convention on xi true to be left to right and xi
false to be right to left (can fix for opposite)



Hamiltonian Path
• Note we can split an arbitrary node, v, into 

two (v’,v’’) – one, v’, has in-edges of v, 
other, v’’, has out-edges. Path (not cycle) 
must start at v’’ and end at v’ and goal is 
still K (the number of vertices).
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Travelling Salesman
• Start with HC = (V,E), K=|V|
• Set edges from HC instance to 1
• Add edges between pairs that lack such 

edges and make those weights 2 (often 
people make these K+1); this means that 
the reverse of unidirectional links also get 
weight 2

• Goal weight is K for cycle
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Knapsack 0-1 Problem
� The goal is to 

maximize the value of 
a knapsack that can 
hold at most W units 
(i.e. lbs or kg) worth of 
goods from a list of 
items I0, I1, … In-1. 
◦ Each item has 2 

attributes:
1) Value – let this be vi for 

item Ii
2) Weight – let this be wi for 

item Ii

Thanks to Arup Guha
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Knapsack 0-1 Problem
� The difference 

between this problem 
and the fractional 
knapsack one is that 
you CANNOT take a 
fraction of an item.

◦ You can either take it 
or not.

◦ Hence the name 
Knapsack 0-1 
problem.
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Knapsack Optimize vs Decide
• As stated, the Knapsack problem is an 

optimization problem.
• We can restate as decision problem to 

determine if there exists a set of items , 
each with weight < W, that reaches some 
fixed goal value, W.
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Knapsack and SubsetSum
• Let vi = wi for each item Ii.
• By doing so, the value is maximized when the 

Knapsack is filled as close to capacity.
• The related decision problem is to determine if 

we can attain capacity (W).
• Clearly then, given an instance of the 

SubsetSum problem, we can create an instance 
of the Knapsack decision problem problem, such 
that we reach the goal sum, G, iff we can attain 
a Knapsack value of G.  
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Knapsack Decision Problem
• The reduction from SubsetSum shows that 

the Knapsack decision problem is at least 
as hard as SubsetSum, so it is NP-
Complete if it is in NP.

• Think about whether or not it is in NP.
• Now, think about optimization problem. 

4/7/19 © UCF EECS 691



Related Bin Packing
• Have a bin capacity of B.
• Have item set S = {s1, s2, …, sn} 
• Use all items in S, minimizing the number of 

bins, while adhering to the constraint that any 
such subset must sum to B or less.

• This is similar to the processor scheduling 
problem without constraints, except we optimize 
on number of processors, not finishing time for 
all tasks. It is NP-Hard (WHY?)
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Knapsack 0-1 Problem
• Brute Force

– The naïve way to solve the 0-1 Knapsack 
problem is to cycle through all 2n subsets of 
the n items and pick the subset with a legal 
weight that maximizes the value of the 
knapsack.

– We can come up with a dynamic 
programming algorithm that is USUALLY 
faster than this brute force technique.
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Knapsack 0-1 Problem
� We are going to solve the problem in terms of 

sub-problems.
� Our first attempt might be to characterize a sub-

problem as follows:
◦ Let Sk be the optimal subset of elements from 

{I0, I1, …, Ik}.  
� What we find is that the optimal subset from the elements {I0, 

I1, …, Ik+1} may not correspond to the optimal subset of 
elements from {I0, I1, …, Ik} in any regular pattern.

◦ Basically, the solution to the optimization problem for 
Sk+1 might NOT contain the optimal solution from 
problem Sk.
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Knapsack 0-1 Problem
� Let’s illustrate that point with an example:

Item Weight Value
I0 3 10
I1 8 4
I2 9 9
I3 8 11

� The maximum weight the knapsack can hold is 20.

� The best set of items from {I0, I1, I2} is {I0, I1, I2}  
� BUT the best set of items from {I0, I1, I2, I3}  is {I0, I2, I3}. 
◦ In this example, note that this optimal solution, {I0, I2, I3}, does 

NOT build upon the previous optimal solution, {I0, I1, I2}. 
� (Instead it builds upon the solution, {I0, I2}, which is really the optimal 

subset of   {I0, I1, I2}  with weight 12 or less.)
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Knapsack 0-1 problem
� So now we must re-work the way we build upon previous sub-

problems…
◦ Let B[k, w] represent the maximum total value of a subset Sk with 

weight w. 
◦ Our goal is to find B[n, W], where n is the total number of items and W 

is the maximal weight the knapsack can carry.

� So our recursive formula for subproblems:
B[k, w]   = B[k - 1,w], if wk > w

= max { B[k - 1,w], B[k - 1,w - wk] + vk}, otherwise

� In English, this means that the best subset of Sk that has total weight 
w is:
1) The best subset of Sk-1 that has total weight w, or
2) The best subset of Sk-1 that has total weight w-wk plus the item k
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Knapsack 0-1 Problem –
Recursive Formula

� The best subset of Sk that has the total weight w, 
either contains item k or not.

� First case:  wk > w
◦ Item k can’t be part of the solution!  If it was the total weight 

would be > w, which is unacceptable.

� Second case:  wk ≤ w 
◦ Then the item k can be in the solution, and we choose the 

case with greater value.
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B[k, w]   = B[k - 1,w], if wk > w
= max { B[k - 1,w], B[k - 1,w - wk] + vk}, otherwise



Knapsack 0-1 Algorithm
for w = 0 to W {  // Initialize 1st row to 0’s

B[0,w] = 0
}
for i = 1 to n {  // Initialize 1st column to 0’s

B[i,0] = 0
}
for i = 1 to n {

for w = 0 to W {
if wi <= w {  //item i can be in the solution

if vi + B[i-1,w-wi] > B[i-1,w]
B[i,w] = vi + B[i-1,w- wi]

else
B[i,w] = B[i-1,w]

}
else B[i,w] = B[i-1,w] // wi > w

}
}
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Knapsack 0-1 Problem
� Let’s run our algorithm on the following 

data:
◦ n = 4 (# of elements)
◦ W = 5 (max weight)
◦ Elements (weight, value):

(2,3), (3,4), (4,5), (5,6)
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Knapsack 0-1 Example
i / w 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0
2 0
3 0
4 0

// Initialize the base cases
for w = 0 to W

B[0,w] = 0

for i = 1 to n
B[i,0] = 0
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0
2 0
3 0
4 0

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 1
vi = 3
wi = 2
w = 1
w-wi = -1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0
2 0
3 0
4 0
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0
2 0
3 0
4 0

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 1
vi = 3
wi = 2
w = 2
w-wi = 0

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3
2 0
3 0
4 0
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3
2 0
3 0
4 0

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 1
vi = 3
wi = 2
w = 3
w-wi = 1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3
2 0
3 0
4 0
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3
2 0
3 0
4 0

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 1
vi = 3
wi = 2
w = 4
w-wi = 2

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3
2 0
3 0
4 0
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3
2 0
3 0
4 0

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 1
vi = 3
wi = 2
w = 5
w-wi = 3

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0
3 0
4 0
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0
3 0
4 0

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 2
vi = 4
wi = 3
w = 1
w-wi = -2

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0
3 0
4 0
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0
3 0
4 0

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 2
vi = 4
wi = 3
w = 2
w-wi = -1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3
3 0
4 0
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3
3 0
4 0

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 2
vi = 4
wi = 3
w = 3
w-wi = 0

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4
3 0
4 0
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4
3 0
4 0

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 2
vi = 4
wi = 3
w = 4
w-wi = 1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4
3 0
4 0
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4
3 0
4 0

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 2
vi = 4
wi = 3
w = 5
w-wi = 2

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0
4 0
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0
4 0

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 3
vi = 5
wi = 4
w = 1..3
w-wi = -3..-1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4
4 0
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4
4 0

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 3
vi = 5
wi = 4
w = 4
w-wi = 0

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5
4 0
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5
4 0

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 3
vi = 5
wi = 4
w = 5
w-wi = 1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0

i = 4
vi = 6
wi = 5
w = 1..4
w-wi = -4..-1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0 0 3 4 5

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

4/7/19 © UCF EECS 714



Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0 0 3 4 5

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 4
vi = 6
wi = 5
w = 5
w-wi = 0

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0 0 3 4 5 7
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0 0 3 4 5 7

We’re DONE!!  
The max possible value that can be carried in this knapsack is $7
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Knapsack 0-1 Problem – Run 
Timefor w = 0 to W

B[0,w] = 0

for i = 1 to n
B[i,0] = 0

for i = 1 to n
for w = 0 to W

< the rest of the code >

What is the running time of this algorithm?
O(n*W) – of course, W can be mighty big
What is an analogy in world of sorting?

Remember that the brute-force algorithm takes: O(2n)

O(W)

O(W)
Repeat n times

O(n)
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Tiling

Undecidable and NP-Complete
Variants



Basic Idea of Tiling
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A single tile has colors on all four sides.
Tiles are often called dominoes as 
assembling them follows the rules of
placing dominoes. That is, the color 
(or number) of a side must match that
of its adjacent tile, e.g., tile, t2, to right 
of a tile, t1, must have same color on
Its left as is on the right side of t1.
This constraint applies to top and as 
well as sides. Boundary tiles do not
have constraints on their sides that touch
the boundaries.



Instance of Tiling Problem
• A finite set of tile types (a type is determined by 

the colors of its edges)
• Some 2d area (finite or infinite) on which the tiles 

are to be laid out
• An optional starting set of tiles in fixed positions
• The goal of tiling the plane following the 

adjacency constraints and whatever constraints 
are indicated by the starting configuration.
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A Valid 3 by 3 Tiling of Tile 
Types from Previous Slide
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Some Variations
• Infinite 2d plane (impossible, co-re-non-rec) in general)

– Our two tile types can easily tile the 2d plane
• Finite 2d plane (hard in general)

– Our two tile types can easily tile any finite 2d plane
– This is called the Bounded Tiling Problem.

• One dimensional space (hmm?)
• Infinite 3d space (really impossible – multiple quantifiers, 

in general)
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Tiling the Plane
• We will start with a Post Machine, M = (Q, Σ, δ, q0), with tape 

alphabet Σ = {B,1} where B is blank and δ maps pairs from Q�Σ to 
Q�(Σ È {R,L}). M starts in state q0

– (Turing Machine with each action being L, R or Print)

• We will consider the case of M starting with a blank tape

• We will constrain our machine to never go to the left of its starting 
position (semi unbounded tape)

• We will mimic the computation steps of M

• Termination occurs if in state q reading b and δ(q,b) is not defined

• We will use the fact that halting when starting at the left end of a 
semi unbounded tape in its initial state with a blank tape is 
undecidable
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The Tiling Decision Problem
• Given a finite set of tile types and a 

starting tile in lower left corner of 2d plane, 
can we tile all places in the plane?

• A place is defined by its coordinates (x,y), 
x≥0, y≥0

• The fixed starting tile is at (0,0)
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Colors
• Given M, define our tile colors as 
• {X, Y, *, B, 1, YB, Y1} È Q�{B,1} È

Q�{YB,Y1} È Q�{R,L}
• Simplest tile (represents Blank on X axis)
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B
BB

X



Tiles for Copying Tape Cell
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B
**

B

YB
*Y

YB

Copy cells not on
left boundary and 
not scanned

1
**

1

Y1
*Y

Y1

Copy cells on
left boundary
but not scanned



Right Move δ(q,a) = (p,R)
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Ya
p,RY

q,Ya

a
p,R*

q,a
p,b

*p,R
b

where bÎΣ={B,1}



Left Move δ(q,a) = (p,L)
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p,Yb
p,LY

Yb

p,b
p,L*

b
a

*p,L
q,a

where bÎΣ={B,1}



Print δ(q,a) = (p,c)
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p,Yc
*Y

q,Ya

p,c
**

q,a



Corner Tile and Bottom Row
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q0,YB
BY

X

Zero-ed Row is forced to be

q0,YB
BY

X

B
BB

X

B
BB

X………...



First Action Print

4/7/19 © UCF EECS 731

p,Ya
*Y

q0,YB

As we cannot move left of leftmost character first action is 
either right or print. Assume for now that δ(q0,B) = (p,a)

q0,YB
BY

X

B
BB

X

B
BB

X………...

B
**

B

B
**

B………...



First Action Right Move
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YB
p,RY

q0,YB

As we cannot move left of leftmost character first action is 
either right or print. Assume for now that δ(q0,B) = (p,R)

q0,YB
BY

X

B
BB

X

B
BB

X………...

p,B
*p,R

B

B
**

B………...



The Rest of the Story Part 1
• Inductively we can show that, if the i-th

row represents an infinite transcription of 
the Turing configuration after step i then 
the (i+1)-st represents such a transcription 
after step i+1. Since we have shown the 
base case, we have a successful 
simulation.
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The Rest of the Story Part 2
• Consider the case where M eventually 

halts when started on a blank tape in state 
q0. In this case we will reach a point where 
no actions fill the slots above the one 
representing the current state. That means 
that we cannot tile the plane.

• If M never halts, then we can tile the plane 
(in the limit).
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The Rest of the Story Part 3
• The consequences of Parts 1 and 2 are 

that Tiling the plane is as hard as the 
complement of the Halting problem which 
is co-RE Complete.

• This is not surprising as this problem 
involve a universal quantification over all 
coordinates (x,y) in the plane.
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Constraints on M
• The starting blank tape is not a real constraint as we can create M 

so its first actions are to write arguments on its tape.
• The semi unbounded tape is not new. If you look back at Standard 

Turing Computing (STC), we assumed there that we never moved 
left of the blank preceding our first argument.

• If you prefer to consider all computation based on the STC model 
then we can add to M the simple prologue
(R1)x1R(R1)x2R…(R1)xkR so the actual computation starts with a 
vector of x1 … xk on the tape and with the scanned square as the 
blank to right of this vector. The rest of the tape is blank.

• Think about how, in the preceding pages, you could actually start 
the tiling in this configuration.
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Bounded Tiling Problem #1
• Consider a slight change to our machine M. First, it is non-

deterministic, so our transition function maps to sets.
• Second, we add two auxiliary states 

{qa, qr}, where qa is our only accept state and qr is our only reject 
state.

• We make it so the reject state has no successor states, but the 
accept state always transitions back to itself rewriting the scanned 
square unchanged.

• We also assume our machine accepts or rejects in at most nk steps, 
where n is the length of its starting input which is written immediately 
to the right of the initial scanned square.
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Bounded Tiling Problem #2
• We limit our rows and column to be of size 

nk+1. We change our initial condition of the tape 
to start with the input to M. Thus, it looks like

• Note that there are nk – n of these blank representations 
at the end. We really only need the first as the tiling 
constraint will force all the others to be of the same form.
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q0,YB
BY

X

x0
BB

X

B
BB

X…

xn
BB

X …



Bounded Tiling Problem #3
• The finitely bounded Tiling Problem we just described mimics the 

operation of any given polynomially-bound non-deterministic Turing 
machine. 

• This machine can tile the finite plane of size 
(nk+1) * (nk+1) just in case the initial string is accepted in nk or fewer 
steps on some path (really a trace of at most nk). 

• If the string is not accepted then we will hit a reject state on all paths 
and never complete tiling.

• This shows that the bounded tiling problem is NP-Hard
• Is it in NP? Yes. How? Well, we can be shown a tiling (posed 

solution takes space polynomial in n) and check it for completeness 
and consistency (this takes linear time in terms of proposed 
solution). Thus, we can verify the solution in time polynomial in n.
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A Final Comment on Tiling
• If you look back at the unbounded version, you can see 

that we could have simulated a non-deterministic Turing 
machine there, but it would have had the problem that 
the plane would be tiled if any of the non-deterministic 
choices diverged and that is not what we desired.

• However, we need to use a non-deterministic machine 
for the finite case as we made this so it tiled iff some 
path led to acceptance. If all lead to rejection, we get 
stalled out on all paths as the reject state can go 
nowhere.
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Tiling Example
• Turing Machine Recognizes strings of at least 

two 1’s in succession.
• q0 0 0 q2
• q0 1 R q1
• q1 0 L q2
• q1 1 1 q3
• q2 0 0 q2
• q2 1 1 q2
• No q3 rules so entering here stops tiling
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Tile Replication
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0
**

0

Y0
*Y

Y0

1
**

1

Y1
*Y

Y1



q0 0 0 q2 q0 1 R q1
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**
q0,0

q2,Y0
*Y

q0,Y0

q2,0
q1,R*

q0,1

Y1
Y

q0,Y1

1

q1,R

q1,R *
0

q1,0

q1,R *
1

q1,1



q1 0 L q2 q1 1 1 q3
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*
q1,0

0
q2,L*

0

q2,0
q2,L q2,L*

1

q2,1

q2,LY
Y0

q2,Y0
q2,LY

Y1

q2,Y1

**
q1,1

q3,Y1
*Y

q1,Y1

q3,1



q2 0 0 q2 q2 1 1 q2
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**
q2,0

q2,Y0
*Y

q2,Y0

q2,0
**

q2,1

q2,Y1
*Y

q2,Y1

q2,1



Sample Starting Rows
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q0,Y1
0Y

X

0
00

X

0
00

X………...

q0,Y1
0Y

X

1
00

X

0
00

X

0
00

X…



Case 1; Two More Rows
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q0,Y1
0Y

X

0
00

X

Y1
q1,RY

q0,Y1

q1,0
*

0

0
**

0
…q1,R

0
**

0

0
00

X
…

0
00

X

q2,Y1
q2,LY

Y1

0
*

0
**

0
…q2,L

0
**

0q1,0



Case 1; Row 3 repeated
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q2,Y1
q2,LY

Y1

0
*

0
**

0
…q2,L

0
**

0q1,0

q2,Y1
*Y

q2,Y1

0
*

0
**

0
…*

0
**

00

q2,Y1
*Y

q2,Y1

0
*

0
**

0
…*

0
**

00



Case 2; Only Two More Rows
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Y1
q1,RY

q0,Y1

q1,1
*

1

0
**

0
…q1,R

0
**

0

Y1
*Y

Y1

q3,1
*

0
**

0
…*

0
**

0q1,1

q0,Y1
0Y

X

1
00

X

0
00

X

0
00

X…



Comments on Variations
• One dimensional space (think about it)

• Infinite 3d space (really impossible in general)
– This become a for all, there exists problem
– In fact, one can mimic acceptance on all inputs here, 

meaning M is an algorithm iff we can tile the 3d space
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PCP Revisited

Bounded Post Correspondence



Bounded Variation
• Limit correspondence to a length that is 

polynomial in n, where n is length of initial input 
string.

• Outline of proof we can get for almost free
– Convert halting problem for a Non-deterministic Turing machine 

to word problem for a Semi-Thue System
Note: we originally did for deterministic machines but the construction works for 
non-determinism and maps nicely to Semi-Thue systems which are non-
deterministic by definition.

– Recast as an instance of PCP
– Limit the length of word to (n+2)k, where original TM accepts or 

rejects in nk steps.
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Another Approach 
• There is a tighter bound on Bounded PCP.

• Given sequences (x1, x2, …, xn) and (y1, y2, …, yn), 
and a positive integer 
K≤p(max(|x1|+…+|xn|, |y1|+…+|yn|), 
where p is some polynomial, is there a solution to this 
instance involving indices i1, …,ik, k≤K (not necessarily 
distinct), of integers between 1 and n, such that the 
corresponding x and y strings are identical.

• Follows from Constable, Hunt and Sahni (1974). “On the 
Computational Complexity of Program Scheme 
Equivalence,” Siam Journal of Computing 9(2), 396-416.
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Co-NP

Fourth Significant Class of 
Problems



Co–NP
For any decision problem A in NP, there 
is a ‘complement’ problem Co–A defined 
on the same instances as A, but with a 
question whose answer is the negation 
of the answer in A. That is, an instance 
is a "yes" instance for A if and only if it 
is a "no" instance in Co–A. 

Notice that the complement of the 
complement of a problem is the original 
problem.
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Co–NP
Co–NP is the set of all decision 
problems whose complements are 
members of NP.

For example: consider Graph Color GC
Given: A graph G and an integer k.
Question: Can G be properly colored with k 
colors?
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Co–NP
The complement problem of GC

Co–GC
Given: A graph G and an integer k.
Question: Do all proper colorings of G 

require more than k colors?
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Co–NP
Notice that Co–GC is a problem that 
does not appear to be in the set NP. 
That is, we know of no way to check in 
polynomial time the answer to a "Yes" 
instance of Co–GC.

What is the "answer" to  a Yes instance 
that can be verified in polynomial time?
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Co–NP
Not all problems in NP behave this way. For 
example, if X is a problem in class P, then both 
"yes" and "no" instances can be solved in 
polynomial time. 

That is, both "yes" and "no" instances can be 
verified in polynomial time and hence, X and 
Co–X are both in NP, in fact, both are in P. 

This implies P = Co–P and, further,
P = Co–P Í NP Ç Co–NP.
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Co–NP
This gives rise to a second fundamental 
question: 

NP = Co–NP?

If P = NP, then NP = Co–NP. 
This is not "if and only if." 

It is possible that NP = Co–NP and, yet,  
P ≠ NP.
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Co–NP
If  A ≤P B and both are in NP, then the same 
polynomial transformation will reduce Co-A to Co–B. 
That is, 
Co–A ≤P Co–B. Therefore, Co–SAT is 'complete' in 
Co–NP. 

In fact, corresponding to NP–Complete is the 
complement set Co–NP–Complete, the set of hardest 
problems in 
Co–NP.
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Turing Reductions
Now, return to Turing Reductions.

Recall that Turing reductions include 
polynomial transformations as a special 
case. So, we should expect they will be more 
powerful.
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Turing Reductions
(1)  Problems A and B can, but need not, be

decision problems. 

(2) No restriction placed upon the number 
of instances of B that are constructed.

(3) Nor, how the result, AnswerA, is computed.

In effect, we use an Oracle for B.
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Turing Reductions
Technically, Turing Reductions include 
Polynomial Transformations, but it is 
useful to distinguish them.

Polynomial transformations are often 
the easiest to apply.
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NP–Hard

Fifth Significant Class of 
Problems



NP–Hard
To date, we have concerned ourselves with 
decision problems. We are now in a position 
to include additional problems. In particular, 
optimization problems. 

We require one additional tool – the second 
type of transformation discussed above –
Turing reductions.
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NP–Hard
Definition: Problem B is NP–Hard if there is a 
polynomial time Turing reduction A ≤PT B for 
some problem A in NP–Complete.
This implies NP–Hard problems are at least as 
hard as NP–Complete problems. Therefore, 
they cannot be solved in polynomial time 
unless P = NP (and maybe not then). 
This use of an oracle, allows us to reduce co-
NP-Complete problems to NP-Complete ones 
and vice versa.
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QSAT
• QSAT is the problem to determine if an 

arbitrary fully quantified Boolean expression 
is true. Note: SAT only uses existential.

• QSAT is NP-Hard but may not be in NP.
• QSAT can be solved in polynomial space 

(PSPACE).
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NP–Hard
Polynomial transformations are Turing 
reductions.

Thus, NP–Complete is a subset of NP–Hard. 
Co–NP–Complete also is a subset of NP–Hard. 
NP–Hard contains many other interesting 
problems.
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NP-Easy
• NP-Easy is the set of function problems that are 

solvable in polynomial time by a deterministic 
Turing machine with an oracle for some decision 
problem in NP.

• That is, given an Oracle for some NP problem Y, 
if X is Turing reducible to Y in polynomial time 
then X is NP-Easy.
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NP–Easy
Problem X need not be, but often is, NP–
Complete. 

In fact, X can be any problem in NP or Co–NP.

More to the point, an NP-Easy problem does 
not even need to be a decision problem – it can 
be an optimization problem or some other 
problem seeking a numerical rather than binary 
(yes/no answer).
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NP–Equivalent

Problem B in NP–Hard is NP–Equivalent when B reduces to some 
problem X in NP, That is, B ≤PT X. This is, when B is also NP-Easy.

Since B is in NP–Hard, we already know there is a problem A in 
NP–Complete that reduces to B. That is, A ≤PT B. 

Since X is in NP, X ≤PT A. Therefore, X ≤PT A ≤PT B ≤PT X.

Thus, X, A, and B are all polynomially equivalent, and we can say

Theorem. Problems in NP–Equivalent are polynomial if and only if 
P = NP.

Example: Optimization version of Subset-Sum is NP-Equivalent. 
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NP-Easy and Equivalent
• NP-Easy -- these are problems that are 

polynomial when using an NP oracle (≤pt)
• NP-Equivalent is the class of NP-Easy and 

NP-Hard problems (assuming Turing rather 
than many-one reductions)
– In essence this is the functional equivalent 

of NP-Complete but also of 
Co-NP-Complete since can negate 
answers
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SubsetSum Optimization
S = {s1, s2, …, sn} 

set of positive integers
and an integer B.

Optimization: Find a subset of S whose 
values sum to the largest
attainable value ≤B?

Strategy: Use Oracle for SubsetSum Decision
Problem but only use it a
polynomial number of times

4/7/19 © UCF CS 774



Using SubsetSum Oracle
SUBSET-SUM-OPTIMIZATION(A, b) 

int best = b;
for i = floor(log2b) downto 0 do 

A = A + { 2i } // add to set
for i = floor(log2b) downto 0 do 

A = A - { 2i} // remove from set
if not SUBSET-SUM(A, best) then 

best = best - 2i // reduce best
return best
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Example of SubsetSum Opt
• Initial Values: 
• A = {1, 4, 5, 7}, best = b = 15
• A = {1, 4, 5, 7, 8, 4, 2, 1}, best = 15
• A = {1, 4, 5, 7, 4, 2, 1}, best = 15
• A = {1, 4, 5, 7, 2, 1}, best = 15
• A = {1, 4, 5, 7, 1}, best = 15-2 = 13
• A = {1, 4, 5, 7}, best = 13
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Another Example
• Initial Values: 
• A = {1, 4, 5, 7}, best = b = 20
• A = {1, 4, 5, 7, 16, 8, 4, 2, 1}, best = 20
• A = {1, 4, 5, 7, 8, 4, 2, 1}, best = 20
• A = {1, 4, 5, 7, 4, 2, 1}, best = 20
• A = {1, 4, 5, 7, 2, 1}, best = 20-2 = 18
• A = {1, 4, 5, 7, 1}, best = 20-2 = 18 
• A = {1, 4, 5, 7}, best = 18-1 = 17
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Analysis
• Each loop has O(log2b) iterations, which is 

linear with respect to the size of b. 
• Note that if we tried all values less that b, 

we would have O(b) tries and that is 
exponential in log2b, the size of b.

• The correct solution takes advantage of 
the NP-complete power of the oracle.
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Minimum Colors for a Graph
• We know K-Color is NP Complete

• We can reduce KC to Min Color problem just by 
seeing if Min is ≤ K.

• How do we reduce Min Color to KC asking only 
a log number of questions of the oracle for KC?

• Consider, if N nodes, then can easily N-Color

• Can we N/2-Color? 
– If not, then try N/4

– If so, then try 3N/4

• This is a simple binary search for optimal value
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PSPACE
• PSPACE is set of problems solvable in 

polynomial space with unlimited time 
PSPACE = ∪ SPACE(nk)

• PSPACE = co-PSPACE = NPSPACE
• PSPACE is a strict superset of CSLs
• A PSPACE-Complete Problem is, given a 

regular expression e over Σ, does e denote all 
strings in Σ*?

• Another PSPACE-Complete problem is QSAT
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EXPTIME and EXPSPACE
• EXPTIME is the set of problems solvable 

in 2p(n) where is p is some polynomial.
• NEXPTIME is the set of problems solvable 

in 2p(n) on a non-deterministic TM.
• EXPSPACE is set of problems solvable in 

2p(n) space and unlimited time
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Complexity Hierarchy
• P Í NP Í PSPACE = NPSPACE ⊆ EXPTIME Í NEXPTIME Í

EXPSPACE ⊈ 2-EXPTIME ⊈ 3-EXPTIME ⊈ … ⊈ ELEMENTARY ⊈
PRF ⊈ REC

• P ¹ EXPTIME; At least one of these is true
– P ⊈ NP
– NP ⊈ PSPACE
– PSPACE ⊈ EXPTIME

• NP ¹ NEXPTIME
– Note that EXPTIME = NEXPTIME iff P=NP
– Note that k-EXPTIME ⊈ (k+1)-EXPTIME, k>0

• PSPACE ¹ EXPSPACE; At least one of these is true
– PSPACE ⊈ EXPTIME
– EXPTIME ⊈ EXPSPACE
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Alternating TM (ATM)
• ATM adds to NDTM notation the notion where, 

for each state q, q has one of the following 
properties: (accept, reject, Ú, Ù)
– Ú means mean accept the string if any final state 

reached after q is accepting
– Ù means mean accept the string if all final states 

reached after q are accepting
• AP = PSPACE where AP is class of problems 

solvable in polynomial time on an ATM 
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QSAT, Petri Net, Presburger
• QSAT is solvable by an alternating TM in 

polynomial time and polynomial space
• As noted before, QSAT is PSPACE-Complete
• Petri net reachability is EXPSPACE-hard and 

requires 2-EXPTIME
• Presburger arithmetic is at least in 2-EXPTIME, 

at most in  3-EXPTIME, and can be solved by an 
ATM with n alternating quantifiers in doubly 
exponential time
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FP and FNP
• FP is functional equivalent to P

R(x,y) in FP if can provide value y for 
input x via a deterministic polynomial 
time algorithm

• FNP is functional equivalent to NP; 
R(x,y) in FNP if can verify any pair (x,y) 
via a deterministic polynomial time 
algorithm
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TFNP
• TFNP is the subset of FNP where a solution 

always exists, i.e., there is a y for each x 
such that R(x,y).
– Task of a TFNP algorithm is to find a y, 

given x, such that R(x,y)
– Unlike FNP, the search for a y is always 

successful
• FNP properly contains TFNP contains FP (we 

don't know if proper)
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Prime Factoring
• Prime factoring is defined as, given n 

and k, does n have a prime factor <k?
• Factoring is in NP and co-NP

• Given candidate factor can check its 
primality in poly time and then see if it 
divides n

• Given candidate set of factors can check 
their primalities, and see if product equals 
n; if so, and no candidate < k, then answer 
is no
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Prime Factoring and TFNP
• Prime Factoring as a functional problem is in 

TFNP, but is it in FP?
• If TFNP in FP then TFNP = FP since FP 

contained in TFNP
• If that is so, then carrying out Prime 

Factoring is in FP and its decision problem is 
in P
– If this is so, we must fear for encryption, most of 

which depends on difficulty of finding factors of a 
large number
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More TFNP
• There is no known recursive enumeration of 

TFNP but there is of FNP
– This is similar to total versus partially 

recursive functions (analogies are 
everywhere)

• It appears that TFNP does not have any 
complete problems!!!
– But there are subclasses of TFNP that do 

have complete problems!!
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Another Possible Analogy
• Is P = (NP intersect Co-NP)? 
• Recall that REC = (RE intersect co-RE)
• The analogous result may not hold here
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Turing vs m-1 Reductions
• In effect, our normal polynomial 

reduction (≤p) is a many-one 
polynomial time reduction as it just 
asks and then accepts its oracle’s 
answer

• In contrast, NP-Easy and NP-Equivalent 
employ a Turing machine polynomial 
time reduction (≤pt) that uses rather 
than mimics answers from its oracle
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More Examples of NP 
Complete Problems



TipOver
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Rules of Game
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Numbers are height of crate stack;
If could get 4 high out of way we can attain goal



Problematic OR Gadget
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Can go out where did not enter



Directional gadget
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Single stack is two high; 
tipped over stack is one high, two long; 
red square is location of person travelling the towers



One directional Or gadget
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AND Gadget
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How AND Works



Variable Select Gadget
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Tip A left to set x true; right to set x false
Can build bridge to go back but never to change choice



((xÚ~xÚy)Ù(~yÚzÚw)Ù~w)
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x ~x

Ú

Ú

Ú Ú

y z w~y ~z ~w

Bridges back 
for true paths

Ù Ù



Win Strategy is NP-Complete
• TipOver win strategy is NP-Complete
• Minesweeper consistency is NP-Complete
• Phutball single move win is NP-Complete

– Do not know complexity of winning 
strategy

• Checkers is really interesting
– Single move to King is in P
– Winning strategy is PSpace-Complete
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Finding Triangle Strips

Adapted from presentation by 
Ajit Hakke Patil

Spring 2010



Graphics Subsystem
• The graphics subsystem (GS) receives 

graphics commands from the application 
running on CPU/GPU over a bus, builds the 
image specified by the commands, and 
outputs the resulting image to display 
hardware

• Graphics Libraries:
– OpenGL, DirectX.
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Surface Visualization

• As Triangle Mesh
• Generated by triangulating the 

geometry 
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Triangle List vs Triangle Strip

• Triangle List: Arbitrary ordering of triangles.
• Triangle Strip: A triangle strip is a sequential ordering of 

triangles. i.e consecutive triangles share an edge
• In case of triangle lists we draw each triangle separately.
• So for drawing N triangles you need to call/send 3N vertex 

drawing commands/data.
• However, using a Triangle Strip reduces this requirement from 

3N to N + 2, provided a single strip is sufficient.
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Triangle List vs Triangle Strip
• four separate triangles: 

ABC, CBD, CDE, and 
EDF 

• But if we know that it is a 
triangle strip or if we 
rearrange the triangles 
such that it becomes a 
triangle strip, then we can 
store it as a sequence of 
vertices ABCDEF 

• This sequence would be 
decoded as a set of 
triangles ABC, BCD, CDE 
and DEF 

• Storage requirement: 
– 3N => N + 2
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Tri-strips example
• Single tri-strip that describes triangles is:

1,2,3,4,1,5,6,7,8,9,6,10,1,2
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K-Stripability
• Given some positive integer K (less than 

the number of triangles).
• Can we create K tri-strips for some given 

triangulation – no repeated triangles.
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Triangle List vs Triangle Strip

// Draw Triangle Strip
glBegin(GL_TRIANGLE_STRIP); 
For each Vertex
{

glVertex3f(x,y,z); //vertex
}
glEnd(); 

// Draw Triangle List
glBegin(GL_TRIANGLES);
For each Triangle
{

glVertex3f(x1,y1,z1);// vertex 1 
glVertex3f(x2,y2,z2);// vertex 2

glVertex3f(x3,y3,z3);// vertex 3
}
glEnd();
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Problem Definition
• Given a triangulation T = {t1, t2, t3 ,.. tn}. Find the 

triangle strip (sequential ordering) for it?
• Converting this to a decision problem.
• Formal Definition:

Given a triangulation T = {t1, t2, t3 ,.. tN}. Does 
there exists a triangle strip?
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NP Proof

• Provided a witness of a ‘Yes’ instance of the problem. we can 
verify it in polynomial time by checking if the sequential triangles 
are connected.

• Cost of checking if the consecutive triangles are connected
– For i to N -1 

• Check of ith and i+1th triangle are adjacent (have a 
common edge)

• Three edge comparisions or six vertex comparisions
– ~ 6N

• Hence it is in NP.
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Dual Graph
• The dual graph of a 

triangulation is obtained by 
defining a vertex for each 
triangle and drawing an edge 
between two vertices if their 
corresponding triangles 
share an edge

• This gives the triangulations 
edge-adjacency in terms of 
a graph

• Cost of building a Dual 
Graph

– O(N2)

• e.g G’ is a dual graph of G.
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NP-Completeness
• To prove it’s NP-Complete we reduce a known NP-Complete 

problem to this one;  the Hamiltonian Path Problem.
• Hamiltonian Path Problem:

– Given: A Graph G = (V, E). Does G contains a path that 
visits every vertex exactly once?
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NP-Completeness proof by 
restriction

• Accept an Instance of Hamiltonian Path, G = (V, E), we restrict this 
graph to have max. degree = 3.The problem is still NP-Complete.

• Construct an Instance of HasTriangleStrip
– G’ = G

• V’ = V
• E’ = E

– Let this be the dual graph G’ = (V’, E’) of the triangulation T = {t1, t2, 
t3 ,.. tN}.

• V’ ~ Vertex vi represents triangle ti, i = 1 to N
• E’ ~ An edge represents that two triangles are edge-adjacent 

(share an edge)
• Return HasTriangleStrip(T)
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NP-Completeness
• G will have a Hamiltonian 

Path iff G’ has one (they are 
the same).

• G’ has a Hamiltonian Path 
iff T has a triangle strip of 
length N – 1.

• T will have a triangle strip of 
length N – 1 iff G (G’) has a 
Hamiltonian Path.

• ‘Yes’ instance maps to ‘Yes’ 
instance. ‘No’ maps to ‘No.’
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HP <P HasTriangleStrip
• The ‘Yes/No’ instance maps to ‘Yes/No’ instance respectively 

and the transformation runs in polynomial time.
• Polynomial Transformation
• Hence finding Triangle Strip in a given triangulation is a NP-

Complete Problem
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Undecidability of Finite 
Convergence for Operators on 

Formal Languages
Relation to Real-Time 

(Constant Time) Execution



818

Simple Operators
• Concatenation

– A • B = { xy | x Î A & y Î B }

• Insertion
– A w B = { xyz |  y Î A, xz Î B, x, y, z Î S*}
– Clearly, since x can be l, A • B Í A w B
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K-insertion 
• A w [ k ] B = { x1y1x2y2 … xkykxk+1 |  

y1y2 … yk Î A, 
x1x2 … xkxk+1 Î B, 
xi, yj Î S*}

• Clearly, A • B Í A w [ k ] B , for all k>0
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Iterated Insertion
• A (1) w[ n ] B = A w[ n ] B

• A (k+1) w[ n ] B = A w[ n ] (A (k) w[ n ] B)
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Shuffle
• Shuffle (product and bounded product)

– A ¯ B = È j ³ 1 A w[ j ] B 
– A ¯[ k ] B = È 1£j£k A w[ j ] B = A w[ k ] B 

• One is tempted to define shuffle product as 
A ¯ B = A w[ k ] B where 

k = µ y [ A w[ j ] B = A w[ j+1] B ]
but such a k may not exist – in fact, we will show 
the undecidability of determining whether or not 
k exists
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More Shuffles
• Iterated shuffle

– A ¯0 B = A
– A ¯k +1 B = (A ¯[ k ] B) ¯ B 

• Shuffle closure
– A ¯* B = È k ³ 0 (A ¯[ k ] B)
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Crossover
• Unconstrained crossover is defined by 

A Äu B = { wz, yx | wxÎA and yzÎB}

• Constrained crossover is defined by
A Äc B = { wz, yx | wxÎA and yzÎB, 

|w| = |y|, |x| = |z| }
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Who Cares?
• People with no real life (me?)
• Insertion and a related deletion operation are 

used in biomolecular computing and 
dynamical systems

• Shuffle is used in analyzing concurrency as 
the arbitrary interleaving of parallel events

• Crossover is used in genetic algorithms
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Some Known Results
• Regular languages, A and B

– A • B is regular
– A w [ k ] B is regular, for all k>0
– A ¯ B is regular
– A ¯* B is not necessarily regular 

• Deciding whether or not A ¯* B is regular is an 
open problem

4/7/19 © UCF EECS



826

More Known Stuff
• CFLs, A and B

– A • B is a CFL
– A w B is a CFL
– A w [ k ] B is not necessarily a CFL, for k>1

• Consider A=anbn; B = cmdm and k=2
• Trick is to consider (A w [ 2 ] B) Ç a*c*b*d*

– A ¯ B is not necessarily a CFL
– A ¯* B is not necessarily a CFL 

• Deciding whether or not A ¯* B is a CFL is an open problem
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Immediate Convergence

• L = L2 ?
• L = L wL ?
• L = L ¯ L ?
• L = L ¯* L ?
• L = L Äc L ?
• L = L Äu L ?
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Finite Convergence
• $k>0 Lk = Lk+1

• $k³0 L (k) w L = L (k+1) w L 
• $k³0 L w[ k ] L = L w[ k+1 ] L
• $k³0 L ¯k  L = L ¯k +1 L
• $k³0 L (k) Äc L = L (k+1) Äc L 
• $k³0 L (k) Äu L = L (k+1) Äu L 

• $k³0 A (k) w B = A (k+1) w B
• $k³0 A w[ k ] B = A w[ k+1 ] B 
• $k³0 A ¯k  B = A ¯k +1 B
• $k³0 A (k) Äc B = A (k+1) Äc B 
• $k³0 A (k) Äu B = A (k+1) Äu L 
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Finite Power of CFG
• Let G be a context free grammar.
• Consider L(G)n

• Question1: Is L(G) = L(G)2?
• Question2: Is L(G)n = L(G)n+1, for some finite 

n>0?
• These questions are both undecidable.
• Think about why question1 is as hard as 

whether or not L(G) is S*. 
• Question2 requires much more thought.
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1981 Results
• Theorem 1:

The problem to determine if L = S* is Turing 
reducible to the problem to decide if 
L • L Í L, so long as L is selected from a class 
of languages C over the alphabet S for which we 
can decide if S È {l} Í L. 

• Corollary 1: 
The problem “is L • L = L, for L context free or 
context sensitive?” is undecidable 
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Proof #1
• Question: Does L • L get us anything new?

– i.e., Is L • L = L?
• Membership in a CSL is decidable.
• Claim is that L = S* iff  

(1) S È {l} Í L ; and
(2) L • L = L 

• Clearly, if L = S* then (1) and (2) trivially hold.
• Conversely, we have S* Í L*= È n³0 Ln Í L

– first inclusion follows from (1); second from (2)  
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Subsuming •
• Let Å be any operation that subsumes 

concatenation, that is A • B Í A Å B. 
• Simple insertion is such an operation, 

since A • B Í A w B. 
• Unconstrained crossover also subsumes 
•, 
A Äc B = { wz, yx | wxÎA and yzÎB}
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L = L Å L ?
• Theorem 2: 

The problem to determine if L = S* is 
Turing reducible to the problem to decide if 
L Å L Í L, so long as 
L • L Í L Å L and L is selected from a 
class of languages C over S for which we 
can decide if 
S È {l} Í L. 
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Proof #2
• Question: Does L Å L get us anything new?

– i.e., Is L Å L = L?
• Membership in a CSL is decidable.
• Claim is that L = S* iff  

(1) S È {l} Í L ; and
(2) L Å L = L 

• Clearly, if L = S* then (1) and (2) trivially hold.
• Conversely, we have S* Í L*= È n³0 Ln Í L

– first inclusion follows from (1); second from (1), (2) 
and the fact that L • L Í L Å L 
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