
4/7/19 © UCF EECS 1

Who, What, Where and When
• Instructor: Charles Hughes;

HEC-247C
charles.hughes@ucf.edu
(e-mail is a good way to get me)
Use Subject: COT6410
Office Hours: TR 3:15PM-4:30PM

• Web Page: http://www.cs.ucf.edu/courses/cot6410/Spring2019
• Meetings: TR 1:30PM-2:45PM, HEC-103;

28 periods, each 75 minutes long.
Final Exam (Tuesday, April 30 from 1:00PM to 3:50PM) is
separate from class meetings

• GTA: Harish Raviprakash; harishr@knights.ucf.edu
Use Subject: COT6410
Office Hours: MW 1:30PM-3:00PM; Room: HEC-308

1

mailto:charles.hughes@ucf.edu
http://www.cs.ucf.edu/courses/cot6410/Spring2019
mailto:harishr@knights.ucf.edu

4/7/19 © UCF EECS 2

Text Material
• References:
• Cooper, Computability Theory 2nd Ed., Chapman-Hall/CRC Mathematics Series, 2003.
• Garey&Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H.

Freeman & Co., 1979.
• Davis, Sigal&Weyuker, Computability, Complexity and Languages 2nd Ed., Acad. Press (Morgan

Kaufmann), 1994.
• Papadimitriou & Lewis, Elements of the Theory of Computation, Prentice-Hall, 1997.
• Bernard Moret, The Theory of Computation, Addison-Wesley, 1998.
• Hopcroft, Motwani&Ullman, Intro to Automata Theory, Languages and Computation 3rd Ed., Prentice-

Hall, 2006.
• Oded Goldreich, Computational Complexity: A Conceptual Approach, Cambridge University Press, 2008.
• Draft available at http://www.wisdom.weizmann.ac.il/~/oded/cc-drafts.html
• Oded Goldreich, P, NP, and NP-Completeness: The Basics of Complexity Theory, Cambridge University

Press, 2010.
• Draft available at http://www.wisdom.weizmann.ac.il/~/oded/bc-drafts.html
• Arora&Barak, Computational Complexity: A Modern Approach, Cambridge University Press, 2009.
• Draft available at http://www.cs.princeton.edu/theory/complexity/
• Sipser, Introduction to the Theory of Computation 3rd Ed., Cengage Learning, 2013.

2

Goals of Course
• Introduce Computability and Complexity Theory, including

– Review background on automata and formal languages

– Basic notions in theory of computation
• Algorithms and effective procedures

• Decision and optimization problems

• Decision problems have yes/no answer to each instance

– Limits of computation
• Turing Machines and other equivalent models

• Determinism and non-determinism

• Undecidable problems

• The technique of reducibility; The ubiquity of undecidability (Rice’s Theorem)

• The notions of semi-decidable (re) and of co-re sets

– Complexity theory
• Order notation (quick review)

• Polynomial reducibility

• Time complexity, the sets P, NP, co-NP, NP-complete, NP-hard, etc., and the question
does P=NP? Sets in NP and NP-Complete.

• Gadgets and other reduction techniques

4/7/19 © UCF EECS 33

4/7/19 © UCF EECS 4

Expected Outcomes
• You will gain a solid understanding of various types of

computational models and their relations to one another.
• You will have a strong sense of the limits that are

imposed by the very nature of computation, and the
ubiquity of unsolvable problems throughout CS.

• You will understand the notion of computational
complexity and especially of the classes of problems
known as P, NP, co-NP, NP-complete and NP-Hard.

• You will (hopefully) come away with stronger formal
proof skills and a better appreciation of the importance of
discrete mathematics to all aspects of CS.

4

4/7/19 © UCF EECS 5

Keeping Up
• I expect you to visit the course web site regularly

(preferably daily) to see if changes have been made or

material has been added.

• Attendance is preferred, although I do not take roll.

• I do, however, ask lots of questions in class and give lots

of hints about the kinds of questions I will ask on exams.

It would be a shame to miss the hints, or to fail to

impress me with your insightful in-class answers.

• You are responsible for all material covered in class,

whether in the notes or not.

5

4/7/19 © UCF EECS 6

Rules to Abide By
• Do Your Own Work

– When you turn in an assignment, you are implicitly telling me
that these are the fruits of your labor. Do not copy anyone else's
homework or let anyone else copy yours. In contrast, working
together to understand lecture material and solutions to
problems not posed as assignments is encouraged.

• Late Assignments
– I will accept no late assignments, except under very unusual

conditions, and those exceptions must be arranged with me in
advance unless associated with some tragic event.

• Exams
– No communication during exams, except with me or a

designated proctor, will be tolerated. A single offense will lead to
termination of your participation in the class, and the assignment
of a failing grade.

6

4/7/19 © UCF EECS 7

Grading
• Grading of Assignments and Exams

– I will endeavor to return each exam within a week of
its taking place and each assignment within a week of
its due date.

• Exam Weights
– The weights of exams will be adjusted to your

personal benefits, as I weigh the exam you do well in
more than one in which you do less well.

7

4/7/19 © UCF EECS 8

Important Dates
• Midterm – Tues., March 5 (tentative)

• Spring Break – March11-16

• Withdraw Deadline – Wednesday, March 20

• Final – Tues., April 30, 1:00PM–3:50PM

8

4/7/19 © UCF EECS 9

Evaluation (tentative)
• Mid Term – 125 points ; Final – 200 points
• Assignments – 75 points;

Paper and Presentation – 75 points
• Extra – 25 points used to increase weight of

exams or maybe paper/presentation, always to
your benefit

• Total Available: 500 points
• Grading will be A >= 90%, B+ >= 85%,

B >= 80%, C+ >= 75%, C >= 70%,
D >= 50%, F < 50% (Minuses might be used)

9

Decision Problems
• A set of input data items (input "instances” or domain)

• Each input data item defines a question with an answer

Yes/No or True/False or 1/0.

• A decision problem can be viewed as a relation between

its domain and its binary range

• A decision problem can also be viewed as a partition of

the input domain into those that give rise to true

instances and those that give rise to false instances.

• In each case, we seek an algorithmic solution (in the

form of a predicate) or a proof that none exists

• When an algorithmic solution exists, we seek an efficient

algorithm, or proofs of the problem’s inherent complexity

4/7/19 © UCF EECS 10

S
Subset of interest,

maybe with ordered
elements

UNIVERSE OF DISCOURSE
USUALLY STRINGS OR NATURAL NUMBERS

For some element,
x, is x in S?

DECISION PROBLEMS

Example 1: S is set of Primes and x is a natural number; is x in S (is x a prime)?
Example 2: S is an undirected graph (pairs for neighbors); is S 3-colorable?
Example 3: S is a program in C; is S syntactically correct?
Example 4: S is program in C; does S halt on all input?
Example 5: S is a set of strings; is the language S Regular, Context-Free, … ?

Question: How many
subsets of Natural
Numbers are there?

Recognizer and Generators
1. When we discuss languages and classes of languages, we discuss

recognizers and generators
2. A recognizer for a specific language is a program or computational model

that differentiates members from non-members of the given language
3. A portion of the job of a compiler is to check to see if an input is a legitimate

member of some specific programming language – we refer to this as a
syntactic recognizer

4. A generator for a specific language is a program that generates all and only
members of the given language

5. In general, it is not individual languages that interest us, but rather classes
of languages that are definable by some specific class of recognizers or
generators

6. One type of recognizer is called an automata and there are multiple classes
of automata

7. One type of generator is called a grammar and there are multiple classes of
grammars

8. Our first journey will be a review of automata and grammars

4/7/19 12© UCF EECS

Alphabets and Strings
• DEFINITION 1. An alphabet S is a finite, non-empty set

of abstract symbols.
• DEFINITION 2. S*, the set of all strings over the

alphabet, S, is given inductively as follows.
– Basis: l Î S* (the null string is denoted by l, it is the string of

length 0, that is |l| = 0) [text uses e but I avoid that as hate
saying e Î A; it’s really confusing when manually written]
"a Î S, a Î S* (the members of S are strings of length 1, |a| = 1)

– Induction rule: If x Î S*, and a Î S, then a×x Î S* and x×a Î S*.
Furthermore, l×x = x×l = x, and |a×x| = |x×a| = 1+ |x|.

– NOTE: �a×x� denotes �a concatenated to x� and is formed by
appending the symbol a to the left end of x. Similarly, x×a,
denotes appending a to the right end of x. In either case, if x is
the null string (l), then the resultant string is �a�.

– We could have skipped saying "a Î S, a Î S*, as this is covered
by the induction step.

4/7/19 13© UCF EECS

Languages
• DEFINITION 3. Let S be an alphabet. A language over S is a subset, L, of
S*.

• Example. Languages over the alphabet S = {a, b}.
– Ø (the empty set) is a language over S
– S* (the universal set) is a language over S
– {a, bb, aba } (a finite subset of S*) is a language over S.

– { abnam | n = m2, n, m ³ 0 } (infinite subset) is a language over S.

• DEFINITION 4. Let L and M be two languages over S. Then the
concatenation of L with M, denoted L×M is the set,
L×M = { x×y | x Î L and y Î M }
The concatenation of arbitrary strings x and y is defined inductively as
follows.
Basis: When |x| £ 1 or |y| £ 1, then x×y is defined as in Definition 2.
Inductive rule: when |x| > 1 and |y| > 1, then x = x’ × a for some a Î S and x� Î S*,
where |x�| = |x|-1. Then x×y = x’×(a×y).

4/7/19 14© UCF EECS

UNIVERSE OF LANGUAGES

Non-RE

RE = Semi-Dec = Phrase-Structured

Recursive = Decidable

Context-Sensitive

Context-Free

DCFL

REGULAR

GRAMMARS

Type 0=Phrase-Structured

Type 1=Context-Sensitive

Type 2=Context-Free

LR(k)

Type 3=
Regular =

Right Linear

Deterministic CFG

REWRITING SYSTEMS

AUTOMATA
Recognizers that use State & storage
Turing Machines (DTM = NDTM)

LBAs (DLBAs = NDLBAs)

NPDAs

DFAs =
NDFAs

DPDAs

MODELS OF COMPUTATION

Of these models, only TMs can do general
computation

What We are Studying
Computability Theory

The study of what
can/cannot be done
via purely
computational means.

Complexity Theory

The study of what
can/cannot be done
well via purely
computational means.

4/7/19 © UCF EECS 18

Graph Coloring
• Instance: A graph G = (V, E) and an integer k.
• Question: Can G be "properly colored" with at most k colors?

• Proper Coloring: a color is assigned to each vertex so that adjacent
vertices have different colors.

• Suppose we have two instances of this problem (1) is True (Yes)
and the other (2) is False (No).

• AND, you know (1) is Yes and (2) is No. (Maybe you have a secret
program that has analyzed the two instance.)

4/7/19 © UCF EECS 19

Checking a “Yes” Answer
• Without showing how your program works (you may not even know), how

can you convince someone else that instance (1) is, in fact, a Yes instance?

• We can assume the output of the program was an actual coloring of G. Just
give that to a doubter who can easily check that no adjacent vertices are
colored the same, and that no more than k colors were used.

• How about the No instance?

• What could the program have given that allows us to quickly "verify" (2) is a
No instance?

• No One Knows!!

4/7/19 © UCF EECS 20

Checking a “No” Answer
• The only thing anyone has thought of is to have it test all

possible ways to k-color the graph – all of which fail, of
course, if “No” is the correct answer.

• There are an exponential number of things (colorings) to
check.

• For some problems, there seems to be a big difference
between verifying Yes and No instances.

• To solve a problem efficiently, we must be able to solve
both Yes and No instances efficiently.

4/7/19 © UCF EECS 21

Hard and Easy
• True Conjecture: If a problem is easy to solve, then it is

easy to verify (just solve it and compare).

• Contrapositive: If a problem is hard to verify, then it is
(probably) hard to solve.

• There is nothing magical about Yes and No instances –
sometimes the Yes instances are hard to verify and No
instances are easy to verify.

• And, of course, sometimes both are hard to verify.
4/7/19 © UCF EECS 22

Easy Verification
• Are there problems in which both Yes and No instances

are easy to verify?

• Yes. For example: Search a list L of n values for a key x.
• Question: Is x in the list L?

• Yes and No instances are both easy to verify.

• In fact, the entire problem is easy to solve!!

4/7/19 © UCF EECS 23

Verify vs Solve
• Conjecture: If both Yes and No instances are easy to verify, then the

problem is easy to solve.

• No one has yet proven this claim, but most researchers believe it to
be true.

• Note: It is usually relatively easy to prove something is easy – just
write an algorithm for it and prove it is correct and that it is fast
(usually, we mean polynomial).

• But, it is usually very difficult to prove something is hard – we may
not be clever enough yet. So, you will often see "appears to be
hard."

4/7/19 © UCF EECS 24

Instances vs Problems
• Each instance has an 'answer.‘

– An instance’s answer is the solution of the
instance - it is not the solution of the problem.

– A solution of the problem is a computational
procedure that finds the answer of any
instance given to it – the procedure must halt
on all instances – it must be an 'algorithm.'

4/7/19 © UCF EECS 25

Three Classes of Problems
Problems can be classified to be in one of
three groups (classes):

Undecidable, Exponential, and Polynomial.

Theoretically, all problems belong to exactly
one of these three classes and our job is often
to find which one.

4/7/19 © UCF EECS 26

Why do we Care?
When given a new problem to solve (design an algorithm
for), if it's undecidable, or even exponential, you will
waste a lot of time trying to write a polynomial solution
for it!!

If the problem really is polynomial, it will be worthwhile
spending some time and effort to find a polynomial
solution and, better yet, the lowest degree polynomial
solution.

You should know something about how hard a problem
is before you try to solve it.

4/7/19 © UCF EECS 27

Procedure (Program)
– A finite set of operations (statements) such that

• Each statement is finitely presented and formed from a
predetermined finite set of symbols and is constrained by
some set of language syntax rules.

• The current state of the machine model is finitely
presentable.

• The semantic rules of the language specify the effects of
the operations on the machine’s state and the order in
which these operations are executed.

• If the procedure (eventually) halts when started on some
input, it produces the correct answer to this given
instance of the problem.

4/7/19 © UCF EECS 28

Algorithm
• A procedure that

– Correctly solves any instance of a given
problem.

– Completes execution in a finite number of
steps no matter what input it receives.

4/7/19 © UCF EECS 29

Sample Algorithm/Procedure
{ Example algorithm:

Linear search of a finite list for a key;
If key is found, answer “Yes”;
If key is not found, answer “No”; }

{ Example procedure:
Linear search of a finite list for a key;
If key is found, answer “Yes”;
If key is not found, try this strategy again; }

Note: Latter is not unreasonable if the list can be
increased in size by some properly synchronized
concurrent thread.

4/7/19 © UCF EECS 30

Procedure vs Algorithm
Looking back at our approaches to “find a key in a finite
list,” we see that the algorithm always halts and always
reports the correct answer. In contrast, the procedure
does not halt in some cases, but never lies.

What this illustrates is the essential distinction between
an algorithm and a procedure – algorithms always halt in
some finite number of steps, whereas procedures may
run on forever for certain inputs. A particularly silly
procedure that never lies is a program that never halts
for any input.

4/7/19 © UCF EECS 31

Notion of Solvable
• A problem is solvable if there exists an algorithm that

solves it (provides the correct answer for each instance).
• The fact that a problem is solvable or, equivalently,

decidable does not mean it is solved. To be solved,
someone must have actually produced a correct
algorithm.

• The distinction between solvable and solved is subtle.
Solvable is an innate property – an unsolvable problem
can never become solved, but a solvable one may or
may not be solved in an individual’s lifetime.

4/7/19 © UCF EECS 32

An Old Solvable Problem
Does there exist a set of positive whole numbers, a, b,
c and an n>2 such that an+bn = cn?

In 1637, the French mathematician, Pierre de Fermat, claimed that
the answer to this question is “No”. This was called Fermat’s Last
Theorem, despite the fact that he never produced a proof of its
correctness.
While this problem remained unsolved until Fermat’s claim was
verified in 1995 by Andrew Wiles, the problem was always solvable,
since it had just one question, so the solution was either “Yes” or
“No”, and an algorithm exists for each of these candidate solutions.

4/7/19 © UCF EECS 33

Research Territory
Decidable – vs – Undecidable

(area of Computability Theory)

Exponential – vs – polynomial
(area of Computational Complexity)

For “easy” problems, we want to
determine lower and upper bounds on
complexity and develop best Algorithms

(area of Algorithm Design/Analysis)
4/7/19 © UCF EECS 34

A CS Grand Challenge
Does P=NP?

There are many equivalent ways to describe P and NP. For now, we
will use the following.
P is the set of decision problems (those whose instances have
“Yes”/ “No” answers) that can be solved in polynomial time on a
deterministic computer (no concurrency or guesses allowed).
NP is the set of decision problems that can be solved in polynomial
time on a non-deterministic computer (equivalently one that can
spawn an unbounded number of parallel threads; equivalently one
that can be verified in polynomial time on a deterministic computer).
Again, as “Does P=NP?” has just one question, it is solvable, we
just don’t yet know which solution, “Yes” or “No”, is the correct one.

4/7/19 © UCF EECS 35

Computability vs Complexity
Computability focuses on the distinction between
solvable and unsolvable problems, providing tools that
may be used to identify unsolvable problems – ones that
can never be solved by mechanical (computational)
means. Surprisingly, unsolvable problems are
everywhere as you will see.
In contrast, complexity theory focuses on how hard it is
to solve problems that are known to be solvable. Hard
solvable problems abound in the real world. We will
address computability theory for the first part of this
course, returning to complexity theory later in the
semester.

4/7/19 © UCF EECS 36

REVIEW
REGULAR LANGUAGES

4/7/19 © UCF EECS 37

Regular Languages # 1
• Finite state automata and Regular languages

– Definitions: Deterministic and Non-Deterministic
– Notions of state transitions, acceptance and language accepted
– State diagrams and state tables
– Construction from descriptions of languages
– Conversion of NFA to DFA

• l-Closure
• Subset construction
• Reachable states
• Reaching states
• Minimizing DFAs (distinguishable states)

4/7/19 38© UCF EECS

Regular Languages # 2
• Regular expressions and Regular Sets

– Definition of regular expressions and regular sets
– Every regular set is a regular language
– Every regular language is a regular set

• Ripping states (GNFA)
• Ri,j

k expressions
– Rij

k+1 = (Rij
k + Rik

k � (Rkk
k)* � Rkj

k)
– L(A) = +f∈F R1f

n

• Regular equations
– Uniqueness of solution to R=Q+RP
– Solving for expressions associated with states

4/7/19 39© UCF EECS

Regular Languages # 3
• Pumping Lemma

– Classic non-regular languages {0n 1n | n >= 0}
– Formal statement and proof of Pumping Lemma for Regular

Languages
– Use of Pumping Lemma (Adversarial Nature)

• Minimization (using distinguishable states)
• Myhill-Nerode

– Right Invariant Equivalence Relations (RIER)
– Specific RIER, x RL y ∀z [xz∈L ⇔ yz∈L] is minimal
– Uniqueness of minimum state DFA based on RL

– Use to show languages are no Regular

4/7/19 40© UCF EECS

Regular Languages # 4
• Grammars

– Definition of grammar and notions of derivation and
language

– Restricted grammars: Regular (right and left linear)
– Why you can’t mix right and left linear and stay in

Regular domain
– Relation of regular grammars to finite state automata

4/7/19 41© UCF EECS

Regular Languages # 5
• Closures

– Union, Concatenation, Keene star
– Complement, Exclusive Union, Intersection, Set Difference,

Reversal
– Substitution, Homomorphism, Quotient, Prefix, Suffix, Substring
– Max, Min

• Decidable Properties
– Membership
– L = Ø
– L = Σ*
– Finiteness / Infiniteness
– Equivalence

4/7/19 42© UCF EECS

REVIEW
CONTEXT-FREE &

CONTEXT-SENSITIVE
LANGUAGES

4/7/19 © UCF EECS 43

Context-Free #1

• Context free grammars
– Writing grammars for specific languages
– Leftmost and rightmost derivations,

Parse trees, Ambiguity
– Closure (union, concatenation, reversal,

substitution, homomorphism)
– Pumping Lemma for CFLs

4/7/19 44© UCF EECS

Context-Free #2
• Context free grammars

– Chomsky Normal Form
• Remove lambda rules
• Remove chain rules
• Remove non-generating (unproductive) non-

terminals (and rules)
• Remove unreachable non-terminals (and rules)
• Make rhs match CNF constraints

– CKY algorithm

4/7/19 45© UCF EECS

Context-Free #3
• Push-down automata

– Various notions of acceptance and their
equivalence

– Deterministic vs non-deterministic
– Equivalence to CFLs

• CFG to PDA definitely; PDA to CFG, only
conceptually

– Top-down vs bottom up parsing

4/7/19 46© UCF EECS

Context-Free #4
• Closure

– Union, concatenation, star
– Substitution
– Intersection with regular
– Quotient with regular, Prefix, Suffix, Substring

• Non-Closure
– Intersection, complement, min, max

4/7/19 47© UCF EECS

Context-Sensitive
• Context sensitive grammars and LBAs

– Rules for CSG
– Ability to shuttle symbols to preset

places
– Just basic definition of LBA

4/7/19 48© UCF EECS

Concrete Model of FSA

4/7/19 49

x1 x2 x3 … Xn-1 xn

L is a finite state (regular) language over finite alphabet S
Each xi is a character in S
w = x1 x2 … xn is a string to be tested for membership in L

• Arrow above represents read head that starts on left.
• q0 ∈ Q (finite state set) is initial state of machine.
• Only action at each step is to change state based on

character being read and current state. State change is
determined by a transition function d: Q � S � Q.

• Once state is changed, read head moves right.
• Machine stops when head passes last input character.
• Machine accepts string as member of L if it ends up in

a state from Final State set F ⊆ Q.

q0

© UCF EECS

Finite State Automata
• A deterministic finite state automaton (DFA) A is defined

by a 5-tuple
A = (Q,Σ,δ,q0,F), where
– Q is a finite set of symbols called the states of A
– Σ is a finite set of symbols called the alphabet of A
– δ is a function from Q�Σ into Q (δ: Q�Σ → Q) called

the transition function of A
– q0∈Q is a unique element of Q called the start state
– F is a subset of Q (F ⊆ Q) called the final states (can

be empty)

4/7/19 50© UCF EECS

DFA Transitions
• Given a DFA, A = (Q,Σ,δ,q0,F), we can definition the

reflexive transitive closure of δ, δ*:Q�Σ* → Q, by
– δ*(q,l) = q where l is the string of length 0

• Note that text uses ∊ rather than l as symbol for string of length zero

– δ*(q,ax) = δ*(δ(q,a),x), where a ∈ Σ and x ∈ Σ*
– Note that this means

δ*(q,a) = δ(q,a), where a ∈ Σ as a = al
• We also define the transitive closure of δ, δ+, by

– δ+(q,w) = δ*(q,w) when |w|>0 or, equivalently, w ∈ Σ+

• The function δ* describes every step of computation by
the automaton starting in some state until it runs out of
characters to read

4/7/19 51© UCF EECS

Regular Languages and DFAs
• Given a DFA, A = (Q,Σ,δ,q0,F), we can define the

language accepted by A as those strings that cause it to
end up in a final state once it has consumed the entire
string

• Formally, the language accepted by A is
– { w | δ*(q0,w) ∈ F }

• We generally refer to this language as L(A)
• We define the notion of a Regular Language by saying

that a language is Regular if and only if it is accepted
(recognized) by some DFA

4/7/19 52© UCF EECS

State Diagram
• A finite state automaton can be described by a

state diagram, where
– Each state is represented by a node labelled with that

state, e.g., q
– The state state has an arc entering it with no source,

e.g., q0

– Each transition δ(q,a) = s is represented by a directed
arc from node q to node s that is labelled with the
letter a, e.g., q a s

– Each final state has an extra circle around its node,
e.g., f

4/7/19 53© UCF EECS

Sample DFAs # 1, 2

4/7/19 54

E O
1

1

0 0

A = ({E,O}, {0,1}, d, E, {O}), where d is defined by above
diagram. L(A) = { w | w is a binary string of odd parity }

A

A’ = ({C,NC,X}, {00,01,10,11}, d’, C, {NC}), where d’ is defined by above
diagram. L(A’) = { w | w is a pair of binary strings where the bottom string
is the 2’s complement of the top one, both read least (lsb) to most
significant bit (msb) }

C NC11

00 01,10

A’
01,10

X

S

00,11

© UCF EECS

Sample DFA # 3

4/7/19 55

A” = ({0,1,2}, {0,1}, d”, 0, {2}), where d” is defined by
above diagram. L(A”) = { w | w is a binary string of length
at least 1 being read left to right (msb to lsb) that, when
interpreted as a decimal number divided by 3, has a
remainder of 2 }

0 1
1

0

A” 2

1

00
01

© UCF EECS

State Transition Table
• A finite state automaton can be described by a state

transition table with |Q| rows and |Σ| columns
• Rows are labelled with state names and columns with

input letters
• The start state has some indicator, e.g., a greater than

sign (>q) and each final state has some indicator, e.g.,
an underscore (f)

• The entry in row q, column a, contains δ(q,a)
• In general we will use state diagrams, but transition

tables are useful in some cases (state minimization)

4/7/19 56© UCF EECS

Sample DFA # 4

4/7/19 57

A’’’ = ({0%5,1%5,2%5,3%5,4%5}, {0,1}, d’’’, 0, {3%5}),
where d’’’ is defined by above diagram.
L(A’’) = { w | w is a binary string of length at least 1 being
read left to right (msb to lsb) that, when interpreted as a
decimal number divided by 5, has a remainder of 3 }

Really, this is better done as a state diagram, but have put
this up so you can see the pattern.

0 1
0 % 5 0 % 5 1 % 5
1 % 5 2 % 5 3 % 5
2 % 5 4 % 5 0 % 5
3 % 5 1 % 5 2 % 5
4 % 5 3 % 5 4 % 5

Accept State

© UCF EECS

Sample DFA # 5

4/7/19 58

This checks a string to see if it’s a legal password. In our case, a legal
password must contain at least one of each of the following: lower case letter,
upper case letter, number, and special character from the following set
{!@#$%^&}. No other characters are allowed

A-Z a-z 0-9 @#$%^&
ð Empty A a 0 @

A A Aa A0 A@
a Aa a a0 a@
0 A0 a0 0 0@
@ A@ a@ 0@ @
Aa Aa Aa Aa0 Aa@
A0 A0 Aa0 A0 A0@
A@ A@ Aa@ A0@ A@
a0 Aa0 a0 a0 a0@
a@ Aa@ a@ a0@ a@
0@ A0@ a0@ 0@ 0@
Aa0 Aa0 Aa0 Aa0 Aa0@
Aa@ Aa@ Aa@ Aa0@ Aa@
A0@ A0@ Aa0@ A0@ A0@
a0@ Aa0@ a0@ a0@ a0@

Aa0@ Aa0@ Aa0@ Aa0@ Aa0@

© UCF EECS

DFA Closure
• Regular languages (those recognized by DFAs) are closed

under complement, union, intersection, difference and
exclusive or (⊕) and many other set operations

• Let A1 = (Q1,Σ,δ1,q0,F1), A2 = (Q2,Σ,δ2,s0,F2) be arbitrary DFAs
• Σ*-L(A1) is recognized by A1

C = (Q1,Σ,δ1,q0,Q1-F1)
• Define A3 = (Q1�Q2,Σ,δ3,<q0,s0>,F3) where

δ3(<q,s>,a)= <δ1(q,a),δ2(s,a)>, qÎQ1, sÎQ2, aÎΣ
– L(A1)∪L(A2) is recognized when F3=(F1�Q2)∪(Q1�F2)
– L(A1)∩L(A2) is recognized when F3=F1�F2

– L(A1) - L(A2) is recognized when F3=F1�(Q2-F2)
– L(A1) ⊕ L(A2) is recognized when F3=F1�(Q2-F2)∪(Q1-F1)�F2

4/7/19 59© UCF EECS

Complement of Regular Sets
• Let A = (Q,Σ,δ,q0,F)
• Simply create new automaton

AC = (Q,Σ,δ,q0,Q-F)
• L(AC) = { w | δ*(q0,w) ∊ Q-F } =

{ w | δ*(q0,w) ∉ F } =
{ w | w ∉ L(A) }

• Again, imagine trying to do this in the context of regular
expressions

• Choosing the right representation can make a very big
difference in how easy or hard it is to prove some
property is true

4/7/19 60© UCF EECS

Parallelizing DFAs
• Regular sets can be shown closed under many binary operations

using the notion of parallel machine simulation
• Let A1 = (Q1,Σ,δ1,q0,F1) and A2 = (Q2,Σ,δ2,s0,F2) where

Q1∩Q2 = Ø
• B = (Q1�Q2,Σ,δ3,<q0,s0>,F3) where

δ3(<q,s>,a) = < δ1(q,a), δ2(s,a) >
• Union is F3 = F1�Q2 ∪ Q1�F2

• Intersection is F3 = F1�F2
– Can do by combining union and complement

• Difference is F3 = F1�(Q2 – F2)
– Can do by combining intersection and complement

• Exclusive Or is F3=F1�(Q2-F2)∪(Q1-F1)�F2

4/7/19 61© UCF EECS

Non-determinism NFA
• A non-deterministic finite state automaton (NFA) A is defined by a 5-tuple

A = (Q,Σ,δ,q0,F), where

– Q is a finite set of symbols called the states of A

– Σ is a finite set of symbols called the alphabet of A

– δ is a function from Q�Σe into P(Q) = 2Q ; Note: Σe = (Σ∪{l})
(δ: Q� Σe → P(Q)) called the transition function of A; by definition q ∈
δ(q,l)

– q0∈Q is a unique element of Q called the start state

– F is a subset of Q (F ⊆ Q) called the final states

– Note that a state/input (called a discriminant) can lead nowhere new, one place
or many places in an NFA; moreover, an NFA can jump between states even
without reading any input symbol

– For simplicity, we often extend the definition of δ: Q� Σe to a variant that
handles sets of states, where δ: P(Q)� Σe is defined as
δ(S,a) = ∪q∈S δ(q,a), where a ∈ Σe – if S=Ø, ∪q∈S δ(q,a) =Ø

4/7/19 62© UCF EECS

NFA Transitions
• Given an NFA, A = (Q,Σ,δ,q0,F), we can define the

reflexive transitive closure of δ, δ*:P(Q)�Σ* → P(Q), by
– l-Closure(S) = { t | t ∊ δ*(S,l)}, S ∈ P(Q) – extended δ
– δ*(S,l) = l-Closure(S)
– δ*(S,ax) = δ*(l-Closure(δ(S,a),x)), where a ∈ Σ and x ∈ Σ*

• Note that δ*(S,ax) = ∪q∈S∪p∈l-Closure(δ(q,a)) δ*(p,x), where a ∈ Σ and x ∈ Σ*

• We also define the transitive closure of δ, δ+, by
– δ+(S,w) = δ*(S,w) when |w|>0 or, equivalently, w ∈ Σ+

• The function δ* describes every “possible” step of
computation by the non-deterministic automaton starting
in some state until it runs out of characters to read

4/7/19 63© UCF EECS

NFA Languages
• Given an NFA, A = (Q,Σ,δ,q0,F), we can define the

language accepted by A as those strings that allow it to
end up in a final state once it has consumed the entire
string – here we just mean that there is some accepting
path

• Formally, the language accepted by A is
– { w | (δ*(l-Closure({q0}),w) ∩ F) ≠ Ø }

• Notice that we accept if there is any set of choices of
transitions that lead to a final state

4/7/19 64© UCF EECS

Finite State Diagram
• A non-deterministic finite state automaton can

be described by a finite state diagram, except
– We now can have transitions labelled with l
– The same letter can appear on multiple arcs from a

state q to multiple distinct destination states

4/7/19 65© UCF EECS

Equivalence of DFA and NFA
• Clearly every DFA is an NFA except that

δ(q,a) = s becomes δ(q,a) = {s}, so any
language accepted by a DFA can be
accepted by an NFA.

• The challenge is to show every language
accepted by an NFA is accepted by an
equivalent DFA. That is, if A is an NFA,
then we can construct a DFA A’, such that
L(A’) = L(A).

4/7/19 66© UCF EECS

Constructing DFA from NFA
• Let A = (Q,Σ,δ,q0,F) be an arbitrary NFA
• Let S be an arbitrary subset of Q.

– Construct the sequence seq(S) to be a sequence that contains
all elements of S in lexicographical order, using angle brackets
to . That is, if S={q1, q3, q2} then seq(S)=<q1,q2,q3>. If S=Ø
then seq(S)=<>

• Our goal is to create a DFA, A’, whose state set contains
seq(S), whenever there is some w such that S=δ*(q0,w)

• To make our life easier, we will act as if the states of A’
are sets, knowing that we really are talking about
corresponding sequences

4/7/19 67© UCF EECS

l-Closure
• Define the l-Closure of a state q as the set of states one can arrive

at from q, without reading any additional input.
• Formally l-Closure(q) = { t | t ∊ δ*(q,l) }
• We can extend this to S ∈ P(Q) by

l-Closure(S) = { t | t ∊ δ*(q,l), q ∈ S } = { t | t ∊ l-Closure(q),q ∈ S}

4/7/19 68

A B C D E
1 l

0

1

0,1

λ

0

1

A:

State A B C D E

l-closure { A } { B , C } { C } { D, E } { E }

© UCF EECS

Details of DFA
• Let A = (Q,Σ,δ,q0,F) be an arbitrary NFA

• In an abstract sense,
A’ = (<P(Q)>,Σ,δ’, <l-Closure({q0})>, F’),
but we really don’t need so many states (2|Q|) and we
can iteratively determine those needed by starting at l-
Closure({q0}) and keeping only states reachable from
here

• Define δ’(<S>,a) = <l-Closure(δ(S,a))> =
<∪q∈S l-Closure(δ(q,a)) >, where a∈Σ, S ∈ P(Q)

• F’ = {<S> ∈ <P(Q)> | (S ∩ F) ≠ Ø }

4/7/19 69© UCF EECS

Regular Languages and NFAs
• Showing that every NFA can be simulated by a DFA that

accepts the same language proves the following
• A language is Regular if and only if it is accepted

(recognized) by some NFA

4/7/19 70© UCF EECS

Convert from NFA to DFA

4/7/19 71© UCF EECS

Lexical Analysis
• Consider distinguishing variable names

from keywords like IF, THEN, ELSE, etc.
• This really screams for non-determinism
• Non deterministic automata typically have

fewer states
• However, non-deterministic FSA

interpretation is not as fast as deterministic

4/7/19 72© UCF EECS

4/7/19

Practice Problems
Practice
1. Using DFA�s (not any equivalent notation) show that the

Regular Languages are closed under Min, where
Min(L) = { w | w Î L, but no proper prefix of w is in L}..
This means that w Î Min(L) iff w Î L and for no y≠λ is x
in L, where w=xy. Said a third way, w is not an extension
of any element in L.

2. a.) Present a transition diagram for an NFA for the
language associated with the regular expression
(1011 + 111 + 101)*.

b.) Use the standard conversion technique (subsets of
states) to convert the NFA from (a) to an equivalent
DFA. Be sure to not include unreachable states.

7373© UCF EECS

4/7/19

Practice DFA/NFA
1. Present a transition diagram for a DFA that recognizes

the set of binary strings that, when interpreted as
entering the DFA most to least significant digit, each
represents a binary number that is divisible by either 2 or
3 or both. Thus, 100, 110, 1001 and 1100 are in the
language, but 01, 101, 111 and 1011 are not.

2. a.) Present a transition diagram with no lambda
transitions for an NFA associated with the regular
expression (0111 + 111 + 011)*.
Your NFA must have no more than four states.
b.) Use the standard conversion technique (subsets of
states) to convert the NFA from (a) to an equivalent
DFA. Be sure to not include unreachable states.

7474© UCF EECS

Regular Expressions
• Primitive:

– Φ denotes {}
– λ denotes {λ}
– a where a is in Σ denotes {a}

• Closure:
– If R and S are regular expressions then so are R � S, R + S and

R*, where
• R � S denotes RS = { xy | x is in R and y is in S }
• R + S denotes RÈS = { x | x is in R or x is in S }
• R* denotes R*

• Parentheses are used as needed

4/7/19 75© UCF EECS

Regular Sets =
Regular Languages

• Show every regular expression denotes a
language recognized by a finite state
automaton (can do deterministic or non-
deterministic)

• Show every Finite State Automata
recognizes a language denoted by a
regular expression

4/7/19 76© UCF EECS

Every Regular Set is a
Regular Language

• Primitive:
– Φ denotes {}
– λ denotes {λ}
– a where a is in Σ denotes {a}

• Closure: (Assume that R’s and S’s states do not overlap)
– R � S start with machine for R, add l transitions from

every final state of R’s recognizer to start state of S,
making final state of S final states of new machine

– R + S create new start state and add l transitions from new
state to start states of each of R and S, making union
of R’s and S’s final states the new final states

– R* add l transitions from each final state of R back to its start
state, keeping original start and final states (gets R+) – FIX?

4/7/19 77

λ
aa

© UCF EECS

Every Regular Language is a
Regular Set Using Rij

k

• This is a challenge that can be addressed in multiple ways but
I like to start with the Rij

k approach. Here’s how it works.
• Let A = (Q,Σ,δ,q1,F) be a DFA, where Q = {q1,q2, … , qn}
• Rij

k = {w | δ*(qi,w) = qj, and no intermediate state visited
between qi and qj, while reading w, has index > k

• Basis: k=0, Rij
0 = { a | δ(qi,a) = qj } sets are either Φ, λ, or an

element of Σ or λ + element of Σ, and so are regular sets
• Inductive hypothesis: Assume Rij

m are regular sets for
0 ≤ m ≤ k

• Inductive step: k+1, Rij
k+1 = (Rij

k + Rik+1
k � (Rk+1k+1

k)* � Rk+1j
k)

• L(A) = +f∈F R1f
n

4/7/19 78© UCF EECS

Convert to RE

4/7/19 79

q2 q3q1

0

11

0,
1

0 1

© UCF EECS

q2 q3q1
0

11

0,
1

0 1

• R110= l R120= 0 R130= f
• R210= 0 R220= l + 1 R230= 0 + 1
• R310= f R320= 1 R330= l + 1

• R111= l R121= 0 R131= f
• R211= 0 R221= l + 1 + 00 R231= 0 + 1
• R311 = f R321= 1 R331= l + 1

• R112= l + 0(1+00)*0 R122= 0(1+00)* R132= 0(1+00)*(0+1)
• R212= (1+00)*0 R222= (1+00)* R232= (1+00)*(0+1)
• R312= 1(1+00)*0 R322= 1(1+00)* R332= l+1+1(1+00)*(0+1)

• L = R12
3=

0(1+00)* + 0(1+00)*(0+1) (1+1(1+00)*(0+1))* 1(1+00)*

4/7/19 80© UCF EECS

State Ripping Concept
• This is similar to generalized automata approach but with fewer arcs

than text. It actually gets some of its motivation from Rij
k approach

as well
• Add a new start state and add a l–transition to existing start state
• Add a new final state qf and insert l–transitions from all existing final

states to the new one; make the old final states non-final
• Leaving the start and final states, successively pick states to remove
• For each state to be removed, change the arcs of every pair of

externally entering and exiting arcs to reflect the regular expression
that describes all strings that could result is such a double transition;
be sure to account for loops in the state being removed. Also, or (+)
together expressions that have the same start and end nodes

• When have just start and final, the regular expression that leads
from start to final describes the associated regular set

4/7/19 81© UCF EECS

State Ripping Details
• Let B be the node to be removed
• Let e1 be the regular expression on the arc from some node A to some

node B (A≠B); e2 be the expression from B back to B (or l if there is no
recursive arc); e3 be the expression on the arc from B to some other node
C (C ≠B but C could be A); e4 be the expression from A to C

• Erase the existing arcs from A to B and A to C, adding a new arc from A to
C labelled with the expression
e4 + e1 e2* e3

• Do this for all nodes that have edges to B until B has no more entering
edges; at this point remove B and any edges it has to other nodes and itself

• Iterate until all but the start and final nodes remain
• The expression from start to final describes regular set that is equivalent to

regular language accepted by original automaton
• Note: Your choices of the order of removal make a big difference in how

hard or easy this is

4/7/19 82© UCF EECS

Use Ripping; Rip q3

4/7/19 83

q2 q3q1

0

11

0+
1

0 1

qf
l

l
q0

q2q1

0

0 1+(0+1)1+

qf
l

l
q0

© UCF EECS

Use Ripping; Rip q1

4/7/19 84

q2q1

0

0 1+(0+1)1+

qf
l

l
q0

q2
0

1+(0+1)1++0
0

qf
l

q0

© UCF EECS

Use Ripping; Rip q2

4/7/19 85

q2
0

1+(0+1)1++0
0

qf
l

q0

0
(1+(0+1)1++0
0)*

qf

l

q0

L = 0 (1+(0+1)1++00)* = 0
(1+(0+1)1++00)*

© UCF EECS

Regular Equations
• Assume that R, Q and P are sets such that P

does not contain the string of length zero, and R
is defined by

• R = Q + RP
• We wish to show that
• R = QP*

4/7/19 86© UCF EECS

Show QP* is a Solution
• We first show that QP* is contained in R. By

definition, R = Q + RP.
• To see if QP* is a solution, we insert it as the

value of R in Q + RP and see if the equation
balances

• R = Q + QP*P = Q(λ+P*P) = QP*
• Hence QP* is a solution, but not necessarily the

only solution.

4/7/19 87© UCF EECS

Uniqueness of Solution
• To prove uniqueness, we show that R is contained in QP*.
• By definition, R = Q+RP = Q+(Q+RP)P
• = Q+QP+RP2 = Q+QP+(Q+RP)P2

• = Q+QP+QP2+RP3

• ...
• = Q(λ+P+P2+ ... +Pi)+RPi+1, for all i>=0
• Choose any w in R, where |W| = k. Then, from above,
• R = Q(λ+P+P2+ ... +Pk)+RPk+1

• but, since P does not contain the string of length zero, w is not in
RPk+1. But then w is in

• Q(λ+P+P2+ ... +Pk) and hence w is in QP*.

4/7/19 88© UCF EECS

Example
• We use the above to solve simultaneous regular equations.

For example, we can associate regular expressions with finite
state automata as follows

• Hence,
• For A, Q=l+B1; P=0

A = QP* = (l+B1)0*
= B10* + 0*

• B = B10*1 + B0 + 0*1
For B, Q=0*1; P= B10*1 + B0 = B(10*1 + 0)

• and therefore
• B = 0*1(10*1 + 0)*
• Note: This technique fails if there are lambda transitions.
4/7/19 COT 4210 © UCF 89

Using Regular Equations

4/7/19 COT 4210 © UCF 90

B CA

0

11

0,
1

0 1

A = l + B0
B = A0 + C1 + B1
C = B(0+1) + C1; C = B(0+1)1*
B = 0 + B00 + B(0+1)1+ + B1
B = 0 + B (00+(0+1) 1+ + 1); B = 0(00 +(0+1)1+ + 1)*

This is same form as with state ripping. It won’t always be
so.

Practice NFAs
• Write NFAs for each of the following

– (111 + 000)+

– (0+1)* 101 (0+1)+

– (1 (0+1)* 0) + (0 (0+1)* 1)
• Convert each NFA you just created to an

equivalent DFA.

4/7/19 91© UCF EECS

DFAs to REs
• For each of the DFAs you created for the

previous page, use ripping of states and
then regular equations to compute the
associated regular expression. Note: You
obviously ought to get expressions that
are equivalent to the initial expressions.

4/7/19 92© UCF EECS

State Minimization
• Text makes it an assignment on Page 299 in Sipser Edition 2.

• This is too important to defer, IMHO.

• First step is to remove any state that is unreachable from the start
state; a depth first search rooted at start state will identify all
reachable states

• One seeks to merge compatible states – states q and s are
compatible if, for all strings x, δ*(q,x) and δ*(s,x) are either both an
accepting or both rejecting states

• One approach is to discover incompatible states – states q and s are
incompatible if there exists a string x such that one of δ*(q,x) and
δ*(s,x) is an accepting state and the other is not

• There are many ways to approach this but my favorite is to do
incompatible states via an n by n lower triangular matrix

4/7/19 93© UCF EECS

Sample Minimization
• This uses a transition

table
• Just an X denotes

Immediately incompatible
• Pairs are dependencies

for compatibility
• If a dependent is

incompatible, so are pairs
that depend on it

• When done, any not x--ed
out are compatible

• Here, new states are
<1,3>, <2,4,5>, <6>;
<1,3> is start and not
accept; others are accept

• Write new diagram

4/7/19 94© UCF EECS

Reversal of Regular Sets
• It is easier to do this with regular sets than with DFAs
• Let E be some arbitrary expression; ER is formed by

– Primitives: ØR=Ø λR=λ aR=a
– Closure:

• (A � B)R = (BR � AR)
• (A + B)R = (AR + BR)
• (A*)R = (AR*)

• Challenge: How would you do this with FSA models?
– Start with DFA; change all final to start states; change start

to a final state; and reverse edges
– Note that this creates multiple start states; can create a

new start state with l-transitions to multiple starts
4/7/19 95© UCF EECS

Substitution
• A substitution is a function, f, from each

member, a, of an alphabet, Σ, to a language La

• Regular languages are closed under substitution
of regular languages (i.e., each La is regular)

• Easy to prove by replacing each member of Σ in
a regular expression for a language L with
regular expression for La

• A homomorphism is a substitution where each
La is a single string

4/7/19 96© UCF EECS

Quotient with Regular Sets
• Quotient of two languages B and C, denoted B/C, is defined as

B/C = {x | ∃y∈C where xy∈B}
• Let B be recognized by DFA

AB = (QB,Σ,δB,q1B,FB) and C by
AC = (QC,Σ,δC,q1C,FC)

• Define the recognizer for B/C by
AB/C = (QB∪QB�QC,Σ,δB/C,q1B, FB�FC)
δB/C(q,a) = {δB(q,a)} a∈Σ,q∈QB
δB/C(q,l) = {<q,q1C>} q∈QB
δB/C(<q,p>,l) = {δB(q,a),δC(p,a)} a∈Σ,q∈QB,p∈QC

• The basic idea is that we simulate B and then randomly decide it
has seen x and continue by looking for y, simulating B continuing
after x but with C starting from scratch

4/7/19 97© UCF EECS

Quotient Again
• Assume some class of languages, C, is closed

under concatenation, intersection with regular
and substitution of members of C, show C is
closed under Quotient with Regular

• L/R = { x |∃y∈R where xy∈L }
– Define Σ’ = { a’ | a∈Σ }
– Let h(a) = a; h(a’) = l where a∈Σ
– Let g(a) = a’ where a∈Σ
– Let f(a) = {a,a’} where a∈Σ
– L/R = h(f(L) ∩ (Σ* � g(R)))

4/7/19 98© UCF EECS

Applying Meta Approach
• INIT(L) = { x |∃y∈Σ* where xy∈L }

– INIT(L) = h(f(L) ∩ (Σ* � g(Σ*)))
– Also INIT(L) = L / Σ*

• LAST(L) = { y |∃x∈Σ* where xy∈L }
– LAST(L) = h(f(L) ∩ (g(Σ*) � Σ*))

• MID(L) = { y |∃x,z∈Σ* where xyz∈L }
• MID(L) = h(f(L) ∩ (g(Σ*) � Σ* � g(Σ*)))

• EXTERIOR(L) = { xz |∃y∈Σ* where xyz∈L }
– EXTERIOR(L) = h(f(L) ∩ (Σ* � g(Σ*) � Σ*))

4/7/19 99© UCF EECS

Making Life Easy
• The key in proving closure is to always try to identify the

“best” equivalent formal model for regular sets when
trying to prove a particular property

• For example, how could you even conceive of proving
closure under intersection and complement in regular
expression notations?

• Note how much easier quotient is when have closure
under concatenation, and substitution and intersection
with regular languages than showing in FSA notation

4/7/19 100© UCF EECS

Reachable and Reaching
• Reachablefrom(q) = { p | ∃w ∍ δ(q,w)=p }

– Just do depth first search from q, marking all
reachable states. Works for NFA as well.

• Reachingto(q) = { p | ∃w ∍ δ(p,w)=q }
– Do depth first from q, going backwards on

transitions, marking all reaching states. Works
for NFA as well.

4/7/19 101© UCF EECS

Min and Max
• Min(L) = { w | w∈L and no proper prefix of w is in L } =

{ w | w∈L and if w=xy, x∈Σ*, y∈Σ+ then x∉L}
• Max(L) = { w | w∈L and w is not the proper prefix of any word in L } =

{ w | w∈L and if y∈Σ+ then wy∉L }
• Examples:

– Min(0(0+1)*) = {0}
– Max(0(0+1)*) = {}
– Min(01 + 0 + 10) = {0,10}
– Max(01 + 0 + 10) = {01,10}
– Min({aibjck | i ≤ k or j ≤ k}) = {aibjck | | i,j ≥0, k = min(i, j)}
– Max({aibjck | i ≤ k or j ≤ k}) = {} because k has no bound
– Min({aibjck | i ≥ k or j ≥ k}) = {λ}
– Max({aibjck | i ≥ k or j ≥ k}) = {aibjck | | i,j ≥0, k = max(i, j)}

4/7/19 102© UCF EECS

Regular Closed under Min
• Assume L is regular then Min(L) is regular
• Let L= L(A), where A = (Q,Σ,δ,q0,F) is a DFA with no

state unreachable from q0

• Define Amin = (Q∪{dead},Σ,δmin,q0,F), where for a∈Σ
δmin(q,a) = δ(q,a), if q∈Q-F; δmin(q,a) = dead, if q∈F;
δmin(dead,a) = dead

The reasoning is that the machine Amin accepts only elements in L that are not
extensions of shorter strings in L. By making it so transitions from all final
states in Amin go to the new “dead” state, we guarantee that extensions of
accepted strings will not be accepted by this new automaton.

Therefore, Regular Languages are closed under Min.

4/7/19 103© UCF EECS

Regular Closed under Max
• Assume L is regular then Max(L) is regular

• Let L= L(A), where A = (Q,Σ,δ,q0,F) is a DFA with no state

unreachable from q0

• Define Amax = (Q,Σ,δ,q0,Fmax), where

Fmax= { f | f∈F and Reachablefrom+(f)∩F=Φ }

where Reachablefrom+(q) = { p | ∃w ∍ |w|>0 and δ(q,w) = p }

The reasoning is that the machine Amax accepts only elements in L that cannot be

extended. If there is a non-empty string that leads from some final state f to any final

state, including f, then f cannot be final in Amax. All other final states can be retained.

The inductive definition of Reachablefrom+ is:

1. Reachablefrom+(q) contains { s | there exists an element of S, a, such that d(q,a) = s }

2. If s is in Reachablefrom+ (q) then Reachablefrom+ (q) contains

{ t | there exists an element of S, a, such that d(s,a) = t }

3. No other states are in Reachablefrom+(q)

Therefore, Regular Languages are closed under Max.

4/7/19 104© UCF EECS

4/7/19

Practice Rij
k

105105

Convert the DFA below to a regular expression, first by using either the
GNFA (or state ripping) or the Rij

k approach, and then by using regular
equations. You must show all steps in each part of this solution.

AA:

0 1
01 0

1
B C D

1

0

© UCF EECS

4/7/19

Practice Minimization

106106

Minimize the number of states in the following DFA, showing the
determination of incompatible states (table on right).

Construct and write down your new, equivalent automaton!!

a b c

>1 2 3 5 2

2 5 4 4 3

3 2 4 5 4

4 6 4 2 5

5 5 2 4 6

6 5 4 2 >1 2 3 4 5

© UCF EECS

Pumping Lemma Concept
• Let A = (Q,Σ,δ,q1,F) be a DFA, where Q = {q1,q2, … , qN}
• The “pigeon hole principle” tells us that whenever we visit N+1

or more states, we must visit at least one state more than
once (loop)

• Any string, w, of length N or greater leads to us making N
transitions after visiting the start state, and so we visit at least
one state more than once when reading w

4/7/19 107© UCF EECS

Pumping Lemma For Regular
• Theorem: Let L be regular then there

exists an N>0 such that, if w Î L and
|w| ≥ N, then w can be written in the form
xyz, where |xy| ≤ N, |y|>0, and for all i≥0,
xyiz Î L

• This means that interesting regular
languages (infinite ones) have a very
simple self-embedding property that
occurs early in long strings

4/7/19 108© UCF EECS

Pumping Lemma Proof
• If L is regular then it is recognized by some DFA, A=(Q,S,d,q0,F). Let |Q| = N

states. For any string w, such that |w| ≥ N, A must make N+1 state visits to
consume its first N characters, followed by |w|-N more state visits.

• In its first N+1 state visits, A must enter at least one state two or more times.

• Let w = v1…vj…vk…vm, where m =|w|, and d(q0,v1…vj)=d(q0,v1…vk), k > j,
and let this state represent the first one repeated while A consumes w.

• Define x = v1…vj, y = vi+1…vk, and z = vk+1…vm. Clearly w=xyz. Moreover,
since k > j, |y| > 0, and since k ≤ N, |xy| ≤ N.

• Since A is deterministic, d(q0,xy)=d(q0,xyi), for all i ≥ 0.

• Thus, if w Î L, d(q0,xyz) Î F, and so d(q0,xyiz) Î F, for all i ≥ 0.
• Consequently, if w Î L, |w|≥N, then w can be written in the form xyz, where

|xy| ≤ N, |y| > 0, and for all i ≥ 0, xyiz Î L.

4/7/19 109© UCF EECS

Lemma’s Adversarial Process
• Assume L = {anbn | n>0 } is regular
• P.L.: Provides N > 0

– We CANNOT choose N; that’s the P.L.’s job

• Our turn: Choose aNbN Î L
– We get to select a string in L

• P.L.: aNbN = xyz, where |xy| ≤ N, |y| > 0, and for all i ≥ 0, xyiz Î L
– We CANNOT choose split, but P.L. is constrained by N

• Our turn: Choose i = 0.
– We have the power here

• P.L: aN-|y|bN Î L; just a consequence of P.L.
• Our turn: aN-|y|bN Ï L; just a consequence of L’s structure
• CONTRADICTION, so L is NOT regular

4/7/19 110© UCF EECS

xwx is not Regular (PL)
• L = { x w x | x,w∈{a,b}+} :
• Assume that L is Regular.

• PL: Let N > 0 be given by the Pumping Lemma.

• YOU: Let s be a string, s ∈ L, such that s = aNbaaNb

• PL: Since s ∈ L and |s| ≥ N, s can be split into 3 pieces, s = xyz, such that
|xy| ≤ N and |y| > 0 and ∀ i ≥ 0 xyiz ∈ L

• YOU: Choose i = 2

• PL: xy2z = xyyz ∈ L

• Thus, aN + |y|baaNb would be in L, but this is not so since N+|y| ≠ N

• We have arrived at a contradiction.

• Therefore L is not Regular.

4/7/19 111© UCF EECS

aFib(k) is not Regular (PL)
• L = {aFib(k) | k>0} :
• Assume that L is regular
• Let N be the positive integer given by the Pumping Lemma
• Let s be a string s = aFib(N+3)Î L
• Since s Î L and |s| ≥ N (Fib(N+3)>N in all cases; actually Fib(N+2)>N as

well), s is split by PL into xyz, where |xy| ≤ N and |y| > 0 and for all i ≥ 0,
xyiz Î L

• We choose i = 2; by PL: xy2z = xyyzÎ L
• Thus, aFib(N+3)+|y| would be Î L. This means that there is a Fibonacci number

between Fib(N+3) and Fib(N+3)+N, but the smallest Fibonacci greater than
Fib(N+3) is Fib(N+3)+Fib(N+2) and Fib(N+2)>N
This is a contradiction, therefore L is not regular �

• Note: Using values less than N+3 could be dangerous because N could be
1 and both Fib(2) and Fib(3) are within N (1) of Fib(1).

4/7/19 112© UCF EECS

Pumping Lemma Problems
• Use the Pumping Lemma to show each of

the following is not regular
– { 0m 12n | m £ n }
– { wwR | w Î {a,b}+ }
– { 1n2 | n > 0 }
– { ww | w Î {a,b}+ }

4/7/19 113© UCF EECS

Myhill-Nerode Theorem
The following are equivalent:
1. L is accepted by some DFA
2. L is the union of some of the classes of a right invariant

equivalence relation, R, of finite index.
3. The specific right invariance equivalence relation

RL where x RL y iff "z [xz Î L iff yz Î L]
has finite index

Definition. R is a right invariant equivalence relation iff R is
an equivalence relation and "z [x R y implies xz R yz].
Note: This is only meaningful for relations over strings.

4/7/19 114© UCF EECS

Myhill-Nerode 1 ⇒ 2
1. Assume L is accepted by some DFA, A = (Q,Σ,δ,q1,F)
2. Define RA by x RA y iff δ*(q1,x) = δ*(q1,y). First, RA is

defined by equality and so is obviously an equivalence
relation (Clearly if δ*(q1,x) = δ*(q1,y) then "z δ*(q1,xz) =
δ*(q1,yz) because A is deterministic. Moreover if "z
δ*(q1,xz) = δ*(q1,yz) then δ*(q1,x) = δ*(q1,y), just by
letting z = l. Putting it together x RA y L iff "z xz RA yz.
Thus, RA is right invariant; its index is |Q| which is finite;
and L(A) = ∪δ*(x)∊F[x]RA, where [x]RA refers to the
equivalence class containing the string x.

4/7/19 COT 4210 © UCF 115

Myhill-Nerode 2 ⇒ 3
2. Assume L is the union of some of the classes of a right

invariant equivalence relation, R, of finite index.
3. Since x R y iff "z [xz R yz], R is right invariant and L is

the union of some of the equivalence classes, then
x R y ⇒ "z [xz Î L iff yz Î L] ⇒ x RL y.
This means that the index of RL is less than or equal to
that of R and so is finite. Note than the index of RL is
then less than or equal to that of any other right
invariant equivalence relation, R, of finite index that
defines L.

4/7/19 COT 4210 © UCF 116

Myhill-Nerode 3 ⇒ 1
3. Assume the specific right invariance equivalence

relation RL where x RL y iff "z [xz Î L iff yz Î L]
has finite index

1. Define the automaton A = (Q,Σ,δ,q1,F) by
Q = { [x]RL | x ∈ Σ* }
δ([x]RL,a) = [xa]RL
q1 = [l]
F = { [x]RL | x ∈ L }

Note: This is the minimum state automaton and all
others are either equivalent or have redundant
indistinguishable states

4/7/19 117© UCF EECS

Use of Myhill-Nerode
• L = {anbn | n>0 } is NOT regular.
• Assume otherwise.
• M-N says that the specific r.i. equiv. relation RL has finite

index, where x RL y iff "z [xz Î L iff yz Î L].
• Consider the equivalence classes [aib] and [ajb], where

i,j>0 and i ≠ j.
• aibbi-1 Î L but ajbbi-1 Ï L and so [aib] is not related to

[ajb] under RL and thus [aib] ≠ [ajb].
• This means that RL has infinite index.
• Therefore L is not regular.

4/7/19 118© UCF EECS

xwx is not Regular (MN)
• L = { x a x | x∈{a,b}+} :
• We consider the right invariant equivalence class [aib],

i>0.
• It’s clear that aibaaib is in the language, but akbaaib is

not when k < i.
• This shows that there is a separate equivalence class,

[aib], induced by RL, for each i>0. Thus, the index of RL is
infinite and Myhill-Nerode states that L cannot be
Regular.

4/7/19 119© UCF EECS

aFib(k) is not Regular (MN)
• L = {aFib(k) | k>0} :
• We consider the collection of right invariant equivalence

classes [aFib(j)], j > 2.
• It’s clear that aFib(j)aFib(j+1) is in the language, but

aFib(k)aFib(j+1) is not when k>2 and k≠j and k≠j+2
• This shows that there is a separate equivalence class

[aFib(j)] induced by RL, for each j > 2.
• Thus, the index of RL is infinite and Myhill-Nerode states

that L cannot be Regular.

4/7/19 120© UCF EECS

Myhill-Nerode and
Minimization

• Corollary: The minimum state DFA for a
regular language, L, is formed from the
specific right invariance equivalence
relation RL where
x RL y iff "z [xz Î L iff yz Î L]

• Moreover, all minimum state machines
have the same structure as the above,
except perhaps for the names of states

4/7/19 121© UCF EECS

What is Regular So Far?
• Any language accepted by a DFA
• Any language accepted by an NFA
• Any language specified by a Regular

Expression
• Any language representing the unique

solution to a set of properly constrained
regular equations

4/7/19 122© UCF EECS

What is NOT Regular?
• Well, anything for which you cannot write

an accepting DFA or NFA, or a defining
regular expression, or a right/left linear
grammar, or a set of regular equations, but
that’s not a very useful statement

• There are two tools we have:
– Pumping Lemma for Regular Lnaguges
– Myhill-Nerode Theorem

4/7/19 123© UCF EECS

Finite State Transducers
• A transducer is a machine with output
• Mealy Model

– M = (Q, S, G, d, g, q0)
G is the finite output alphabet
g: Q � S ® G is the output function

– Essentially a Mealy Model machine produced a character of
output for each character of input it consumes, and it does so on
the transitions from one state to the next.

– A Mealy Model represents a synchronous circuit whose output is
triggered each time a new input arrives.

4/7/19 124© UCF EECS

Sample Mealy Model
• Write a Mealy finite state machine that

produces the 2’s complement result of
subtracting 1101 from a binary input
stream (assuming at least 4 bits of input)

4/7/19 125

C
1..1
001

NC
1..1
0011

1/0

0/1 NC
1..1
001

C
1..1
00

NC
1..1
00

1/0

1/1,0
/0

0/1

C
1..1
0

NC
1..1
0

0/1

1/
0

0/0,1/1

C
1..1

NC
1..1

0/1

1/
0

0/0,1/1

1/1,0/
0

0/1

1/0

© UCF EECS

Finite State Transducers
• Moore Model

– M = (Q, S, G, d, g, q0)
G is the finite output alphabet
g: Q ® G is the output function

– Essentially a Moore Model machine produced a
character of output whenever it enters a state,
independent of how it arrived at that state.

– A Moore Model represents an asynchronous circuit
whose output is a steady state until new input arrives.

4/7/19 126© UCF EECS

4/7/19

Practice MNT, Grammar, Mealy
1. For each of the following, prove it is not regular by using the Pumping

Lemma or Myhill-Nerode. You must do at least one of these using the
Pumping Lemma and at least one using Myhill-Nerode.

a. L = { x#y | x, yÎ {0,1}+ and y is the ones complement of x }
b. L = { aibjck | i > j * k }
c. L = { x w x | x, w Î {a,b}+ Here |x|>0 and |w|>0 }

2. Write a regular (right linear) grammar that generates L = { w | w Î {0,1}+

and w interpreted as a binary number is divisible by either 2 or 3 or both. .

3. Present a Mealy Model finite state machine that reads an input x Î {0, 1}+

and produces the binary number that represents the result of adding binary
1001 to x (assumes all numbers are positive, including results). Assume
that x is read starting with its least significant digit.
Examples: 00010 ® 01011; 00101 ® 01110;

00111 ® 10000; 00110 ® 01111

127127© UCF EECS

Decision and Closure
Properties

Regular Languages

Decidable Properties
• Membership (just run DFA over string)
• L = Ø: Minimize and see if minimum state DFA is

• L = Σ*: Minimize and see if minimum state DFA is

• Finiteness: Minimize and see if there are no loops
emanating from a final state

• Equivalence: Minimize both and see if isomorphic

4/7/19 129

A

Σ

A

Σ

© UCF EECS

Closure Properties
• Virtually everything with members of its own class as we

have already shown

• Union, concatenation, Kleene *, complement,
intersection, set difference, reversal, substitution,
homomorphism, quotient with regular sets, Prefix, Suffix,
Substring, Exterior, Min, Max and so much more

4/7/19 130© UCF EECS

Formal Languages

Includes and Expands on
Chapter 2 of Sipser

History of Formal Language
• In 1940s, Emil Post (mathematician) devised rewriting systems as a

way to describe how mathematicians do proofs. Purpose was to
mechanize them.

• Early 1950s, Noam Chomsky (linguist) developed a hierarchy of
rewriting systems (grammars) to describe natural languages.

• Late 1950s, Backus-Naur (computer scientists) devised BNF (a
variant of Chomsky�s context-free grammars) to describe the
programming language Algol.

• 1960s was the time of many advances in parsing. In particular,
parsing of context free was shown to be no worse than O(n3). More
importantly, useful subsets were found that could be parsed in O(n).

4/7/19 132© UCF EECS

Formalism for Grammars
Definition : A language is a set of strings of characters from some alphabet.

The strings of the language are called sentences or statements.

A string over some alphabet is a finite sequence of symbols drawn from that
alphabet.

A meta-language is a language that is used to describe another language.

A very well known meta-language is BNF (Backus Naur Form)

It was developed by John Backus and Peter Naur, in the late 50s, to describe
programming languages.

Noam Chomsky in the early 50s developed context free grammars that can be
expressed using BNF.

4/7/19 133© UCF EECS

Grammars
• G = (V, Σ, R, S) is a Phrase Structured Grammar (PSG)

where
– V: Finite set of non-terminal symbols
– Σ: Finite set of terminal symbols
– R: finite set of rules of form α ® β,

• α in (V È Σ)* V (V È Σ)*
• β in (V È Σ)*

– S: a member of V called the start symbol
• Right linear restricts all rules to be of forms

– α in V
– β of form ΣV, Σ or λ

4/7/19 134© UCF EECS

Derivations
• x Þ y reads as x derives y iff

– x = γαδ, y = γβδ and α ® β
• Þ* is the reflexive, transitive closure of Þ
• Þ+ is the transitive closure of Þ
• x Þ* y iff x = y or x Þ* z and z Þ y
• Or, x Þ* y iff x = y or x Þ z and z Þ* y
• L(G) = { w | S Þ* w } is the language

generated by G.
4/7/19 135© UCF EECS

Regular Grammars
• Regular grammars are also called right

linear grammars
• Each rule of a regular grammar is

constrained to be of one of the three
forms:
A → a, A ∈ V, a ∈ Σ*
A → l, A ∈ V, a ∈ Σ*
A → aB, A, B ∈ V, a ∈ Σ*

4/7/19 136© UCF EECS

DFA to Regular Grammar
• Every language recognized by a DFA is

generated by an equivalent regular
grammar

• Given A = (Q,Σ,δ,q0,F), L(A) is generated
by GA = (Q,Σ,R,q0) where R contains
q ® as iff δ(q,a) = s
q ® l iff q ∈ F

4/7/19 137© UCF EECS

Example of DFA to Grammar
• DFA

• Grammar
A ® 0 B | 1 B
B ® 0 A | 1 C | l
C ® 0 C | 1 A | l

4/7/19 138

A CBA:

0

0,1

0

1

1

© UCF EECS

Regular Grammar to NFA
• Every language generated by a regular grammar

is recognized by an equivalent NFA
• Given G = (V, Σ, R, S), L(G) is recognized by

AG = (V∪{f},Σ,δ,S,{f}) where δ is defined by
δ(A,a) ⊆{B} iff A → aB
δ(A,a) ⊆{f} iff A → a
δ(A,l) ⊆{f} iff A → l

4/7/19 139© UCF EECS

Example of Grammar to NFA
• Grammar
S ® 0 S | 1 A
A ® 0 S | 0 A | 1 B | l
B ® 1 S | 0 B
• DFA

4/7/19 140

S BA:

0 0 0

1

0

1

1

A

© UCF EECS

What More is Regular?
• Any language, L, generated by a right linear grammar
• Any language, L, generated by a left linear grammar

(A → a, A → l, A → Ba)
– Easy to see L is regular as we can reverse these rules and get a

right linear grammar that generates LR, but then L is the reverse
of a regular language which is regular

– Similarly, the reverse LR of any regular language L is right linear
and hence the language itself is left linear

• Any language, L, that is the union of some of the classes
of a right invariant equivalence relation of finite index

4/7/19 141© UCF EECS

Mixing Right and Left Linear
• We can get non-Regular languages if we present

grammars that have both right and left linear rules
• To see this, consider G = ({S,T}, Σ, R, S), where R is:

– S → aT
– T → Sb | b

• L(G) = { anbn | n > 0 } which is a classic non-regular,
context-free language

4/7/19 142© UCF EECS

Context Free Languages

Context Free Grammar
G = (V, S, R, S) is a PSG where
Each member of R is of the form
A ® a where a is a strings (VÈS)*
Note that the left hand side of a rule is a letter in V;
The right hand side is a string from the combined alphabets
The right hand side can even be empty (e or λ)
A context free grammar is denoted as a CFG and the language
generated is a Context Free Language (CFL).
A CFL is recognized by a Push Down Automaton (PDA) to be
discussed a bit later.

4/7/19 144© UCF EECS

Sample CFG
Example of a grammar for a small language:

G = ({<program>, <stmt-list>, <stmt>, <expression>},
{begin, end, ident, ;, =, +, -}, R, <program>) where R is

<program> à begin <stmt-list> end

<stmt-list> à <stmt> | <stmt> ; <stmt-list>

<stmt> à ident = <expression>

<expression> à ident + ident | ident - ident | ident

Here �ident� is a token return from a scanner, as are �begin�, �end�, �;�, �=�,
�+�, �-�

Note that �;� is a separator (Pascal style) not a terminator (C style).

4/7/19 145© UCF EECS

Derivation

4/7/19 146

A sentence generation is called a derivation.

Grammar for a simple
assignment statement:

R1 <assgn> à <id> := <expr>
R2 <id> à a | b | c
R3 <expr> à <id> + <expr>
R4 | <id> * <expr>
R5 | (<expr>)
R6 | <id>

The statement a := b * (a + c)
Is generated by the leftmost derivation:

<assgn> Þ <id> := <expr> R1
Þ a := <expr> R2
Þ a := <id> * <expr> R4
Þ a := b * <expr> R2
Þ a := b * (<expr>) R5
Þ a := b * (<id> + <expr>) R3
Þ a := b * (a + <expr>) R2
Þ a := b * (a + <id>) R6
Þ a := b * (a + c) R2In a leftmost derivation only the

leftmost non-terminal is replaced

© UCF EECS

Parse Trees

4/7/19 147

A parse tree is a graphical representation of a derivation
For instance the parse tree for the statement a := b * (a + c) is:

<assign>

<id> := <expr>

a <id> * <expr>

b (<expr>)

<id> + <expr>

a <id>

c

Every internal node of a
parse tree is labeled with
a non-terminal symbol.

Every leaf is labeled with a
terminal symbol.

The generated string is read
left to right

© UCF EECS

Ambiguity
A grammar that generates a sentence for which there are two or more
distinct parse trees is said to be �ambiguous�

For instance, the following grammar is ambiguous because it generates
distinct parse trees for the expression a := b + c * a

<assgn> à <id> := <expr>
<id> à a | b | c
<expr> à <expr> + <expr>

| <expr> * <expr>
| (<expr>)
| <id>

4/7/19 148© UCF EECS

Ambiguous Parse

4/7/19 149

This grammar generates two parse trees for the same expression.

If a language structure has more than one parse tree,
the meaning of the structure cannot be determined uniquely.

<assign>

<id> := <expr>

A <expr> + <expr>

<id> <expr> * <expr>

B <id> <id>

C A

<assign>

<id> := <expr>

A <expr> * <expr>

<expr> + <expr> <id>

<id> <id> A

B C

© UCF EECS

Precedence

4/7/19 COT 4210 © UCF 150

Operator precedence:
If an operator is generated lower in the parse tree, it indicates that the
operator has precedence over the operator generated higher up in the tree.

An unambiguous grammar for expressions:

<assign> à <id> := <expr>
<id> à a | b | c
<expr> à <expr> + <term>

| <term>
<term> à <term> * <factor>

| <factor>
<factor> à (<expr>)

| <id>

This grammar indicates the usual
precedence order of multiplication and
addition operators.

This grammar generates unique parse
trees independently of doing a
rightmost or leftmost derivation

© UCF EECS

Left (right)most Derivations

4/7/19 151

Rightmost derivation:
<assgn> Þ <id> := <expr>

Þ <id> := <expr> + <term>
Þ <id> := <expr> + <term> *<factor>
Þ <id> := <expr> + <term> *<id>
Þ <id> := <expr> + <term> * a
Þ <id> := <expr> + <factor> * a
Þ <id> := <expr> + <id> * a
Þ <id> := <expr> + c * a
Þ <id> := <term> + c * a
Þ <id> := <factor> + c * a
Þ <id> := <id> + c * a
Þ <id> := b + c * a
Þ a := b + c * a

Leftmost derivation:
<assgn> à <id> := <expr>

à a := <expr>
à a := <expr> + <term>
à a := <term> + <term>
à a := <factor> + <term>
à a := <id> + <term>
à a := b + <term>
à a := b + <term> *<factor>
à a := b + <factor> * <factor>
à a := b + <id> * <factor>
à a := b + c * <factor>
à a := b + c * <id>
à a := b + c * a

© UCF EECS

Ambiguity Test
• A Grammar is Ambiguous if there are two

distinct parse trees for some string
• Or, two distinct leftmost derivations
• Or, two distinct rightmost derivations
• Some languages are inherently ambiguous but

many are not
• Unfortunately (to be shown later) there is no

systematic test for ambiguity of context free
grammars

4/7/19 152© UCF EECS

Unambiguous Grammar
When we encounter ambiguity, we try to rewrite the grammar to avoid
ambiguity.

The ambiguous expression grammar:

<expr> à <expr> <op> <expr> | id | int | (<expr>)
<op> à + | - | * | /

Can be rewritten as:

<expr> à <term> | <expr> + <term> | <expr> - <term>
<term> à <factor> | <term> * <factor> | <term> / <factor>.
<factor> à id | int | (<expr>)

4/7/19 153© UCF EECS

Parsing Problem
The parsing Problem: Take a string of symbols in a language (tokens)
and a grammar for that language to construct the parse tree or report
that the sentence is syntactically incorrect.

For correct strings:

Sentence + grammar à parse tree

For a compiler, a sentence is a program:

Program + grammar à parse tree

Types of parsers:

Top-down aka predictive (recursive descent parsing)

Bottom-up aka shift-reduce

4/7/19 154© UCF EECS

Removing Left Recursion if
doing Top Down

Given left recursive and non left recursive rules
A ® Aa1 | … | Aan | b1 | … | bm

Can view as
A ® (b1 | … | bm) (a1 | … | an)*
Star notation is an extension to normal notation with
obvious meaning
Now, it should be clear this can be done right recursive as
A ® b1B | … | bm B
B ® a1B| … | anB | λ

4/7/19 155© UCF EECS

Right Recursive Expressions
Grammar: Expr à Expr + Term | Term

Term à Term * Factor | Factor
Factor à (Expr) | Int

Fix: Expr à Term ExprRest
ExprRest à + Term ExprRest | l
Term à Factor TermRest
TermRest à * Factor TermRest | l
Factor à (Expr) | Int

4/7/19 156© UCF EECS

Bottom Up vs Top Down
• Bottom-Up: Two stack operations

– Shift (move input symbol to stack)
– Reduce (replace top of stack a with A, when A®a)
– Challenge is when to do shift or reduce and what reduce to do.

• Can have both kinds of conflict

• Top-Down:
– If top of stack is terminal

• If same as input, read and pop
• If not, we have an error

– If top of stack is a non-terminal A
• Replace A with some a, when A®a
• Challenge is what A-rule to use

4/7/19 157© UCF EECS

Chomsky Normal Form
• Each rule of a CFG is constrained to be of

one of the three forms:
A → a, A ∈ V, a ∈ Σ
A → BC, A,B,C ∈ V

• If the language contains l then we allow
S → l
and constrain all non-terminating rules of
form to be
A → BC, A ∈ V, B,C ∈ V-{S}

4/7/19 158© UCF EECS

Nullable Symbols
• Let G = (V, S, R, S) be an arbitrary CFG
• Compute the set Nullable(G) = {A | A ⇒* l }
• Nullable(G) is computed as follows

Nullable(G) ⊇ { A | A → l }
Repeat

Nullable(G) ⊇ { B | B → a and a ∈ Nullable* }
until no new symbols are added

4/7/19 159© UCF EECS

Removal of l-Rules
• Let G = (V, S, R, S) be an arbitrary CFG
• Compute the set Nullable(G)
• Remove all l-rules
• For each rule of form B → aAb where A is nullable, add

in the rule B → ab
• The above has the potential to greatly increase the

number of rules and add unit rules
(those of form B → C, where B,C∈V)

• If S is nullable, add new start symbol S0, as new start
state, plus rules S0, → l and S0 → a, where S → a

4/7/19 160© UCF EECS

Chains (Unit Rules)
• Let G = (V, S, R, S) be an arbitrary CFG that has

had its l-rules removed
• For A∈V, Chain(A) = { B | A ⇒* B, B∈V }
• Chain(A) is computed as follows

Chain(A) ⊇ { A }
Repeat

Chain(A) ⊇ { C | B → C and B ∈ Chain(A) }
until no new symbols are added

4/7/19 161© UCF EECS

Removal of Unit-Rules
• Let G = (V, S, R, S) be an arbitrary CFG that has had its
l-rules removed, except perhaps from start symbol

• Compute Chain(A) for all A∈V
• Create the new grammar G = (V, S, R, S) where R is

defined by including for each A∈V, all rules of the form
A → a, where B → a ∈ R, a ∉ V and B ∈ Chain(A)
Note: A∈Chain(A) so all its non unit-rules are included

4/7/19 162© UCF EECS

Non-Productive Symbols
• Let G = (V, S, R, S) be an arbitrary CFG that has had its
l-rules and unit-rules removed

• Non-productive non-terminal symbols never lead to a
terminal string (not productive)

• Productive(G) is computed by
Productive(G) ⊇ { A | A → a, a∈S* }
Repeat

Productive(G) ⊇ { B | B → a, a∈(S∪Productive)* }
until no new symbols are added

• Keep only those rules that involve productive symbols
• If no rules remain, grammar generates nothing

4/7/19 163© UCF EECS

Unreachable Symbols
• Let G = (V, S, R, S) be an arbitrary CFG that has had its l-

rules, unit-rules and non-productive symbols removed
• Unreachable symbols are ones that are inaccessible from

start symbol

• We compute the complement (Useful)
• Useful(G) is computed by

Useful(G) ⊇ { S }
Repeat

Useful(G) ⊇ { C | B → aCb, C∈V∪Σ, B∈ Useful(G) }
until no new symbols are added

• Keep only those rules that involve useful symbols

• If no rules remain, grammar generates nothing

4/7/19 164© UCF EECS

Reduced CFG
• A reduced CFG is one without l-rules

(except possibly for start symbol), no unit-
rules, no non-productive symbols and no
useless symbols

4/7/19 165© UCF EECS

CFG to CNF
• Let G = (V, S, R, S) be arbitrary reduced CFG
• Define G’=(V∪{<a>|a∈Σ}, S, R, S)
• Add the rules <a> → a, for all a∈Σ
• For any rule, A → a, |a| > 1, change each terminal

symbol, a, in a to the non-terminal <a>
• Now, for each rule A → BCa, |a| > 0, introduce the new

non-terminal B<Ca>, and replace the rule A → BCa with
the rule A → B<Ca> and add the rule <Ca> → Ca

• Iteratively apply the above step until all rules are in CNF

4/7/19 166© UCF EECS

Example of CNF Conversion

Starting Grammars
• L = { ai bj ck | i=j or j=k }
• G = ({S,A,<B=C>,C,<A=B>}, {a,b}, R, S)
• R:

– S à A | C
– A à a A | <B=C>
– <B=C> à b <B=C> c | λ
– C à C c | <A=B>
– <A=B> à a <A=B> b | λ

4/7/19 168© UCF EECS

Remove Null Rules
• Nullable = {<B=C>, <A=B>, A, C, S}

– S’ à S | λ // S’ added to V
– S à A | C
– A à a A | a |<B=C>
– <B=C> à b <B=C> c | b c
– C à C c | c | <A=B>
– <A=B> à a <A=B> b | ab

4/7/19 169© UCF EECS

Remove Unit Rules
• Chains=

{[S’:S’,S,A,C,<A=B>,<B=C>],[S:S,A,C,<A=B>,<
B=C>],
[A:A,<B=C>],[C:C,<B=C>],[<B=C>:<B=C>],
[<A=B>:<A=B>]}
– S’ à λ | aA | a | b<B=C>c | bc | Cc | c | a<A=B>b | ab
– S à aA | a | b<B=C>c | bc | Cc | c | a<A=B>b | ab
– A à aA | a | b<B=C>c | bc
– <B=C> à b<B=C>c | bc
– C à Cc | c | a<A=B>b | ab
– <A=B> à a<A=B>b | ab

4/7/19 170© UCF EECS

Remove Useless Symbols
• All non-terminal symbols are productive (lead

to terminal string)

• S is useless as it is unreachable from S’ (new
start).

• All other symbols are reachable from S’

4/7/19 171© UCF EECS

Normalize rhs as CNF
• S’ à λ | <a>A | a | <<B=C><c>> | <c> |

C<c> | c | <a><<A=B>> | <a>
• A à <a>A | a |<<B=C><c>> | <c>
• <B=C> à <<B=C><c>> | <c>
• C à C<c> | c | <a><<A=B>> | <a>
• <A=B> à <a> <<A=B>> | <a>
• <<B=C><c>> à <B=C><c>
• <<A=B>> à <A=B>
• <a> à a
• à b
• <c> à c

4/7/19 172© UCF EECS

CKY (Cocke, Kasami, Younger)
O(N3) PARSING

4/7/19 COT 4210 © UCF 173

Dynamic Programming
To solve a given problem, we solve small parts of the problem (subproblems),
then combine the solutions of the subproblems to reach an overall solution.

The Parsing problem for arbitrary CFGs was elusive, in that its complexity was
unknown until the late 1960s. In the meantime, theoreticians developed notion
of simplified forms that were as powerful as arbitrary CFGs. The one most
relevant here is the Chomsky Normal Form – CNF. It states that the only rule
forms needed are:

A ® BC where B and C are non-terminals

A ® a where a is a terminal

This is provided the string of length zero is not part of the language.

4/7/19 174© UCF EECS

CKY (Bottom-Up Technique)
Let the input string be a sequence of n letters a1 ... an.
Let the grammar contain r terminal and nonterminal symbols R1 ... Rr,
Let R1 be the start symbol.
Let P[n,n,r] be an array of Booleans. Initialize all elements of P to false.
For each i = 1 to n

For each unit production Rj → ai, set P[i,1,j] = true.
For each i = 2 to n

For each j = 1 to n-i+1
For each k = 1 to i-1

For each production RA -> RB RC

If P[j,k,B] and P[j+k,i-k,C] then set P[j,i,A] = true
If P[1,n,1] is true then a1 ... an is member of language
else a1 ... an is not member of language

4/7/19 175© UCF EECS

CKY Parser
Present the CKY recognition matrix for the string abba assuming the Chomsky
Normal Form grammar, G = ({S,A,B,C,D,E}, {a,b}, R, S), specified by the rules R:

S ® AB | BA
A ® CD | a
B ® CE | b
C ® a | b
D ® AC
E ® BC

4/7/19 176

a b b a
1 A,C B,C B,C A,C
2 S,D E S,E
3 B B
4 S,E

© UCF EECS

2nd CKY Example

4/7/19 177

a - a + a - a
1 E M E P E M E

2 E, F E, F E, F

3 E E E

4 E, F E, F

5 E E

6 E, F

7 E

E ® E F | M E | P E | a
F ® M F | P F | M E | P E
P ® +
M ® -

© UCF EECS

4/7/19

Practice CFGs
1. Write a CFG for the following languages:

L = {an bm ct | n < m or m > t or n = t }

2. Convert the following grammar to a CNF equivalent grammar. Show all steps.
G = ({ S, S1, S2, B, C} , { a , b, c } , R , S), where R is:
S ® S1 | S2
S1 ® a S1 b | S1 b | b
S2 ® c C a B
C ® c C a | C a | a
B ® a B b | l

3. Present the CKY recognition matrix for the string b a a b a assuming the Chomsky Normal Form
grammar G = ({ S,T, B } , { a,b } , R, S), where R is specified by the rules
S ® S T | T S | a
T ® B S | b
B ® B T | SS | b

178178© UCF EECS

CFL Pumping Lemma
Concept

• Let L be a context free language the there is CNF grammar
G = (V, Σ, R, S) such that L(G) = L.

• As G is in CNF all its rules that allow the string to grow are of the form
A � BC, and thus growth has a binary nature.

• Any sufficiently long string z in L will have a parse tree that must have deep
branches to accommodate z’s growth.

• Because of the binary nature of growth, the width of a tree with maximum
branch length k at its deepest nodes is at most 2k; moreover, if the frontier
of the tree is all terminal, then the string so produced is of length at most
2k-1; since the last rule applied for each leaf is of the form A � a.

• Any terminal branch in a derivation tree of height > |V| has more than |V|
internal nodes labelled with non-terminals. The “pigeon hole principle” tells
us that whenever we visit |V| +1 or more nodes, we must use at least one
variable label more than once. This creates a self-embedding property that
is key to the repetition patterns that occur in the derivation of sufficiently
long strings.

4/7/19 179© UCF EECS

Pumping Lemma For CFL
• Let L be a CFL then there exists an N>0 such

that, if z Î L and |z| ≥ N, then z can be written in
the form uvwxy, where |vwy| ≤ N, |vx|>0, and for
all i≥0, uviwxiy Î L.

• This means that interesting context free
languages (infinite ones) have a self-embedding
property that is symmetric around some central
area, unlike regular where the repetition has no
symmetry and occurs at the start.

4/7/19 180© UCF EECS

Pumping Lemma Proof
• If L is a CFL then it is generated by some CNF grammar, G = (V, Σ,

R, S). Let |V| = k. For any string z, such that |z| ≥ N = 2k, the
derivation tree for z based on G must have a branch with at least
k+1 nodes labelled with variables from G.

• By the Pigeon Hole Principle at least two of these labels must be the
same. Let the first repeated variable be T and consider the last two
instances of T on this path.

• Let z = uvwxy, where S ⇒* uTy ⇒* uvTxy ⇒* uvwxy
• Clearly, then, we know S ⇒* uTy; T ⇒* vTx; and T ⇒* w
• But then, we can start with S ⇒* uTy; repeat T ⇒* vTx zero or more

times; and then apply T ⇒* w.
• But then, S ⇒* uviwxiy for all i≥0, and thus uviwxiy Î L, for all i ≥0.

4/7/19 181© UCF EECS

Visual Support of Proof

4/7/19 182

T

T

T

T

T

2 =i 0 =i
T

S S S

u v w x y

w

u yu v x y

v w x

© UCF EECS

Lemma’s Adversarial Process
• Assume L = {anbncn | n>0 } is a CFL

• P.L.: Provides N>0 We CANNOT choose N; that’s the P.L.’s job

• Our turn: Choose aNbNcN Î L We get to select a string in L

• P.L.: aNbNcN = uvwxy, where |vwx| ≤ N, |vx|>0, and for all i≥0,
uviwxiy Î L We CANNOT choose split, but P.L. is constrained by N

• Our turn: Choose i=0. We have the power here

• P.L: Two cases:
(1) vwx contains some a’s and maybe some b’s. Because |vwx| ≤ N, it cannot
contain c’s if it has a’s. i=0 erases some a’s but we still have N c’s so uwy∉L
(2) vwx contains no a’s. Because |vx|>0, vx contains some b’s or c’s or some of each.
i=0 erases some b’s and/or c’s but we still have N a’s so uwy∉L

• CONTRADICTION, so L is NOT a CFL

4/7/19 183© UCF EECS

4/7/19

Practice CFL Pumping Lemma
1. Write a CFG to show the language is a CFL or use the Pumping

Lemma for CFLs to prove that it is not for each of the following.
a) L = { aibj | j > i3 , I>0}
b) L = {aibj | j < 3*i , i>0}

2. Consider the context-free grammar G = { {S}, {a,b}, R, S }
R:
S → a S b S b S | b S a S b S | b S b S a S | λ
Provide a proof that shows

L = { w | |wb| = 2|wa| }
That is, the number of b’s in w is twice that of the a’s
You will need to provide an inductive proof in both directions

184184© UCF EECS

Non-Closure
• Intersection ({ anbncn | n≥0 } is not a CFL)

{ anbncn | n≥0 } =
{ anbncm | n,m≥0 } ∩ { ambncn | n,m≥0 }
Both of the above are CFLs

• Complement
If closed under complement then would be
closed under Intersection as
A ∩ B = ~(~A ∪ ~B)

4/7/19 185© UCF EECS

Max and Min of CFL
• Consider the two operations on languages max and min, where

– max(L) = { x | x ∈ L and, for no non-null y does xy ∈ L } and
– min(L) = { x | x ∈ L and, for no proper prefix of x, y, does y ∈ L }

• Describe the languages produced by max and min. for each of :
– L1 = { ai bj ck | k ≤ i or k ≤ j } CFL

• max(L1) = { ai bj ck | k =max(i, j) } Non-CFL
• min(L1) = { λ } (string of length 0) Regular

– L2 = { ai bj ck | k > i or k > j } CFL
• max(L2) = { } (empty) Regular
• min(L2) = { ai bj ck | k =min(i, j)+1 } Non-CFL

• max(L1) shows CFL not closed under max
• min(L2) shows CFL not closed under min

4/7/19 186© UCF EECS

Complement of ww
• Let L = { ww | w ∈ {a,b}+ }. L is not a CFL
• Consider L’s complement, it must be of form xayx’by’ or xbyx’ay’,

where |x|=|x’| and |y|=|y’|
• The above reflects that this language has one “transcription error”
• This seems really hard to write a CFG but it’s all a matter of how you

view it
• We don’t care about what precedes or follows the errors so long as

the lengths are right
• Thus, we can view above as xax’yby’ or xbx’y’ay’,

where |x|=|x’| and |y|=|y’|
• The grammar for this has rules

S � AB | BA ; A � XAX | a ; B � XBX | b
X � a | b

4/7/19 187© UCF EECS

Solvable CFL Problems
• Let L be an arbitrary CFL generated by CFG G

with start symbol S then the following are all
decidable
– Is w in L? Run CKY

If S in final cell then w∈L
– Is L empty (non-empty)? Reduce G

If no rules left then empty
– Is L finite (infinite)? Reduce G

Run DFS(S)
If no loops then finite

4/7/19 188© UCF EECS

Formalization of PDA
• A = (Q, Σ, Γ, δ, q0, Z0, F)
• Q is finite set of states
• Σ is finite input alphabet
• Γ is finite set of stack symbols
• δ : Q�Σe�Γe → 2Q�Γ* is transition function

– Note: Can limit stack push to Γe but it’s equivalent!!
• Z0 ∈ Γ is an optional initial symbol on stack
• F ⊆ Q is final set of states and can be omitted

for some notions of a PDA
4/7/19 189© UCF EECS

Notion of ID for PDA
• An instantaneous description for a PDA is

[q, w, γ] where
– q is current state
– w is remaining input
– γ is contents of stack (leftmost symbol is top)

• Single step derivation is defined by
– [q,ax,Zα] |— [p,x,βα] if δ(q,a,Z) contains (p,β)

• Multistep derivation (|—*) is reflexive transitive
closure of single step.

4/7/19 190© UCF EECS

Language Recognized by PDA
• Given A = (Q, Σ, Γ, δ, q0, Z0, F)

there are three senses of recognition
• By final state

L(A) = {w|[q0,w,Z0] |—* [f,λ,β]}, where f∈F
• By empty stack

N(A) = {w|[q0,w,Z0] |—* [q,λ,λ]}
• By empty stack and final state

E(A) = {w|[q0,w,Z0] |—* [f,λ,λ]}, where f∈F

4/7/19 191© UCF EECS

Top Down Parsing by PDA
• Given G = (V, Σ, R, S), define

A = ({q}, Σ, Σ∪V, δ, q, S, ϕ)
• δ(q,a,a) = {(q,λ)} for all a ∈ Σ
• δ(q,λ,A) = {(q,α) | A → α ∈ R (guess) }
• N(A) = L(G)

• Give just one state, this is essentially
stateless, except for stack

4/7/19 192© UCF EECS

Top Down Parsing by PDA
E à E + T | T
T à T * F | F
F à (E) | Int
•δ(q,+,+) = {(q,λ)}, δ(q,*,*) = {(q,λ)},
•δ(q,Int,Int) = {(q,λ)},
•δ(q,(,() = {(q,λ)}, δ(q,),)) = {(q,λ)}
•δ(q,λ,E) = {(q,E+T), (q,T)}
•δ(q,λ,T) = {(q,T*F), (q,F)}
•δ(q,λ,F) = {(q,(E)), (q,Int)}
4/7/19 193© UCF EECS

Bottom Up Parsing by PDA
• Given G = (V, Σ, R, S), define

A = ({q,f}, Σ, Σ∪V∪{$}, δ, q, $, {f})
• δ(q,a,λ) = {(q,a)} for all a ∈ Σ , SHIFT
• δ(q,λ,αR) ⊇ {(q,A)} if A → α ∈ R, REDUCE

Cheat: looking at more than top of stack
• δ(q,λ,S) ⊇ {(f,λ)}
• δ(f,λ,$) = {(f,λ)} , ACCEPT
• E(A) = L(G)
• Could also do δ(q,λ,S$)⊇{(q,λ)}, N(A) = L(G)
4/7/19 194© UCF EECS

Bottom Up Parsing by PDA
E à E + T | T
T à T * F | F
F à (E) | Int
•δ(q,+,λ)={(q,+)}, δ(q,*,λ)={(q,*)}, δ(q,Int,λ)={(q,Int)},
δ(q,(,λ)={(q,()}, δ(q,),λ)={(q,))}
•δ(q,λ,T+E) = {(q,E)}, δ(q,λ,T) ⊇ {(q,E)}
•δ(q,λ,F*T) ⊇ {(q,T)}, δ(q,λ,F) ⊇ {(q,T)}
•δ(q,λ,)E() ⊇ {(q,F)}, δ(q,λ,Int) ⊇ {(q,F)}
•δ(q,λ,E) ⊇ {(f,λ)}
•δ(f,λ,$) = {(f,λ)}
•E(A) = L(G)
4/7/19 195© UCF EECS

Challenge
• Use the two recognizers on some sets of

expressions like
– 5 + 7 * 2
– 5 * 7 + 2
– (5 + 7) * 2

4/7/19 196© UCF EECS

Converting a PDA to CFG
• Book has one approach; here is another

• Let A = (Q, S, G, d, q0, Z, F) accept L by empty stack and final state

• Define A’ = (QÈ{q0’,f}, S, GÈ{$}, d’, q0’, $, {f}) where
– d’(q0’, λ, $) = {(q0, PUSH(Z)) or in normal notation {(q0, Z$)}

– d’ does what d does but only uses PUSH and POP instructions, always reading top of stack
Note1: we need to consider using the $ for cases of the original machine looking at empty
stack, when using λ for stack check. This guarantees we have top of stack until very end.
Note2: If original adds stuff to stack, we do pop, followed by a bunch of pushes.

– We add (f, λ) = (f, POP) to d’(qf, λ, $) whenever qf is in F, so we jump to a fixed final state.

• Now, wlog, we can assume our PDA uses only POP and PUSH, has just
one final state and accepts by empty stack and final state. We will assume
the original machine is of this form and that its bottom of stack is $.

• Define G = (V, S, R, S) where

– V = {S} È { <q, X, p> | q,p Î Q, X Î G }

– R on next page

4/7/19 197© UCF EECS

Rules for PDA to CFG
• R contains rules as follows:

S ® <q0,$,f> where F = {f}
meaning: want to generate w whenever
[q0,w,$] |¾*[f,λ,λ]

• Remaining rules are:
<q,X,p> ® a<s,Y,t><t,X,p>
whenever d(q,a,X) ⊇ {(s,PUSH(Y))}
<q,X,p> ® a
whenever d(q,a,X) ⊇ {(p,POP)}

• Want <q,X,p>Þ*w when [q,w,X] |¾*[p,λ,λ]
4/7/19 198© UCF EECS

Greibach Normal Form
• Each rule of a GNF is constrained to be of form:

A → aa, A ∈ V, a ∈ Σ, a ∈ V*
• If the language contains l then we allow

S → l
and constrain S to not be on right hand side of any rule

• The beauty of this form is that, in a bottom up parse,
every step consumes an input character and so parse is
linear (if we guess right)

• We will not show details of conversion but it is
dependent on starting in CNF and then removing left
recursion, both of which we have already shown

4/7/19 199© UCF EECS

Closure Properties

Context Free Languages

Intersection with Regular
• CFLs are closed under intersection with Regular sets

– To show this we use the equivalence of CFGs generative power with the
recognition power of PDAs.

– Let A0 = (Q0, S, G, d0, q0, $, F0) be an arbitrary PDA
– Let A1 = (Q1, S, d1, q1, F1) be an arbitrary DFA
– Define A2 = (Q0 ´ Q1, S, G, d2, <q0,q1> $, F0 ´ F1) where

• d2(<q,s>, a, X) ⊇ {(<q�,s�>, a)}, aÎSÈ{l}, XÎG iff
d0(q, a, X) ⊇ {(q�, a)} and
d1(s,a) = s� (if a=l then s� = s).

– Using the definition of derivations we see that
[<q0,q1>, w, $] |¾* [<t,s>, l, b] in A2 iff
[q0, w, $] |¾* [t, l, b] in A0 and
[q1, w] |¾* [s, l] in A1

But then wÎF(A2) iff tÎF0 and sÎF1 iff wÎF(A0) and wÎF(A1)

4/7/19 201© UCF EECS

Substitution
• CFLs are closed under CFL substitution

– Let G=(V,S,R,S) be a CFG.
– Let f be a substitution over S such that

• f(a) = La for a Î S
• Ga = (Va,Sa,Ra,Sa) is a CFG that produces La.
• No symbol appears in more than one of V or any Va

– Define Gf = (V ÈaÎSVa, ÈaÎSSa, R� ÈaÎSRa, S)
• R� = { A ® g(a) where A ® a is in R }
• g: (VÈS)* ® (V ÈaÎSSa)*
• g(l) = l; g(B) = B, B Î V; g(a) = Sa, a Î S
• g(aX) = g(a) g(X), |a| > 0, X Î VÈS

– Claim, f(L(G)) = L(Gf), and so CFLs closed under
substitution and homomorphism.

4/7/19 202© UCF EECS

More on Substitution
• Consider G�f. If we limit derivations to the rules R� = { A ® g(a)

where A ® a is in R } and consider only sentential forms over the
ÈaÎSSa , then S Þ* Sa1 Sa2 … San in G� iff S Þ* a1 a2 … an
iff a1 a2 … an Î L(G). But, then w Î L(G) iff f(w) Î L(Gf) and, thus,
f(L(G)) = L(Gf).

• Given that CFLs are closed under intersection, substitution,
homomorphism and intersection with regular sets, we can recast
previous proofs to show that CFLs are closed under
– Prefix, Suffix, Substring, Quotient with Regular Sets

• Later we will show that CFLs are not closed under Quotient with
CFLs.

4/7/19 203© UCF EECS

Context Sensitive

Context Sensitive Grammar
G = (V, S, R, S) is a PSG where
Each member of R is a rule whose right side is no shorter than its left
side.
The essential idea is that rules are length preserving, although we do
allow S ® λ so long as S never appears on the right hand side of any
rule.
A context sensitive grammar is denoted as a CSG and the language
generated is a Context Sensitive Language (CSL).
The recognizer for a CSL is a Linear Bounded Automaton (LBA), a form
of Turing Machine (soon to be discussed), but with the constraint that it
is limited to moving along a tape that contains just the input surrounded
by a start and end symbol.

4/7/19 205© UCF EECS

CSG Example#1
L = { anbncn | n>0 }
G = ({A,B,C}, {a,b,c}, R, A) where R is
A → aBbc | abc
B → aBbC | abC
Note: A ⇒ aBbc ⇒n an+1(bC)n bc // n>0
Cb → bC // Shuttle C over to a c
Cc → cc // Change C to a c
Note: an+1(bC)n bc ⇒* an+1bn+1cn+1

Thus, A ⇒* anbncn , n>0

4/7/19 206© UCF EECS

CSG Example#2
L = { ww | w ∈{0,1}+ }
G = ({S,A,X,Z,<0>,<1>}, {0,1}, R, S) where R is
S → 00 | 11 | 0A<0> | aA<1> | 1A<1>
A → 0AZ | 1AX | 0Z | 1X
Z0 → 0Z Z1 → 1Z // Shuttle Z (for owe zero)
X0 → 0X X1 → 1X // Shuttle X (for owe one)
Z<0> → 0<0> Z<1> → 1<0> // New 0 must be on rhs of old 0/1’s
X<0> → 0<1> X<1> → 1<1> // New 1 must be on rhs of old 0/1’s
<0> → 0 // Guess we are done
<1> → 1 // Guess we are done

4/7/19 207© UCF EECS

Phrase Structured Grammar
We previously defined PSGs. The language generated by a
PSG is a Phrase Structured Language (PSL) but is more
commonly called a recursively enumerable (re) language.
The reason for this will become evident a bit later in the
course.

The recognizer for a PSL (re language) is a Turing
Machine, a model of computation we will soon discuss.

4/7/19 208© UCF EECS

HISTORY

The Quest for Mechanizing
Mathematics

4/7/19 © UCF EECS 210

Hilbert, Russell and Whitehead

• Until 1800’s there were no formal systems to
reason about mathematical properties

• Major advances in late 1800’s/early 1900’s
• Axiomatic schemes

– Axioms plus sound rules of inference
– Much of focus on number theory

• First Order Predicate Calculus
– "x$y [y > x]

• Second Order (Peano’s Axiom)
– "P [[P(0) && "x[P(x) ÞP(x+1)]] Þ "xP(x)]

210

4/7/19 © UCF EECS 211

Hilbert
• In 1900 declared there were 23 really

important problems in mathematics.
• Belief was that the solutions to these

would help address math’s complexity.
• Hilbert’s Tenth asks for an algorithm to

find the integral zeros of polynomial
equations with integral coefficients. This is
now known to be impossible (In 1972,
Matiyacevič showed this undecidable).

211

4/7/19 © UCF EECS 212

Hilbert’s Belief
• All mathematics could be developed within

a formal system that allowed the
mechanical creation and checking of
proofs.

212

4/7/19 © UCF EECS 213

Gödel
• In 1931 he showed that any first order theory

that embeds elementary arithmetic is either

incomplete or inconsistent.

• He did this by showing that such a first order

theory cannot reason about itself. That is, there

is a first order expressible proposition that

cannot be either proved or disproved, or the

theory is inconsistent (some proposition and its

complement are both provable).

• Gödel also developed the general notion of

recursive functions but made no claims about

their strength.

213

4/7/19 © UCF EECS 214

Turing (Post, Church, Kleene)
• In 1936, each presented a formalism for computability.

– Turing and Post devised abstract machines and
claimed these represented all mechanically
computable functions.

– Church developed the notion of lambda-computability
from recursive functions (as previously defined by
Gödel and Kleene) and claimed completeness for this
model.

• Kleene demonstrated the computational equivalence of
recursively defined functions to Post-Turing machines.

• Church’s notation was the lambda calculus, which later
gave birth to Lisp.

214

4/7/19 © UCF EECS 215

More on Emil Post
• In the 1920’s, starting with notation developed by Frege and

others in 1880s, Post devised the truth table form we all use

now for Boolean expressions (propositional logic). This was a

part of his PhD thesis in which he showed the axiomatic

completeness of the propositional calculus (all tautologies can

be deduced from a finite set of tautologies and a finite set of

rules of inference).

• In the late 1930’s and the 1940’s, Post devised symbol

manipulation systems in the form of rewriting rules

(precursors to Chomsky’s grammars). He showed their

equivalence to Turing machines.

• In 1940s, Post showed the complexity (undecidability) of

determining what is derivable from an arbitrary set of

propositional axioms.

215

Computability
The study of what can/cannot be

done via purely mechanical
means

Basic Definitions
The Preliminaries

4/7/19 218

Goals of Computability
• Provide precise characterizations (computational

models) of the class of effective procedures / algorithms.
• Study the boundaries between complete and incomplete

models of computation.
• Study the properties of classes of solvable and

unsolvable problems.
• Solve or prove unsolvable open problems.
• Determine reducibility and equivalence relations among

unsolvable problems.
• Our added goal is to apply these techniques and results

across multiple areas of Computer Science.

218© UCF EECS

4/7/19 219

Effective Procedure
• A process whose execution is clearly specified to the

smallest detail
• Such procedures have, among other properties, the

following:
– Processes must be finitely describable and the language used to

describe them must be over a finite alphabet.
– The current state of the machine model must be finitely

presentable.
– Given the current state, the choice of actions (steps) to move to

the next state must be easily determinable from the procedure�s
description.

– Each action (step) of the process must be capable of being
carried out in a finite amount of time.

– The semantics associated with each step must be clear and
unambiguous.

219© UCF EECS

4/7/19 220

Algorithm
• An effective procedure that halts on all

input
• The key term here is �halts on all input�
• By contrast, an effective procedure may

halt on all, none or some of its input.
• The domain of an algorithm is its entire

domain of possible inputs.

220© UCF EECS

4/7/19 221

Sets and Decision Problems
• Set -- A collection of atoms from some

universe U. Ø denotes the empty set.
• (Decision) Problem -- A set of questions,

each of which has answer “yes” or “no”.

221© UCF EECS

4/7/19 222

Categorizing Problems (Sets)
• Solvable or Decidable -- A problem P is said to

be solvable (decidable) if there exists an
algorithm F which, when applied to a question q
in P, produces the correct answer (�yes� or
�no�).

• Solved -- A problem P is said to solved if P is
solvable and we have produced its solution.

• Unsolved, Unsolvable (Undecidable) --
Complements of above

222© UCF EECS

4/7/19 223

Categorizing Problems (Sets) # 2
• Recursively enumerable -- A set S is recursively

enumerable (re) if S is empty (S = Ø) or there exists an
algorithm F, over the natural numbers N, whose range is
exactly S. A problem is said to be re if the set
associated with it is re.

• Semi-Decidable -- A problem is said to be semi-
decidable if there is an effective procedure F which,
when applied to a question q in P, produces the answer
�yes� if and only if q has answer �yes�. F need not halt
if q has answer �no�.

• Semi-decidable is the same as the notion of
recognizable used in the text.

223© UCF EECS

4/7/19 224

Immediate Implications
• P solved implies P solvable implies P

semi-decidable (re, recognizable).
• P non-re implies P unsolvable implies P

unsolved.
• P finite implies P solvable.

224© UCF EECS

Slightly Harder Implications
• P enumerable iff P semi-decidable.
• P solvable iff both SP and (U — SP) are re

(semi-decidable).

• We will prove these later.

4/7/19 225© UCF EECS

4/7/19 226

Existence of Undecidables
• A counting argument

– The number of mappings from N to N is at least as
great as the number of subsets of N. But the number
of subsets of N is uncountably infinite (À1). However,
the number of programs in any model of computation
is countably infinite (À0). This latter statement is a
consequence of the fact that the descriptions must be
finite and they must be written in a language with a
finite alphabet. In fact, not only is the number of
programs countable, it is also effectively enumerable;
moreover, its membership is decidable.

• A diagonalization argument
– Will be shown later in class

226© UCF EECS

Hilbert�s Tenth

Diophantine Equations are
Unsolvable

One Variable Diophantine
Equations are Solvable

4/7/19 228

Hilbert�s 10th

• In 1900 declared there were 23 really important
problems in mathematics.

• Belief was that the solutions to these would help
address math’s complexity.

• Hilbert’s Tenth asks for an algorithm to find the
integral roots of polynomials with integral
coefficients. For example
6x3yz2 + 3xy2 – x3 – 10 = 0 has roots
x = 5; y = 3; z = 0

• This is now known to be impossible (In 1970,
Matiyacevič showed this undecidable).

228© UCF EECS

4/7/19 229

Hilbert�s 10th is Semi-Decidable

• Consider over one variable: P(x) = 0
• Can semi-decide by plugging in

0, 1, -1, 2, -2, 3, -3, …
• This terminates and says �yes� if P(x)

evaluates to 0, eventually. Unfortunately, it
never terminates if there is no x such that
P(x) =0.

• Can easily extend to P(x1,x2,..,xk) = 0.

229© UCF EECS

4/7/19 230

P(x) = 0 is Decidable

• cn xn + cn-1 xn-1 +… + c1 x + c0 = 0
• xn = -(cn-1 xn-1 + … + c1 x + c0)/cn

• |xn| £ cmax(|xn-1| + … + |x| + 1|)/|cn|
• |xn| £ cmax(n |xn-1|)/|cn|, since |x|³1
• |x| £ n´cmax/|cn|

230© UCF EECS

4/7/19 231

P(x) = 0 is Decidable
• Can bound the search to values of x in range [�

n * (cmax / cn)], where
n = highest order exponent in polynomial
cmax = largest absolute value coefficient
cn = coefficient of highest order term

• Once we have a search bound and we are
dealing with a countable set, we have an
algorithm to decide if there is an x.

• Cannot find bound when more than one
variable, so cannot extend to P(x1,x2,..,xk) = 0.

231© UCF EECS

Undecidability

We Can’t Do It All

Classic Unsolvable Problem
Given an arbitrary program P, in some language L, and
an input x to P, will P eventually stop when run with input
x?
The above problem is called the “Halting Problem.” It is
clearly an important and practical one – wouldn't it be
nice to not be embarrassed by having your program run
“forever” when you try to do a demo?
Unfortunately, there’s a fly in the ointment as one can
prove that no algorithm can be written in L that solves
the halting problem for L.

4/7/19 233© UCF EECS

Some terminology
We will say that a procedure, f, converges on input x if it eventually
halts when it receives x as input. We denote this as f(x)¯.

We will say that a procedure, f, diverges on input x if it never halts
when it receives x as input. We denote this as f(x)­.

Of course, if f(x)¯ then f defines a value for x. In fact we also say
that f(x) is defined if f(x)¯ and undefined if f(x)­.

Finally, we define the domain of f as {x | f(x)¯}.
The range of f is {y | f(x)¯ and f(x) = y }.

4/7/19 234© UCF EECS

4/7/19 © UCF EECS 235

Halting Problem
Assume we can decide the halting problem. Then there exists some total

function Halt such that

1 if jx (y) ¯
Halt(x,y) =

0 if jx (y) ­
Here, we have numbered all programs and jx refers to the x-th program in

this ordering. Now we can view Halt as a mapping from À into À by

treating its input as a single number representing the pairing of two numbers

via the one-one onto function

pair(x,y) = <x,y> = 2x (2y + 1) – 1

with inverses

<z>1 = log2(z+1)

<z>2 = (((z + 1) // 2 <z>1) – 1) // 2

4/7/19 © UCF EECS 236

The Contradiction
Now if Halt exist, then so does Disagree, where

0 if Halt(x,x) = 0, i.e, if jx (x) ­
Disagree(x) =

µy (y == y+1) if Halt(x,x) = 1, i.e, if jx (x) ¯

Since Disagree is a program from À into À , Disagree can be
reasoned about by Halt. Let d be such that Disagree = jd, then
Disagree(d) is defined Û Halt(d,d) = 0

Û jd (d) ­
Û Disagree(d) is undefined
But this means that Disagree contradicts its own existence. Since
every step we took was constructive, except for the original
assumption, we must presume that the original assumption was in
error. Thus, the Halting Problem is not solvable.

Halting is recognizable
While the Halting Problem is not solvable, it is re, recognizable or
semi-decidable.
To see this, consider the following semi-decision procedure. Let P
be an arbitrary procedure and let x be an arbitrary natural number.
Run the procedure P on input x until it stops. If it stops, say “yes.” If
P does not stop, we will provide no answer. This semi-decides the
Halting Problem. Here is a procedural description.

Semi_Decide_Halting() {
Read P, x;
P(x);
Print “yes”;

}

4/7/19 237© UCF EECS

Why not just algorithms?
A question that might come to mind is why we could not just have a
model of computation that involves only programs that halt for all
input. Assume you have such a model – our claim is that this model
must be incomplete!

Here’s the logic. Any programming language needs to have an
associated grammar that can be used to generate all legitimate
programs. By ordering the rules of the grammar in a way that
generates programs in some lexical or syntactic order, we have a
means to recursively enumerate the set of all programs. Thus, the
set of procedures (programs) is re. using this fact, we will employ
the notation that jx is the x-th procedure and jx(y) is the x-th
procedure with input y. We also refer to x as the procedure’s index.

4/7/19 238© UCF EECS

The universal machine
First, we can all agree that any complete model of
computation must be able to simulate programs in its
own language. We refer to such a simulator (interpreter)
as the Universal machine, denote Univ. This program
gets two inputs. The first is a description of the program
to be simulated and the second of the input to that
program. Since the set of programs in a model is re, we
will assume both arguments are natural numbers; the
first being the index of the program. Thus,

Univ(x,y) = jx(y)

4/7/19 239© UCF EECS

4/7/19 © UCF EECS 240

Non-re Problems
• There are even “practical” problems that are worse than

unsolvable -- they’re not even semi-decidable.

• The classic non-re problem is the Uniform Halting
Problem, that is, the problem to decide of an arbitrary

effective procedure P, whether or not P is an algorithm.

• Assume that the algorithms can be enumerated, and that

F accomplishes this. Then

F(x) = Fx

where F0, F1, F2, … is a list of indexes of all and only the

algorithms

4/7/19 © UCF EECS 241

The Contradiction
• Define G(x) = Univ (F(x) , x) + 1 = jF(x)(x) = Fx(x) + 1

• But then G is itself an algorithm. Assume it is the g-th one

F(g) = Fg = G

Then, G(g) = Fg(g) + 1 = G(g) + 1

• But then G contradicts its own existence since G would need to be
an algorithm.

• This cannot be used to show that the effective procedures are non-
enumerable, since the above is not a contradiction when G(g) is
undefined. In fact, we already have shown how to enumerate the
(partial) recursive functions.

Consequences
• To capture all the algorithms, any model of computation

must include some procedures that are not algorithms.

• Since the potential for non-termination is required, every
complete model must have some for form of iteration
that is potentially unbounded.

• This means that simple, well-behaved for-loops (the kind
where you can predict the number of iterations on entry
to the loop) are not sufficient. While type loops are
needed, even if implicit rather than explicit.

4/7/19 242© UCF EECS

Insights

Non-re nature of algorithms
• No generative system (e.g., grammar) can produce

descriptions of all and only algorithms
• No parsing system (even one that rejects by

divergence) can accept all and only algorithms

• Of course, if you buy Church’s Theorem, the set of all
procedures can be generated. In fact, we can build an
algorithmic acceptor of such programs.

4/7/19 244© UCF EECS

Many unbounded ways
• How do you achieve divergence, i.e., what are the

various means of unbounded computation in each of
our models?

• GOTO: Turing Machines and Register Machines
• Minimization: Recursive Functions

– Why not just simple finite iteration or recursion?
• Fixed Point: Ordered Petri Nets,

(Ordered) Factor Replacement Systems

4/7/19 245© UCF EECS

Non-determinism
• It sometimes doesn’t matter

– Turing Machines, Finite State Automata,
Linear Bounded Automata

• It sometimes helps
– Push Down Automata

• It sometimes hinders
– Factor Replacement Systems, Petri Nets

4/7/19 246© UCF EECS

Models of Computation

Turing Machines
Register Machines

Factor Replacement Systems
Recursive Functions

Turing Machines

1st Model
A Linear Memory Machine

Typical Textbook Description
• A Turing machine is a 7-tuple

(Q, Σ, Γ, δ, q0, qaccept, qreject)
• Q is finite set of states
• Σ, is a finite input alphabet not containing the

blank symbol ⊔
• Γ is finite set of tape symbols that includes Σ and
⊔ commonly Γ = Σ ∪ {⊔}

• δ: Q�Γ� Q�Γ�{R,L}
• q0 starts, qaccept accepts, qreject rejects

4/7/19 249© UCF EECS

Turing versus Post
• The Turing description just given requires you to write a new symbol

and move off the current tape square
• Post had a variant where

δ: Q�Γ� Q�(Γ∪{R,L})
• Here, you either write or move, not both
• Also, Post did not have an accept or reject state – acceptance is

giving an answer of 1; rejection is 0; this treats decision procedures
as predicates (functions that map input into {0,1})

• The way we stop our machines from running is to omit actions for
some discriminants making the transition function partial

• I tend to use Post’s notation and to create macros so machines are
easy to create

• I am not a fan of having you build Turing tables

4/7/19 250© UCF EECS

Basic Description
• We will use a simplified form that is a variant of Post’s models.
• Here, each machine is represented by a finite set of states Q,

the simple alphabet {0,1}, where 0 is the blank symbol, and
each state transition is defined by a 4-tuple of form

q a X s
where q a is the discriminant based on current state q,
scanned symbol a; X can be one of {R, L, 0, 1}, signifying
move right, move left, print 0, or 1; and s is the new state.

• Limiting the alphabet to {0,1} is not really a limitation. We can
represent a k-letter alphabet by encoding the j-th letter via j
1�s in succession. A 0 ends each letter, and two 0�s ends a
word.

• We rarely write quads. Rather, we typically will build
machines from simple forms.

4/7/19 251© UCF EECS

Base Machines
• R -- move right over any scanned symbol
• L -- move left over any scanned symbol
• 0 -- write a 0 in current scanned square
• 1 -- write a 1 in current scanned square
• We can then string these machines together with

optionally labeled arc.
• A labeled arc signifies a transition from one part of the

composite machine to another, if the scanned square�s
content matches the label. Unlabeled arcs are
unconditional. We will put machines together without
arcs, when the arcs are unlabeled.

4/7/19 252© UCF EECS

Useful Composite Machines

R 1

4/7/19 253

R -- move right to next 0 (not including current square)
…?11…10… Þ …?11…10…

L -- move left to next 0 (not including current square)
…011…1?… Þ …011…1?…

L 1

© UCF EECS

Commentary on Machines
• These machines can be used to move

over encodings of letters or encodings of
unary based natural numbers.

• In fact, any effective computation can
easily be viewed as being over natural
numbers. We can get the negative
integers by pairing two natural numbers.
The first is the sign (0 for +, 1 for -). The
second is the magnitude.

4/7/19 254© UCF EECS

Computing with TMs
A reasonably standard definition of a Turing
computation of some n-ary function F is to
assume that the machine starts with a tape
containing the n inputs, x1, … , xn in the form

…01x101x20…01xn0…
and ends with

…01x101x20…01xn01y0…
where y = F(x1, … , xn).

4/7/19 255© UCF EECS

Addition by TM
Need the copy family of useful
submachines, where Ck copies k-th
preceding value.

The add machine is then
C2 C2 L 1 R L 0

4/7/19 256

1

0

R L
k R

0 R

k k+1 1 L
k+1

1

© UCF EECS

Turing Machine Variations
• Two tracks
• N tracks
• Non-deterministic *********
• Two-dimensional
• K dimensional
• Two stack machines
• Two counter machines

4/7/19 257© UCF EECS

Register Machines

2nd Model
Feels Like Assembly Language

Register Machine Concepts
• A register machine consists of a finite length program,

each of whose instructions is chosen from a small
repertoire of simple commands.

• The instructions are labeled from 1 to m, where there are
m instructions. Termination occurs as a result of an
attempt to execute the m+1-st instruction.

• The storage medium of a register machine is a finite set
of registers, each capable of storing an arbitrary natural
number.

• Any given register machine has a finite, predetermined
number of registers, independent of its input.

4/7/19 259© UCF EECS

260

Computing by Register Machines
• A register machine partially computing some n-

ary function F typically starts with its argument
values in registers 1 to n and ends with the
result in the 0-th register.

• We extend this slightly to allow the computation
to start with values in its k+1-st through k+n-th
register, with the result appearing in the k-th
register, for any k, such that there are at least
k+n+1 registers.

4/7/19 © UCF EECS

261

Register Instructions
• Each instruction of a register machine is of

one of two forms:
INCr[i] –

increment r and jump to i.
DECr[p, z] –

if register r > 0, decrement r and jump to p
else jump to z

• Note, we do not use subscripts if obvious.

4/7/19 © UCF EECS

262

Addition by RM
Addition (r0 ¬ r1 + r2)
1. DEC0[1,2] : Zero result (r0) and work (r3) registers
2. DEC3[2,3]
3. DEC1[4,6] : Add r1 to r0, saving original r1 in r3
4. INC0[5]
5. INC3[3]
6. DEC3[7,8] : Restore r1
7. INC1[6]
8. DEC2[9,11] : Add r2 to r0, saving original r2 in r3
9. INC0[10]
10. INC3[8]
11.DEC3[12,13] : Restore r2
12. INC2[11]
13. : Halt by branching here
In many cases we just assume registers, other those with input, are zero
at start. That would remove need instructions 1 and 2.

4/7/19 © UCF EECS

COT 4210 © UCF 263

Limited Subtraction by RM
Subtraction (r0 ¬ r1 - r2, if r1≥r2; 0, otherwise)
1. DEC0[1,2] : Zero result (r0) and work (r3) registers
2. DEC3[2,3]
3. DEC1[4,6] : Add r1 to r0, saving original r1 in r3
4. INC0[5]
5. INC3[3]
6. DEC3[7,8] : Restore r1
7. INC1[6]
8. DEC2[9,11] : Subtract r2 from r0, saving original r2 in r3
9. DEC0[10,10] : Note that decrementing 0 does nothing
10. INC3[8]
11.DEC3[12,13] : Restore r2
12. INC2[11]
13. : Halt by branching here

4/7/19

Factor Replacement
Systems

3rd Model
Deceptively Simple

© UCF EECS 265

Factor Replacement Concepts
• A factor replacement system (FRS) consists of a finite

(ordered) sequence of fractions, and some starting
natural number x.

• A fraction a/b is applicable to some natural number x,
just in case x is divisible by b. We always chose the first
applicable fraction (a/b), multiplying it times x to produce
a new natural number x*a/b. The process is then
applied to this new number.

• Termination occurs when no fraction is applicable.
• A factor replacement system partially computing n-ary

function F typically starts with its argument encoded as
powers of the first n odd primes. Thus, arguments
x1,x2,…,xn are encoded as 3x15x2…pn

xn. The result
then appears as the power of the prime 2.

4/7/19

© UCF EECS 266

Addition by FRS
Addition is 3x15x2 becomes 2x1+x2

or, in more details, 203x15x2 becomes 2x1+x2 3050

2 / 3
2 / 5

Note that these systems are sometimes presented as
rewriting rules of the form

bx ® ax
meaning that a number that has can be factored as bx
can have the factor b replaced by an a.
The previous rules would then be written

3x ® 2x
5x ® 2x

4/7/19

© UCF EECS 267

Limited Subtraction by FRS
Subtraction is 3x15x2 becomes 2max(0,x1-x2)

3×5x ® x
3x ® 2x
5x ® x

4/7/19

© UCF EECS 268

Ordering of Rules
• The ordering of rules are immaterial for the

addition example but are critical to the workings
of limited subtraction.

• In fact, if we ignore the order and just allow any
applicable rule to be used, we get a form of non-
determinism that makes these systems
equivalent to Petri nets.

• The ordered kind are deterministic and are
equivalent to a Petri net in which the transitions
are prioritized.

4/7/19

© UCF EECS 269

Why Deterministic?
To see why determinism makes a difference, consider

3×5x ® x
3x ® 2x
5x ® x

Starting with 135 = 3351, deterministically we get
135 Þ 9 Þ 6 Þ 4 = 22

Non-deterministically we get a larger, less selective set.
135 Þ 9 Þ 6 Þ 4 = 22

135 Þ 90 Þ 60 Þ 40 Þ 8 = 23

135 Þ 45 Þ 3 Þ 2 = 21

135 Þ 45 Þ 15 Þ 1 = 20

135 Þ 45 Þ 15 Þ 5 Þ 1 = 20

135 Þ 45 Þ 15 Þ 3 Þ 2 = 21

135 Þ 45 Þ 9 Þ 6 Þ 4 = 22

135 Þ 90 Þ 60 Þ 40 Þ 8 = 23

…
This computes 2z where 0 ≤ z≤x1. Think about it.
4/7/19

© UCF EECS 270

More on Determinism
In general, we might get an infinite set
using non-determinism, whereas
determinism might produce a finite set. To
see this consider a system

2x ® x
2x ® 4x

starting with the number 2.

4/7/19

Sample RM and FRS
Present a Register Machine that computes IsOdd. Assume R1=x at
starts; at termination, set R0=1 if x is odd; 0 otherwise. We
assume R0=0 at start. We also are not concerned about destroying
input.
1. DEC1[2, 4]
2. DEC1[1, 3]
3. INC0[4]
4.
Present a Factor Replacement System that computes IsOdd.
Assume starting number is 3^x; at termination, result is 2=2^1 if x
is odd; 1= 2^0 otherwise.
3*3 x ® x
3 x ® 2 x

4/7/19 © UCF EECS 271

Sample FRS
Present a Factor Replacement System that computes IsPowerOf2.
Assume starting number is 3x 5; at termination, result is 2=21 if x is
a power of 2; 1= 20 otherwise
32*5 x ® 5*7 x
3*5*7 x ® x
3*5 x ® 2 x
5*7 x ® 7*11 x
7*11 x ® 3*11 x
11 x ® 5 x
5 x ® x
7 x ® x

4/7/19 © UCF EECS 272

© UCF EECS 273

Systems Related to FRS
• Petri Nets:

– Unordered

– Ordered

– Negated Arcs

• Vector Addition Systems:
– Unordered

– Ordered

• Factors with Residues:

– a x + c ® b x + d

• Finitely Presented Abelian Semi-Groups

4/7/19

© UCF EECS 274

Petri Net Operation
• Finite number of places, each of which can hold zero of more

markers.
• Finite number of transitions, each of which has a finite number of

input and output arcs, starting and ending, respectively, at places.
• A transition is enabled if all the nodes on its input arcs have at least

as many markers as arcs leading from them to this transition.
• Progress is made whenever at least one transition is enabled.

Among all enabled, one is chosen randomly to fire.
• Firing a transition removes one marker per arc from the incoming

nodes and adds one marker per arc to the outgoing nodes.

4/7/19

© UCF EECS 275

Petri Net Computation
• A Petri Net starts with some finite number of markers distributed

throughout its n nodes.
• The state of the net is a vector of n natural numbers, with the i-th

component’s number indicating the contents of the i-th node. E.g.,
<0,1,4,0,6> could be the state of a Petri Net with 5 places, the 2nd,
3rd and 5th, having 1, 4, and 6 markers, resp., and the 1st and 4th
being empty.

• Computation progresses by selecting and firing enabled transitions.
Non-determinism is typical as many transitions can be
simultaneously enabled.

• Petri nets are often used to model coordination algorithms,
especially for computer networks.

4/7/19

© UCF EECS 276

Variants of Petri Nets
• A Petri Net is not computationally complete. In fact, its halting and

word problems are decidable. However, its containment problem
(are the markings of one net contained in those of another?) is not
decidable.

• A Petri net with prioritized transitions, such that the highest priority
transitions is fired when multiple are enabled is equivalent to an
FRS. (Think about it).

• A Petri Net with negated input arcs is one where any arc with a
slash through it contributes to enabling its associated transition only
if the node is empty. These are computationally complete. They can
simulate register machines. (Think about this also).

4/7/19

© UCF EECS 277

Petri Net Example

Marker
Place
Transition
Arc

… …

4/7/19

© UCF EECS 278

Vector Addition
• Start with a finite set of vectors in integer n-space.
• Start with a single point with non-negative integral

coefficients.
• Can apply a vector only if the resultant point has non-

negative coefficients.
• Choose randomly among acceptable vectors.
• This generates the set of reachable points.
• Vector addition systems are equivalent to Petri Nets.
• If order vectors, these are equivalent to FRS.

4/7/19

© UCF EECS 279

Vectors as Resource Models
• Each component of a point in n-space

represents the quantity of a particular

resource.

• The vectors represent processes that

consume and produce resources.

• The issues are safety (do we avoid bad

states) and liveness (do we attain a

desired state).

• Issues are deadlock, starvation, etc.

4/7/19

© UCF EECS 280

Factors with Residues
• Rules are of form

– ai x + ci ® bi x + di

– There are n such rules
– Can apply if number is such that you get a residue

(remainder) ci when you divide by ai

– Take quotient x and produce a new number
bi x + di

– Can apply any applicable one (no order)
• These systems are equivalent to Register

Machines.

4/7/19

© UCF EECS 281

Abelian Semi-Group
S = (G, •) is a semi-group if

G is a set, • is a binary operator, and
1. Closure: If x,y Î G then x • y Î G
2. Associativity: x • (y • z) = (x • y) • z

S is a monoid if
3. Identity: $e Î G "x Î G [e • x = x • e = x]

S is a group if
4. Inverse: "x Î G $x-1 Î G [x-1 • x = x • x-1 = e]

S is Abelian if • is commutative

4/7/19

© UCF EECS 282

Finitely Presented
• S = (G, •), a semi-group (monoid, group), is finitely

presented if there is a finite set of symbols, S, called the
alphabet or generators, and a finite set of equalities
(ai = bi), the reflexive transitive closure of which
determines equivalence classes over G.

• Note, the set G is the closure of the generators under the
semi-group’s operator •.

• The problem of determining membership in equivalence
classes for finitely presented Abelian semi-groups is
equivalent to that of determining mutual derivability in an
unordered FRS or Vector Addition System with inverses
for each rule.

4/7/19

Recursive Functions

Primitive and µ-Recursive

Primitive Recursive

An Incomplete Model

© UCF EECS 285

Basis of PRFs
• The primitive recursive functions are defined by

starting with some base set of functions and
then expanding this set via rules that create new
primitive recursive functions from old ones.

• The base functions are:
Ca(x1,…,xn) = a : constant functions

(x1,…,xn) = xi : identity functions
: aka projection

S(x) = x+1 : an increment function

		 i
nI

4/7/19

© UCF EECS 286

Building New Functions
• Composition:

If G, H1, … , Hk are already known to be primitive
recursive, then so is F, where

F(x1,…,xn) = G(H1(x1,…,xn), … , Hk(x1,…,xn))
• Iteration (aka primitive recursion):

If G, H are already known to be primitive recursive, then
so is F, where

F(0, x1,…,xn) = G(x1,…,xn)
F(y+1, x1,…,xn) = H(y, x1,…,xn, F(y, x1,…,xn))

We also allow definitions like the above, except iterating
on y as the last, rather than first argument.

4/7/19

© UCF EECS 287

Addition & Multiplication
Example: Addition

+(0,y) = (y)
+(x+1,y) = H(x,y,+(x,y))

where H(a,b,c) = S((a,b,c))
Example: Multiplication

*(0,y) = C0(y)
(x+1,y) = H(x,y,(x,y))

where H(a,b,c) = +((a,b,c), (a,b,c))
= b+c = y + *(x,y) = (x+1)*y

		 23I

		 11I

		 3
3I

		 3
3I

4/7/19

© UCF EECS 288

Basic Arithmetic
x + 1:

x + 1 = S(x)
x – 1:

0 - 1 = 0
(x+1) - 1 = x

x + y:
x + 0 = x
x+ (y+1) = (x+y) + 1

x – y: // limited subtraction
x – 0 = x
x – (y+1) = (x–y) – 1

4/7/19

© UCF EECS 289

2nd Grade Arithmetic
x * y:

x * 0 = 0
x * (y+1) = x*y + x

x!:
0! = 1
(x+1)! = (x+1) * x!

4/7/19

© UCF EECS 290

Basic Relations
x == 0:

0 == 0 = 1
(y+1) == 0 = 0

x == y:
x==y = ((x – y) + (y – x)) == 0

x ≤y :
x≤y = (x – y) == 0

x ≥ y:
x≥y = y≤x

x > y :
x>y = ~(x≤y) /* See ~ on next page */

x < y :
x<y = ~(x≥y)

4/7/19

© UCF EECS 291

Basic Boolean Operations
~x:

~x = 1 – x or (x==0)

signum(x): 1 if x>0; 0 if x==0
~(x==0)

x && y:
x&&y = signum(x*y)

x || y:
x||y = ~((x==0) && (y==0))

4/7/19

© UCF EECS 292

Definition by Cases
One case

g(x) if P(x)
f(x) =

h(x) otherwise
f(x) = P(x) * g(x) + (1-P(x)) * h(x)

Can use induction to prove this is true for all k>0, where
g1(x) if P1(x)
g2(x) if P2(x) && ~P1(x)

f(x) = …
gk(x) if Pk(x) && ~(P1(x) || … || ~Pk-1(x))
h(x) otherwise

4/7/19

© UCF EECS 293

Bounded Minimization 1
f(x) = µ z (z ≤ x) [P(z)] if $ such a z,

= x+1, otherwise
where P(z) is primitive recursive.

Can show f is primitive recursive by
f(0) = 1-P(0)
f(x+1) = f(x) if f(x) ≤ x

= x+2-P(x+1) otherwise

4/7/19

© UCF EECS 294

Bounded Minimization 2
f(x) = µ z (z < x) [P(z)] if $ such a z,

= x, otherwise
where P(z) is primitive recursive.

Can show f is primitive recursive by
f(0) = 0
f(x+1) = µ z (z ≤ x) [P(z)]

4/7/19

© UCF EECS 295

Intermediate Arithmetic
x // y:

x//0 = 0 : silly, but want a value
x//(y+1) = µ z (z<x) [(z+1)*(y+1) > x]

x | y: x is a divisor of y
x|y = ((y//x) * x) == y

4/7/19

© UCF EECS 296

Primality
firstFactor(x): first non-zero, non-one factor of x.

firstfactor(x) = µ z (2 ≤ z ≤ x) [z|x] ,
0 if none

isPrime(x):
isPrime(x) = firstFactor(x) == x && (x>1)

prime(i) = i-th prime:
prime(0) = 2
prime(x+1) = µ z(prime(x)< z ≤prime(x)!+1)[isPrime(z)]

We will abbreviate this as pi for prime(i)

4/7/19

© UCF EECS 297

Exponents
x^y:

x^0 = 1
x^(y+1) = x * x^y

exp(x,i): the exponent of pi in number x.
exp(x,i) = µ z (z<x) [~(pi^(z+1) | x)]

4/7/19

© UCF EECS 298

Pairing Functions
• pair(x,y) = <x,y> = 2x (2y + 1) – 1

• with inverses
<z>1 = exp(z+1,0)

<z>2 = (((z + 1) // 2 <z>1) – 1) // 2
• These are very useful and can be extended to

encode n-tuples
<x,y,z> = <x, <y,z> > (note: stack analogy)

4/7/19

Pairing Function is 1-1 Onto
Prove that the pairing function <x,y> = 2^x (2y + 1) - 1
is 1-1 onto the natural numbers.
Approach 1:
We will look at two cases, where we use the following
modification of the pairing function, <x,y>+1, which implies
the problem of mapping the pairing function to Z+.

4/7/19 © UCF EECS 299

Case 1 (x=0)
Case 1:
For x = 0, <0,y>+1 = 20(2y+1) = 2y+1. But every odd
number is by definition one of the form 2y+1, where y≥0;
moreover, a particular value of y is uniquely associated
with each such odd number and no odd number is
produced when x=0. Thus, <0,y>+1 is 1-1 onto the odd
natural numbers.

4/7/19 © UCF EECS 300

Case 2 (x > 0)
Case 2:
For x > 0, <x,y>+1 = 2x(2y+1), where 2y+1 ranges over all odd number
and is uniquely associated with one based on the value of y (we saw
that in case 1). 2x must be even, since it has a factor of 2 and hence
2x(2y+1) is also even. Moreover, from elementary number theory, we
know that every even number except zero is of the form 2xz, where
x>0, z is an odd number and this pair x,y is unique. Thus, <x,y>+1 is 1-
1 onto the even natural numbers, when x>0.

The above shows that <x,y>+1 is 1-1 onto Z+, but then <x,y> is 1-1 onto
À, as was desired.

4/7/19 © UCF EECS 301

Pairing Function is 1-1 Onto
Approach 2:
Another approach to show a function f over S is
1-1 onto T is to show that
f -1(f(x)) = x, for arbitrary xÎS and that
f (f-1 (z)) = z, for arbitrary zÎT.

Thus, we need to show that
(<x,y>1,<x,y>2) = (x,y) for arbitrary (x,y)ÎÀ´À and
<<z>1,<z>2> = z for arbitrary zÎÀ.

4/7/19 © UCF EECS 302

Alternate Proof
Let x,y be arbitrary natural number, then <x,y> = 2x(2y+1)-1.
Moreover, <2x(2y+1)-1>1 = Factor(2x(2y+1),0) = x, since 2y+1 must be
odd, and
<2x(2y+1)-1>2 = ((2x(2y+1)/2^Factor(2x(2y+1),0))-1)/2 = 2y/2 = y.
Thus, (<x,y>1,<x,y>2) = (x,y), as was desired.
Let z be an arbitrary natural number, then the inverse of the pairing is
(<z>1,<z>2)
Moreover, <<z>1,<z>2> = 2^<z>1 *(2<z>2+1)-1
= 2^Factor(z+1,0)*(2*((z+1)/ 2^Factor(z+1,0))/2-1+1)-1
= 2^Factor(z+1,0)*((z+1)/ 2^Factor(z+1,0))-1
= (z+1) – 1
= z, as was desired.

4/7/19 © UCF EECS 303

Application of Pairing
Show that prfs are closed under Fibonacci induction. Fibonacci
induction means that each induction step after calculating the
base is computed using the previous two values, where the
previous values for f(1) are f(0) and 0; and for x>1, f(x) is based on
f(x-1) and f(x-2).

The formal hypothesis is:
Assume g and h are already known to be prf, then so is f, where
f(0,x) = g(x);
f(1,x) = h(f(0,x), 0); and
f(y+2,x) = h(f(y+1,x), f(y,x))

Proof is by construction

4/7/19 © UCF EECS 304

Fibonacci Recursion
Let K be the following primitive recursive function, defined by induction
on the primitive recursive functions, g, h, and the pairing function.
K(0,x) = B(x)
B(x) = < g(x), C0(x) > // this is just <g(x), 0>
K(y+1, x) = J(y, x, K(y,x))
J(y,x,z) = < h(<z>1, <z>2), <z>1 >
// this is < f(y+1,x), f(y,x)>, even though f is not yet shown to be prf!!
This shows K is prf.

f is then defined from K as follows:
f(y,x) = <K(y,x)>1 // extract first value from pair encoded in K(y,x)
This shows it is also a prf, as was desired.

4/7/19 © UCF EECS 305

µ Recursive

4th Model
A Simple Extension to Primitive

Recursive

© UCF EECS 307

µ Recursive Concepts
• All primitive recursive functions are algorithms

since the only iterator is bounded. That’s a clear
limitation.

• There are algorithms like Ackerman’s function
that cannot be represented by the class of
primitive recursive functions.

• The class of recursive functions adds one more
iterator, the minimization operator (µ), read “the
least value such that.”

4/7/19

© UCF EECS 308

Ackermann’s Function
• A(1, j)=2j for j ≥ 1
• A(i, 1)=A(i-1, 2) for i ≥ 2
• A(i, j)=A(i-1, A(i, j-1)) for i, j ≥ 2
• Wilhelm Ackermann observed in 1928 that this is not a

primitive recursive function.

• Ackermann’s function grows too fast to have a for-loop
implementation.

• The inverse of Ackermann’s function is important to
analyze Union/Find algorithm. Note: A(4,4) is
a supper exponential number involving six levels of
exponentiation. a(n) = A-1(n, n) grows so slowly that it is
less than 5 for any value of n that can be written.

4/7/19

© UCF EECS 309

Union/Find
• Start with a collection S of unrelated elements –

singleton equivalence classes
• Union(x,y), x and y are in S, merges the class

containing x ([x]) with that containing y ([y])
• Find(x) returns the canonical element of [x]
• Can see if xºy, by seeing if Find(x)==Find(y)
• How do we represent the classes?

4/7/19

© UCF EECS 310

The µ Operator
• Minimization:

If G is already known to be recursive, then

so is F, where

F(x1,…,xn) = µy (G(y,x1,…,xn) == 1)
• We also allow other predicates besides

testing for one. In fact any predicate that

is recursive can be used as the stopping

condition.

4/7/19

Equivalence of Models

Equivalency of computation by
Turing machines,
register machines,

factor replacement systems,
recursive functions

© UCF EECS 312

Proving Equivalence
• Constructions do not, by themselves,

prove equivalence.
• To do so, we need to develop a notion of

an “instantaneous description” (id) of each
model of computation (well, almost as
recursive functions are a bit different).

• We then show a mapping of id’s between
the models.

4/7/19

© UCF EECS 313

Instantaneous Descriptions
• An instantaneous description (id) is a finite description of

a state achievable by a computational machine, M.
• Each machine starts in some initial id, id0.
• The semantics of the instructions of M define a relation
ÞM such that, idi ÞM idi+1, i³0, if the execution of a
single instruction of M would alter M’s state from idi to
idi+1 or if M halts in state idi and idi+1=idi.

• Þ+
M is the transitive closure of ÞM

• Þ*M is the reflexive transitive closure of ÞM

4/7/19

© UCF EECS 314

id Definitions
• For a register machine, M, an id is an s+1 tuple of the form

(i, r1,…,rs)M specifying the number of the next instruction to be
executed and the values of all registers prior to its execution.

• For a factor replacement system, an id is just a natural number.
• For a Turing machine, M, an id is some finite representation of the

tape, the position of the read/write head and the current state. This
is usually represented as a string aqxb, where a (b) is the shortest
string representing all non-blank squares to the left (right) of the
scanned square, x is the symbol at the scanned square and q is the
current state.

• Recursive functions do not have id’s, so we will handle their
simulation by an inductive argument, using the primitive functions
are the basis and composition, induction and minimization in the
inductive step.

4/7/19

© UCF EECS 315

Equivalence Steps
• Assume we have a machine M in one model of computation and a

mapping of M into a machine M’ in a second model.
• Assume the initial configuration of M is id0 and that of M’ is id’0
• Define a mapping, h, from id’s of M into those of M’, such that,

RM = { h(d) | d is an instance of an id of M }, and
– id’0Þ*M’ h(id0), and h(id0) is the only member of RM in the

configurations encountered in this derivation.
– h(idi)Þ+

M’ h(idi+1), i³0, and h(idi+1) is the only member of RM in
this derivation.

• The above, in effect, provides an inductive proof that
– id0Þ*M id implies id’0Þ*M’ h(id), and
– If id’0Þ*M’ id’ then either id0Þ*M id, where id’ = h(id), or

id’ Ï RM

4/7/19

All Models are Equivalent

Equivalency of computation by
Turing machines, register machines,

factor replacement systems,
recursive functions

© UCF EECS 317

Our Plan of Attack

• We will now show
TURING ≤ REGISTER ≤ FACTOR ≤

RECURSIVE ≤ TURING
where by A ≤ B, we mean that every
instance of A can be replaced by an
equivalent instance of B.

• The transitive closure will then get us the
desired result.

4/7/19

TURING ≤ REGISTER

© UCF EECS 319

Encoding a TM’s State
• Assume that we have an n state Turing machine. Let

the states be numbered 0,…, n-1.
• Assume our machine is in state 7, with its tape

containing
… 0 0 1 0 1 0 0 1 1 q7 0 0 0 …

• The underscore indicates the square being read. We
denote this by the finite id
1 0 1 0 0 1 1 q7 0

• In this notation, we always write down the scanned
square, even if it and all symbols to its right are blank.

4/7/19

© UCF EECS 320

More on Encoding of TM
• An id can be represented by a triple of natural numbers,

(R,L,i), where R is the number denoted by the reversal
of the binary sequence to the right of the qi, L is the
number denoted by the binary sequence to the left, and i
is the state index.

• So,
… 0 0 1 0 1 0 0 1 1 q7 0 0 0 …
is just (0, 83, 7).
… 0 0 1 0 q5 1 0 1 1 0 0 …
is represented as (13, 2, 5).

• We can store the R part in register 1, the L part in
register 2, and the state index in register 3.

4/7/19

© UCF EECS 321

Simulation by RM
1. DEC3[2,q0] : Go to simulate actions in state 0
2. DEC3[3,q1] : Go to simulate actions in state 1
…
n. DEC3[ERR,qn-1] : Go to simulate actions in state n-1
…
qj. IF_r1_ODD[qj+2] : Jump if scanning a 1
qj+1. JUMP[set_k] : If (qj 0 0 qk) is rule in TM
qj+1. INC1[set_k] : If (qj 0 1 qk) is rule in TM
qj+1. DIV_r1_BY_2 : If (qj 0 R qk) is rule in TM

MUL_r2__BY_2
JUMP[set_k]

qj+1. MUL_r1_BY_2 : If (qj 0 L qk) is rule in TM
IF_r2_ODD then INC1
DIV_r2__BY_2[set_k]

…
set_n-1. INC3[set_n-2] : Set r3 to index n-1 for simulating state n-1
set_n-2. INC3[set_n-3] : Set r3 to index n-2 for simulating state n-2
…
set_0. JUMP[1] : Set r3 to index 0 for simulating state 0

4/7/19

© UCF EECS 322

Fixups
• Need epilog so action for missing quad

(halting) jumps beyond end of simulation
to clean things up, placing result in r0.

• Can also have a prolog that starts with
arguments in registers r1 to rn and stores
values in r1, r2 and r3 to represent Turing
machines starting configuration.

4/7/19

© UCF EECS 323

Prolog
Example assuming n arguments (fix as needed)
1. MUL_rn+1_BY_2[2] : Set rn+1 = 11…102, where, #1's = r1
2. DEC1[3,4] : r1 will be set to 0
3. INCn+1[1] :
4. MUL_rn+1_BY_2[5] : Set rn+1 = 11…1011…102, where, #1's = r1, then r2
5. DEC2[6,7] : r2 will be set to 0
6. INCn+1[4] :
…
3n-2. DECn[3n-1,3n+1] : Set rn+1 = 11…1011…1011…12, where, #1's = r1, r2,…
3n-1. MUL_rn+1_BY_2[3n] : rn will be set to 0
3n. INCn+1[3n-2] :
3n+1 DECn+1[3n+2,3n+3] : Copy rn+1 to r2, rn+1 is set to 0
3n+2. INC2[3n+1] :
3n+3. : r2 = left tape, r1 = 0 (right), r3 = 0 (initial state)

4/7/19

© UCF EECS 324

Epilog

1. DEC3[1,2] : Set r3 to 0 (just cleaning up)
2. IF_r1_ODD[3,5] : Are we done with answer?
3. INC0[4] : putting answer in r0
4. DIV_r1_BY_2[2] : strip a 1 from r1
5. : Answer is now in r0

4/7/19

REGISTER £ FACTOR

© UCF EECS 326

Encoding a RM’s State
• This is a really easy one based on the fact that every member of Z+

(the positive integers) has a unique prime factorization. Thus all
such numbers can be uniquely written in the form

where the pi's are distinct primes and the ki's are non-zero values,
except that the number 1 would be represented by 20.

• Let R be an arbitrary n+1-register machine, having m instructions.

Encode the contents of registers r0,…,rn by the powers of p0,…pn .

Encode rule number's 1,…,m by primes pn+1 ,…, pn+m

Use pn+m+1 as prime factor that indicates simulation is done.
• This is, in essence, a Gödel number of the RM’s state.

1i
1kp

2i
2kp …

ji
jkp

4/7/19

© UCF EECS 327

Simulation by FRS
• Now, the j-th instruction (1≤j≤m) of R has

associated factor replacement rules as follows:
j. INCr[i]

pn+jx ® pn+iprx
j. DECr[s, f]

pn+jprx ® pn+sx
pn+jx ® pn+fx

• We also add the halting rule associated with
m+1 of

pn+m+1x ® x

4/7/19

© UCF EECS 328

Importance of Order
• The relative order of the two rules to

simulate a DEC are critical.
• To test if register r has a zero in it, we, in

effect, make sure that we cannot execute
the rule that is enabled when the r-th
prime is a factor.

• If the rules were placed in the wrong order,
or if they weren't prioritized, we would be
non-deterministic.

4/7/19

Sample RM and FRS (repeat)
Present a Register Machine that computes IsOdd. Assume R1=x at
starts; at termination, set R0=1 if x is odd; 0 otherwise. We
assume R0=0 at start. We also are not concerned about destroying
input.
1. DEC1[2, 4]
2. DEC1[1, 3]
3. INC0[4]
4.
Present a Factor Replacement System that computes IsOdd.
Assume starting number is 3^x; at termination, result is 2=2^1 if x
is odd; 1= 2^0 otherwise.
3*3 x ® x
3 x ® 2 x

4/7/19 © UCF EECS 329

© UCF EECS 330

Example of Order
Consider the simple machine to compute
r0:=r1 – r2 (limited)
1. DEC2[2,3]
2. DEC1[1,1]
3. DEC1[4,5]
4. INC0[3]
5.

4/7/19

© UCF EECS 331

Subtraction Encoding
Start with 3x5y7

7 • 5 x ® 11 x
7 x ® 13 x
11 • 3 x ® 7 x
11 x ® 7 x
13 • 3 x ® 17 x
13 x ® 19 x
17 x ® 13 • 2 x
19 x ® x

4/7/19

© UCF EECS 332

Analysis of Problem
• If we don't obey the ordering here, we could take

an input like 35527 and immediately apply the
second rule (the one that mimics a failed
decrement).

• We then have 355213, signifying that we will
mimic instruction number 3, never having
subtracted the 2 from 5.

• Now, we mimic copying r1 to r0 and get 255219 .
• We then remove the 19 and have the wrong

answer.

4/7/19

FACTOR £ RECURSIVE

© UCF EECS 334

Universal Machine
• In the process of doing this reduction, we will

build a Universal Machine.
• This is a single recursive function with two

arguments. The first specifies the factor system
(encoded) and the second the argument to this
factor system.

• The Universal Machine will then simulate the
given machine on the selected input.

4/7/19

© UCF EECS 335

Encoding FRS
• Let (n, ((a1,b1), (a2,b2), … ,(an,bn)) be

some factor replacement system, where
(ai,bi) means that the i-th rule is

aix ® bix
• Encode this machine by the number F,

pppp nnnn

n bababa nn

2212212117532 2211

++-
!

4/7/19

© UCF EECS 336

Simulation by Recursive # 1
• We can determine the rule of F that applies to x by

RULE(F, x) = µ z (1 ≤ z ≤ exp(F, 0)+1) [exp(F, 2*z-1) | x]
• Note: exp(F,2*i-1) = ai where ai is the exponent of the prime factor

p2i-1 of F.

• If x is divisible by ai, and i is the least integer, 1≤i≤n, for which this is
true, then RULE(F,x) = i.

If x is not divisible by any ai, 1≤i≤n, then x is divisible by 1, and
RULE(F,x) returns n+1. That’s why we added p2n+1 p2n+2.

• Given the function RULE(F,x), we can determine NEXT(F,x), the
number that follows x, when using F, by

NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x))

4/7/19

© UCF EECS 337

Simulation by Recursive # 2
• The configurations listed by F, when started on x, are
CONFIG(F, x, 0) = x
CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))

• The number of the configuration on which F halts is
HALT(F, x) = µ y [CONFIG(F, x, y) == CONFIG(F, x, y+1)]
This assumes we converge to a fixed point as our
means of halting. Of course, no applicable rule meets
this definition as the n+1-st rule divides and then
multiplies the latest value by 1.

4/7/19

© UCF EECS 338

Simulation by Recursive # 3
• A Universal Machine that simulates an arbitrary Factor

System, Turing Machine, Register Machine, Recursive
Function can then be defined by

Univ(F, x) = exp (CONFIG (F, x, HALT (F, x)), 0)

• This assumes that the answer will be returned as the
exponent of the only even prime, 2. We can fix F for any
given Factor System that we wish to simulate. It is that
ability that makes this function universal.

4/7/19

© UCF EECS 339

FRS Subtraction
• 203a5b Þ 2a-b

3*5x ® x or 1/15
5x ® x or 1/5
3x ® 2x or 2/3

• Encode F = 23 315 51 75 111 133 172 191 231

• Consider a=4, b=2
• RULE(F, x) = µ z (1 ≤ z ≤ 4) [exp(F, 2*z-1) | x]

RULE (F,34 52) = 1, as 15 divides 34 52

• NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x))
NEXT(F,34 52) = (34 52 // 15 * 1) = 3351

NEXT(F,33 51) = (33 51 // 15 * 1) = 32

NEXT(F,32) = (32 // 3 * 2) = 2131

NEXT(F, 2131) = (2131 // 3 * 2) = 22

NEXT(F, 22) = (22 // 1 * 1) = 22

4/7/19

© UCF EECS 340

Rest of simulation
• CONFIG(F, x, 0) = x

CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))
• CONFIG(F,34 52,0) = 34 52

CONFIG(F,34 52,1) = 3351

CONFIG(F,34 52,2) = 32

CONFIG(F,34 52,3) = 2131

CONFIG(F,34 52,4) = 22

CONFIG(F,34 52,5) = 22

• HALT(F, x)=µy[CONFIG(F,x,y)==CONFIG(F,x,y+1)] = 4
• Univ(F, x) = exp (CONFIG (F, x, HALT (F, x)), 0)

= exp(22,0) = 2

4/7/19

© UCF EECS 341

Simplicity of Universal
• A side result is that every computable

(recursive) function can be expressed in
the form

F(x) = G(µ y H(x, y))

where G and H are primitive recursive.

4/7/19

RECURSIVE £ TURING

© UCF EECS 343

Standard Turing Computation
• Our notion of standard Turing computability of

some n-ary function F assumes that the
machine starts with a tape containing the n
inputs, x1, … , xn in the form

…01x101x20…01xn0…

and ends with

…01x101x20…01xn01y0…

where y = F(x1, … , xn).

4/7/19

© UCF EECS 344

More Helpers
• To build our simulation we need to construct some useful

submachines, in addition to the R, L, R, L, and Ck machines already
defined.

• T -- translate moves a value left one tape square
…?01x0… Þ …?1x00…

• Shift -- shift a rightmost value left, destroying value to its left
…01x101x20… Þ …01x20…

• Rotk -- Rotate a k value sequence one slot to the left
…01x101x20…01xk0…

Þ …01x20…01xk01x10…

 R1 L0 R

R 1

L T

R

0
k L k

k+1 1 L k L 0 T k L k+1

L 1

T
L 0 T

0

4/7/19

© UCF EECS 345

Basic Functions
All Basis Recursive Functions are Turing
computable:

• Ca
n(x1,…,xn) = a

(R1)aR
• (x1,…,xn) = xi

Cn-i+1
• S(x) = x+1

C11R

		 i
nI

4/7/19

© UCF EECS 346

Closure Under Composition
If G, H1, … , Hk are already known to be Turing computable, then so
is F, where

F(x1,…,xn) = G(H1(x1,…,xn), … , Hk(x1,…,xn))

To see this, we must first show that if E(x1,…,xn) is Turing
computable then so is

E<m>(x1,…,xn, y1,…,ym) = E(x1,…,xn)

This can be computed by the machine

Ln+m (Rotn+m)n Rn+m E Ln+m+1 (Rotn+m)m Rn+m+1

Can now define F by

H1 H2<1> H3<2> … Hk<k-1> G Shiftk

4/7/19

Closure Under Induction
To prove that Turing Machines are closed under induction (primitive
recursion), we must simulate some arbitrary primitive recursive function
F(y,x1,x2, …, xn) on a Turing Machine, where
F(0, x1,x2, …, xn) = G(x1,x2, …, xn)
F(y+1, x1,x2, …, xn) = H(y, x1,x2, …, xn, F(y,x1,x2, …, xn))
Where, G and H are Standard Turing Computable. We define the
function F for the Turing Machine as follows:

Since our Turing Machine simulator can produce the same value for
any arbitrary PRF, F, we show that Turing Machines are closed under
induction (primitive recursion).

4/7/19 © UCF EECS 347

GLn+1 L
1

0

0Rn+2 H Shift Ln+2 1
Rn+2

© UCF EECS 348

Closure Under Minimization
If G is already known to be Turing
computable, then so is F, where

F(x1,…,xn) = µy (G(x1,…,xn, y) == 1)

This can be done by

R G L 1 0 L
0

1
4/7/19

© UCF EECS 349

Consequences of Equivalence

• Theorem: The computational power of
Recursive Functions, Turing Machines, Register
Machine, and Factor Replacement Systems are
all equivalent.

• Theorem: Every Recursive Function (Turing
Computable Function, etc.) can be performed
with just one unbounded type of iteration.

• Theorem: Universal machines can be
constructed for each of our formal models of
computation.

4/7/19

Additional Notations

Includes comment on our notation
versus that of others

© UCF EECS 351

Universal Machine
• Others consider functions of n arguments, whereas we

had just one. However, our input to the FRS was actually
an encoding of n arguments.

• The fact that we can focus on just a single number that is
the encoding of n arguments is easy to justify based on
the pairing function.

• Some presentations order arguments differently, starting
with the n arguments and then the Gödel number of the
function, but closure under argument permutation follows
from closure under substitution.

4/7/19

© UCF EECS 352

Universal Machine Mapping
• j(n)(f, x1,…,xn) = Univ (f,)
• We will sometimes adopt the above and

also its common shorthand
jf

(n)(x1,…,xn) = j(n)(f, x1,…,xn)
and the even shorter version
jf(x1,…,xn) = j(n)(f, x1,…,xn)

Õ =

n

i

x

ip
i

1

4/7/19

© UCF EECS 353

SNAP and TERM
• Our CONFIG is essentially a snapshot

function as seen in other presentations of
a universal function
SNAP(f, x, t) = CONFIG(f, x, t)

• Termination in our notation occurs when
we reach a fixed point, so
TERM(f, x) = (NEXT(f, x) == x)

• Again, we used a single argument but that can
be extended as we have already shown.

4/7/19

© UCF EECS 354

STP Predicate
• STP(f, x1,…,xn, t) is a predicate defined

to be true iff jf (x1,…,xn) converges in at
most t steps.

• STP is primitive recursive since it can be
defined by
STP(f, x, s) = TERM(f, CONFIG(f, x, s))
Extending to many arguments is easily done as
before.

4/7/19

© UCF EECS 355

VALUE PRF
• VALUE(f, x1,…,xn, t) is a primitive

recursive function (algorithm) that returns
jf (x1,…,xn) so long as
STP(f, x1,…,xn, t) is true.

• VALUE(f, x1,…,xn, t) returns a value if
STP(f, x1,…,xn, t) is false, but the
returned value is meaningless.

4/7/19

Recursively Enumerable

Properties of re Sets

© UCF EECS 357

Definition of re
• Some texts define re in the same way as I have defined

semi-decidable.
S Í À is semi-decidable iff there exists a partially
computable function g where

S = { x Î À | g(x)¯ }
• I prefer the definition of re that says

S Í À is re iff S = Æ or there exists a totally computable
function f where

S = { y | $x f(x) == y }
• We will prove these equivalent. Actually, f can be a

primitive recursive function.

4/7/19

© UCF EECS 358

Semi-Decidable Implies re
Theorem: Let S be semi-decided by GS. Assume

GS is the gS–th function in our enumeration of
effective procedures. If S = Ø then S is re by
definition, so we will assume wlog that there is
some a Î S. Define the enumerating algorithm
FS by
FS(<x,t>) = x * STP(gs, x, t)

+ a * (1-STP(gs, x, t))
Note: FS is primitive recursive and it enumerates
every value in S infinitely often.

4/7/19

© UCF EECS 359

re Implies Semi-Decidable
Theorem: By definition, S is re iff S == Ø or there

exists an algorithm FS, over the natural numbers
À, whose range is exactly S. Define

µy [y == y+1] if S == Ø
yS(x) =

signum((µy[FS(y)==x])+1), otherwise
This achieves our result as the domain of yS is
the range of FS, or empty if S == Ø. Note that
this is an existence proof in that we cannot test if
S == Ø

4/7/19

© UCF EECS 360

Domain of a Procedure
Corollary: S is re/semi-decidable iff S is the

domain / range of a partial recursive predicate
FS.

Proof: The predicate yS we defined earlier to semi-
decide S, given its enumerating function, can be
easily adapted to have this property.

µy [y == y+1] if S == Ø
yS(x) =

x*signum((µy[FS(y)==x])+1), otherwise

4/7/19

© UCF EECS 361

Recursive Implies re
Theorem: Recursive implies re.
Proof: S is recursive implies there is a total

recursive function fS such that
S = { x Î À | fs(x) == 1 }

Define gs(x) = µy (fs(x) == 1)
Clearly
dom(gs) = {x Î À | gs(x)¯}

= { x Î À | fs(x) == 1 }
= S

4/7/19

© UCF EECS 362

Related Results
Theorem: S is re iff S is semi-decidable.
Proof: That’s what we proved.
Theorem: S and ~S are both re (semi-decidable)

iff S (equivalently ~S) is recursive (decidable).
Proof: Let fS semi-decide S and fS’ semi-decide ~S. We can

decide S by gS

gS(x) = STP(fS, x, µt (STP(fS, x, t) || STP(fS’ ,x, t))
~S is decided by gS’(x) = ~gS(x) = 1- gS(x).
The other direction is immediate since, if S is decidable
then ~S is decidable (just complement gS) and hence
they are both re (semi-decidable).

4/7/19

© UCF EECS 363

Enumeration Theorem
• Define

Wn = { x Î À | j(n,x)¯ }
• Theorem: A set B is re iff there exists an n

such that B = Wn.
Proof: Follows from definition of j(n,x).

• This gives us a way to enumerate the
recursively enumerable sets.

• Note: We will later show (again) that we
cannot enumerate the recursive sets.

4/7/19

© UCF EECS 364

The Set K
• K = { n Î À | n Î Wn }
• Note that

n Î Wn Û j(n,n)¯ Û HALT(n,n)
• Thus, K is the set consisting of the indices

of each program that halts when given its
own index

• K can be semi-decided by the HALT
predicate above, so it is re.

4/7/19

© UCF EECS 365

K is not Recursive
• Theorem: We can prove this by showing

~K is not re.
• If ~K is re then ~K = Wi, for some i.
• However, this is a contradiction since

i Î K Û i Î Wi Û i Î ~K Û i Ï K

4/7/19

© UCF EECS 366

re Characterizations
Theorem: If S ¹ Æ then the following are equivalent:
1. S is re
2. S is the range of a primitive rec. function
3. S is the range of a recursive function
4. S is the range of a partial rec. function
5. S is the domain of a partial rec. function
6. S is the range/domain of a partial rec. function whose domain

is the same as its range and which acts as an identity when it
converges. Below, assume fS enumerates S.
gS(x) = x*STP(fS, x, µt (STP(fS, x, t)) or
gS(x) = x* ∃t STP(fS, x, t)

4/7/19

S-m-n Theorem

© UCF EECS 368

Parameter (S-m-n) Theorem
• Theorem: For each n,m>0, there is a prf

Sm
n(y, u1,…,un) such that

j(m+n)(y, x1,…,xm, u1,…,un)
= j(m)(Sm

n(y,u1,…,un), x1,…, xm)
• The proof of this is highly dependent on

the system in which you proved
universality and the encoding you chose.

4/7/19

© UCF EECS 369

S-m-n for FRS
• We would need to create a new FRS, from an existing one F, that

fixes the value of ui as the exponent of the prime pm+i.
• Sketch of proof:

Assume we normally start with p1
x1 … pm

xm p1
u1 … pm+n

un s
Here the first m are variable; the next n are fixed; s denotes prime
factors used to trigger first phase of computation.
Assume that we use fixed point as convergence.
We start with just p1

x1 … pm
xm, with q the first unused prime.

q a x ® q b x replaces a x® b x in F, for each rule in F
q x ® q x ensures we loop at end
x ® q pm+1

u1 … pm+n
un s x
adds fixed input, start state and q
this is selected once and never again

Note: q = prime(max(n+m, lastFactor(Product[i=1 to r] ai bi))+1)
where r is the number of rules in F.

4/7/19

© UCF EECS 370

Details of S-m-n for FRS
• The number of F (called F, also) is 2r3a15b1…p2r-1

arp2r
br

• Sm,n(F, u1,…un) = 2r+23q´a15q´b1…p2r-1
q´arp2r

q´br

p2r+1
qp2r+2

q p2r+3p2r+4
q pm+1u1 … pm+nun s

• This represents the rules we just talked about. The first
added rule pair means that if the algorithm does not use
fixed point, we force it to do so. The last rule pair is the
only one initially enabled and it adds the prime q, the
fixed arguments u1,…un, the enabling prime q, and the s
needed to kick start computation. Note that s could be a
1, if no kick start is required.

• Sm,n= Sm
n is clearly primitive recursive. I’ll leave the

precise proof of that as a challenge to you.

4/7/19

Quantification 1 &2

© UCF EECS 372

Quantification#1
• S is decidable iff there exists an algorithm cS (called S’s

characteristic function) such that
x Î S Û cS(x)
This is just the definition of decidable.

• S is re iff there exists an algorithm AS where
x Î S Û $t AS(x,t)
This is clear since, if gS is the index of the procedure yS
that semi-decides S then
x Î S Û $t STP(gS, x, t)
So, AS(x,t) = STPgS(x, t), where STPgS is the STP
function with its first argument fixed.

• Creating new functions by setting some one or more
arguments to constants is an application of Sm

n.

4/7/19

© UCF EECS 373

Quantification#2
• S is re iff there exists an algorithm AS such that

x Ï S Û "t AS(x,t)
This is clear since, if gS is the index of the procedure yS
that semi-decides S, then
x Ï S Û ~$t STP(gS, x, t) Û "t ~STP(gS, x, t)
So, AS(x,t) = ~STPgS(x, t), where STPgS is the STP
function with its first argument fixed.

• Note that this works even if S is recursive (decidable).
The important thing there is that if S is recursive then it
may be viewed in two normal forms, one with existential
quantification and the other with universal quantification.

• The complement of an re set is co-re. A set is recursive
(decidable) iff it is both re and co-re.

4/7/19

Diagonalization and
Reducibility

© UCF EECS 375

Non-re Problems
• There are even “practical” problems that are worse than

unsolvable -- they’re not even semi-decidable.
• The classic non-re problem is the Uniform Halting

Problem, that is, the problem to decide of an arbitrary
effective procedure P, whether or not P is an algorithm.

• Assume that the algorithms can be enumerated, and that
F accomplishes this. Then

F(x) = Fx

where F0, F1, F2, … is a list of all the algorithms

4/7/19

© UCF EECS 376

The Contradiction
• Define G(x) = Univ (F(x) , x) + 1 = j(F(x), x)+1 = Fx(x) + 1

• But then G is itself an algorithm. Assume it is the g-th one

F(g) = Fg = G

Then, G(g) = Fg(g) + 1 = G(g) + 1

• But then G contradicts its own existence since G would need to be
an algorithm.

• This cannot be used to show that the effective procedures are non-
enumerable, since the above is not a contradiction when G(g) is
undefined. In fact, we already have shown how to enumerate the
(partial) recursive functions.

4/7/19

© UCF EECS 377

The Set TOT
• The listing of all algorithms can be viewed

as

TOT = { f Î À | "x j(f, x)¯ }
• We can also note that

TOT = { f Î À | Wf =À }
• Theorem: TOT is not re.

4/7/19

Reducibility

4/7/19 © UCF EECS 379

Reduction Concepts
• Proofs by contradiction are tedious after you’ve

seen a few. We really would like proofs that

build on known unsolvable problems to show

other, open problems are unsolvable. The

technique commonly used is called reduction. It

starts with some known unsolvable problem and

then shows that this problem is no harder than

some open problem in which we are interested.

Diagonalization is a Bummer
• The issues with diagonalization are that it is tedious and

is applicable as a proof of undecidability or non-re-ness
for only a small subset of the problems that interest us.

• Thus, we will now seek to use reduction wherever
possible.

• To show a set, S, is undecidable, we can show it is as
least as hard as the set K0. That is, K0 ≤ S. Here the
mapping used in the reduction does not need to run in
polynomial time, it just needs to be an algorithm.

• To show a set, S, is not re, we can show it is as least as
hard as the set TOTAL (the set of algorithms). That is,
TOTAL ≤ S.

4/7/19 © UCF EECS 380

Reduction to TOTAL
• We can show that the set K0 (Halting) is no harder than

the set TOTAL (Uniform Halting). Since we already
know that K0 is unsolvable, we would now know that
TOTAL is also unsolvable. We cannot reduce in the
other direction since TOTAL is in fact harder than K0.

• Let jF be some arbitrary effective procedure and let x be
some arbitrary natural number.

• Define Fx(y) = jF(x), for all y Î À
• Then Fx is an algorithm if and only if jF halts on x.
• Thus, K0 ≤ TOTAL, and so a solution to membership in

TOTAL would provide a solution to K0, which we know is
not possible.

4/7/19 © UCF EECS 381

Reduction to ZERO
• We can show that the set TOTAL is no harder

than the set ZERO = { f | "x jf(x) = 0 }. Since
we already know that TOTAL is non-re, we
would now know that ZERO is also non-re.

• Let jf be some arbitrary effective procedure.
• Define Ff(y) = jf(x) – jf(x), for all x Î À
• Then Ff is an algorithm that produces 0 for all

input (is in the set ZERO) if and only if jf halts
on all input x. Thus, TOTAL ≤ ZERO.

• Thus a semi-decision procedure for ZERO would
provide one for TOTAL, a set already known to
be non-re.

4/7/19 © UCF EECS 382

© UCF EECS 383

Classic Undecidable Sets
• The universal language

K0 = Lu = { <f, x> | jf (x) is defined }

• Membership problem for Lu is the Halting Problem.
• The sets Lne and Le, where

NON-EMPTY = Lne = { f | $ x jf (x) ¯ }

EMPTY = Le = { f | " x jf (x) ­ }

are the next ones we will study.

4/7/19

© UCF EECS 384

Lne is re
• Lne is enumerated by

F(<f, x, t>) = f * STP(f, x, t)

• This assumes that 0 is in Lne since 0 probably
encodes some trivial machine. If this isn’t so,
we’ll just slightly vary our enumeration of the
recursive functions so it is true.

• Thus, the range of this total function F is exactly
the indices of functions that converge for some
input, and that’s Lne.

4/7/19

© UCF EECS 385

Lne is Non-Recursive
• Note in the previous enumeration that F is a function of

just one argument, as we are using an extended pairing
function <x,y,z> = <x,<y,z>>.

• Now Lne cannot be recursive, for if it were then Lu (K0)is
recursive by the reduction we showed before.

• In particular, from any index x and input y, we created a
new function which accepts all input just in case the x-th
function accepts y. Recall Fx(y) = jF(x), for all y Î À.

• Hence, this new function’s index is in Lne just in case
<x, y> is in Lu (K0).

• Thus, a decision procedure for Lne (equivalently for Le)
implies one for Lu (K0).

4/7/19

© UCF EECS 386

Lne is re by Quantification
• Can do by observing that

f Î Lne Û $ <x,t> STP(f, x, t)

• By our earlier results, any set whose

membership can be described by an existentially

quantified recursive predicate is re (semi-

decidable).

4/7/19

© UCF EECS 387

Le is not re
• If Le were re, then Lne would be recursive

since it and its complement would be re.
• Can also observe that Le is the

complement of an re set since

f Î Le Û " <x,t> ~STP(f, x, t)
Û ~$ <x,t> STP(f, x, t)
Û f Ï Lne

4/7/19

Reduction and Equivalence

m-1, 1-1, Turing Degrees

© UCF EECS 389

Many-One Reduction
• Let A and B be two sets.
• We say A many-one reduces to B,

A £m B, if there exists a total recursive function f
such that
x Î A Û f(x) Î B

• We say that A is many-one equivalent to B,
A ºm B, if A £m B and B £m A

• Sets that are many-one equivalent are in some
sense equally hard or easy.

4/7/19

© UCF EECS 390

Many-One Degrees
• The relationship A ºm B is an equivalence

relationship (why?)
• If A ºm B, we say A and B are of the same

many-one degree (of unsolvability).
• Decidable problems occupy three m-1 degrees:
Æ, À, all others.

• The hierarchy of undecidable m-1 degrees is an
infinite lattice (I’ll discuss in class)

4/7/19

© UCF EECS 391

One-One Reduction
• Let A and B be two sets.
• We say A one-one reduces to B, A £1 B,

if there exists a total recursive 1-1 function f
such that
x Î A Û f(x) Î B

• We say that A is one-one equivalent to B,
A º1 B, if A £1 B and B £1 A

• Sets that are one-one equivalent are in a strong
sense equally hard or easy.

4/7/19

© UCF EECS 392

One-One Degrees
• The relationship A º1 B is an equivalence

relationship (why?)
• If A º1 B, we say A and B are of the same one-

one degree (of unsolvability).
• Decidable problems occupy infinitely many 1-1

degrees: each cardinality defines another 1-1
degree (think about it).

• The hierarchy of undecidable 1-1 degrees is an
infinite lattice.

4/7/19

© UCF EECS 393

Turing (Oracle) Reduction
• Let A and B be two sets.
• We say A Turing reduces to B, A £t B, if the

existence of an oracle for B would provide us
with a decision procedure for A.

• We say that A is Turing equivalent to B,
A ºt B, if A £t B and B £t A

• Sets that are Turing equivalent are in a very
loose sense equally hard or easy.

4/7/19

© UCF EECS 394

Turing Degrees
• The relationship A ºt B is an equivalence

relationship (why?)

• If A ºt B, we say A and B are of the same Turing

degree (of unsolvability).

• Decidable problems occupy one Turing degree.

We really don’t even need the oracle.

• The hierarchy of undecidable Turing degrees is

an infinite lattice.

4/7/19

© UCF EECS 395

Complete re Sets
• A set C is re 1-1 (m-1, Turing) complete if, for

any re set A, A £1 (£m , £t) C.
• The set HALT is an re complete set (in regard to

1-1, m-1 and Turing reducibility).
• The re complete degree (in each sense of

degree) sits at the top of the lattice of re
degrees.

4/7/19

© UCF EECS 396

The Set Halt = K0 = Lu

• Halt = K0 = Lu = { <f, x> | jf (x) ¯}
• Let A be an arbitrary re set. By definition, there exists an

effective procedure ja, such that dom(ja) = A. Put
equivalently, there exists an index, a, such that A = Wa.

• x Î A iff x Î dom(ja) iff ja(x)¯ iff <a,x> Î K0
• The above provides a 1-1 function that reduces A to K0

(A £1 K0)
• Thus the universal set, Halt = K0 = Lu, is an re

(1-1, m-1, Turing) complete set.

4/7/19

© UCF EECS 397

The Set K
• K = { f | jf(f) is defined }
• Define fx(y) = jf(x), for all y. The index for fx can be

computed from f and x using S1,1, where we add a
dummy argument, y, to jf. Let that index be fx. (Yeah,
that’s overloading.)

• <f,x> Î K0 iff x Î dom(jf) iff "y[jfx(y)¯] iff fx Î K.
• The above provides a 1-1 function that reduces K0 to K.
• Since K0 is an re (1-1, m-1, Turing) complete set and K

is re, then K is also re (1-1, m-1, Turing) complete.

4/7/19

Quantification # 3 and the
Overall Picture

© UCF EECS 399

Quantification#3
• The Uniform Halting Problem was already

shown to be non-re. It turns out its complement
is also not re. We’ll cover that later. In fact, we
will show that TOT requires an alternation of
quantifiers. Specifically,

f Î TOTÛ "x$t (STP(f, x, t))
and this is the minimum quantification we can
use, given that the quantified predicate is total
recursive (actually primitive recursive here).

4/7/19

RE Co-RE
R
E
C

UNIVERSE OF SETS

NRNC

NonRE = (NRNC ∪ Co-RE) - REC

RE-
Complete

Reduction and Rice’s

4/7/19 © UCF EECS 402

Either Trivial or Undecidable
• Let P be some set of re languages, e.g. P = { L | L is infinite re }.

• We call P a property of re languages since it divides the class of all
re languages into two subsets, those having property P and those
not having property P.

• P is said to be trivial if it is empty (this is not the same as saying P
contains the empty set) or contains all re languages.

• Trivial properties are not very discriminating in the way they divide
up the re languages (all or nothing).

4/7/19 © UCF EECS 403

Rice’s Theorem
Rice’s Theorem: Let P be some non-trivial

property of the re languages. Then
LP = { x | dom [x] is in P (has property P) }

is undecidable. Note that membership in LP is
based purely on the domain of a function, not on
any aspect of its implementation.

4/7/19 © UCF EECS 404

Rice’s Proof-1
Proof: We will assume, wlog, that P does not

contain Ø. If it does we switch our attention to
the complement of P. Now, since P is non-
trivial, there exists some language L with
property P. Let [r] be a recursive function
whose domain is L (r is the index of a semi-
decision procedure for L). Suppose P were
decidable. We will use this decision procedure
and the existence of r to decide K0.

4/7/19 © UCF EECS 405

Rice’s Proof-2
First we define a function Fr,x,y for r and each
function jx and input y as follows.

Fr,x,y(z) = j(x , y) + j(r , z)
The domain of this function is L if jx (y)
converges, otherwise it’s Ø. Now if we can
determine membership in LP , we can use this
algorithm to decide K0 merely by applying it to
Fr,x,y. An answer as to whether or not Fr,x,y has
property P is also the correct answer as to
whether or not jx (y) converges.

4/7/19 © UCF EECS 406

Rice’s Proof-3
Thus, there can be no decision procedure for P.
And consequently, there can be no decision
procedure for any non-trivial property of re
languages.

Note: This does not apply if P is trivial, nor does
it apply if P can differentiate indices that
converge for precisely the same values.

I/O Property
• An I/O property, P, of indices of recursive function is one

that cannot differentiate indices of functions that produce
precisely the same value for each input.

• This means that if two indices, f and g, are such that jf
and jg converge on the same inputs and, when they
converge, produce precisely the same result, then both f
and g must have property P, or neither one has this
property.

• Note that any I/O property of recursive function indices
also defines a property of re languages, since the
domains of functions with the same I/O behavior are
equal. However, not all properties of re languages are
I/O properties.

4/7/19 © UCF EECS 407

Strong Rice’s Theorem
Rice’s Theorem: Let P be some non-trivial

I/O property of the indices of recursive
functions. Then

SP = { x | jx has property P) }
is undecidable. Note that membership in
SP is based purely on the input/output
behavior of a function, not on any aspect
of its implementation.

4/7/19 © UCF EECS 408

Strong Rice’s Proof
• Given x, y, r, where r is in the set

SP.= {f | jf has property P},
define the function
fx,y,r(z) = jx(y) - jx(y) + jr(z).

• fx,y,r(z) = jr(z) if jx(y)¯ ; = f if jx(y)­ .
Thus, jx(y)¯ iff fx,y,r has property P, and so
K0 £ SP.

4/7/19 © UCF EECS 409

Picture Proof

4/7/19 © UCF EECS 410

x

y
j
x
(y)

j
r
(z)

z

dom(f
x,y,r

)=f If j
x
(y)­

rng(f
x,y,r

)=f If j
x
(y)­

$z f
x,y,r

(z)≠j
r
(z) If j

x
(y)­

"z f
x,y,r

(z)=j
r
(z) If j

x
(y)¯

rng(f
x,y,r

)=rng(j
r
) If j

x
(y)¯

dom(f
x,y,r

)=dom(j
r
) If j

x
(y)¯

Black is for standard Rice’s Theorem;
Black and Red are needed for Strong Version
Blue is just another version based on range

4/7/19 © UCF EECS 411

Corollaries to Rice’s
Corollary: The following properties of re
sets are undecidable

a) L = Ø
b) L is finite
c) L is a regular set
d) L is a context-free set

4/7/19 412

Practice

Known Results:
HALT = { <f,x> | f(x)¯ } is re (semi-decidable) but undecidable
TOTAL = { f | "x f(x)¯ } is non-re (not even semi-decidable)
1. Use reduction from HALT to show that one cannot decide NonTrivial, where

NonTrivial = { f | for some x, y, x ≠ y, f(x)¯ and f(y)¯ and f(x) ≠ f(y) }
2. Show that Non-Trivial reduces to HALT. (1 plus 2 show they are equally hard)
3. Use Reduction from TOTAL to show that NoRepeats is not even re, where

NoRepeats = { f | for all x, y, f(x)¯ and f(y)¯, and x ≠ y ⇒ f(x) ≠ f(y) }
4. Show NoRepeats reduces to TOTAL. (3 plus 4 show they are equally hard)
5. Use Rice’s Theorem to show that NonTrivial is undecidable
6. Use Rice’s Theorem to show that NoRepeats is undecidable

© UCF EECS

4/7/19 413

Practice Classifications

1. Use quantification of an algorithmic predicate to estimate the
complexity (decidable, re, co-re, non-re) of each of the following, (a)-
(d):
a) NonTrivial = { f | for some x, y, x ≠ y, f(x)¯ and f(y)¯ and f(x) ≠ f(y) }
b) NoRepeats = { f | for all x, y, f(x)¯ and f(y)¯, and x ≠ y ⇒ f(x) ≠ f(y) }

c) FIN = { f | domain(f) is finite }

2. Let set A be non-empty recursive, and let B be re non-recursive.
Consider C = { z | z = x * y, where x Î A and y Î B }. . For (a)-(c),
either show sets A and B with the specified property or demonstrate
that this property cannot hold.
a) Can C be recursive?

b) Can C be re non-recursive (undecidable)?

c) Can C be non-re?

© UCF EECS

414

Sample Question#1
1. Given that the predicate STP and the

function VALUE are algorithms, show
that we can semi-decide

HZ = { f | jf evaluates to 0 for some input}

Note: STP(f, x, s) is true iff jf(x)
converges in s or fewer steps and, if so,
VALUE(f, x, s) = jf(x).

4/7/19 © UCF EECS

415

Sample Questions#2,3
2. Use Rice’s Theorem to show that HZ is

undecidable, where HZ is

HZ = { f | jf evaluates to 0 for some input}

3. Redo using Reduction from HALT.

4/7/19 © UCF EECS

416

Sample Question#4
4. Let P = { f | $ x [STP(f, x, x)] }. Why

does Rice’s theorem not tell us anything
about the undecidability of P?

4/7/19 © UCF EECS

417

Sample Question#5
5. Let S be an re (recursively enumerable), non-

recursive set, and T be an re, possibly
recursive non-empty set. Let
E = { z | z = x + y, where x Î S and y Î T }.
Answer with proofs, algorithms or
counterexamples, as appropriate, each of the
following questions:
(a) Can E be non re?
(b) Can E be re non-recursive?
(c) Can E be recursive?

4/7/19 © UCF EECS

Constant time:
Not amenable to Rice’s

Constant Time
• CTime = { M | $K [M halts in at most K steps

independent of its starting configuration] }
• RT cannot be shown undecidable by Rice’s Theorem as

it breaks property 2
– Choose M1 and M2 to each Standard Turing Compute (STC)

ZERO
– M1 is R (move right to end on a zero)
– M2 is L R R (time is dependent on argument)
– M1 is in CTime; M2 is not , but they have same I/O behavior, so

CTime does not adhere to property 2

4/7/19 © UCF EECS 419

Quantifier Analysis
• CTime = { M | $K "C [STP(M, C, K)] }
• This would appear to imply that CTime is not

even re. However, a TM that only runs for K
steps can only scan at most K distinct tape
symbols. Thus, if we use unary notation, CTime
can be expressed

• CTime = { M | $K "C|C|≤K [STP(M, C, K)] }
• We can dovetail over the set of all TMs, M, and

all K, listing those M that halt in constant time.

4/7/19 © UCF EECS 420

Complexity of CTime
• Can show it is equivalent to the Halting

Problem for TM’s with Infinite Tapes (not
unbounded but truly infinite)

• This was shown in 1966 to be
undecidable.

• It was also shown to be re, just as we
have done so for CTime.

• Details Later

4/7/19 © UCF EECS 421

What We’ve Done in
Computability

Dec 2, 2007/COT5310 © UCF (Charles E. Hughes) 423

List Minus Some Tedious Stuff
• A question with multiple parts that uses quantification (STP/VALUE)
• Various re and recursive equivalent definitions
• Proofs of equivalence of definitions
• Consequences of recursiveness or re-ness of a problem
• Closure of recursive/re sets
• Gödel numbering (pairing functions and inverses)
• Models of computation/equivalences (not details but understanding)
• Primitive recursion and its limitation; bounded versus unbounded μ
• Notion of universal machine
• A proof by diagonalization (there are just two possibilities)
• A question about K and/or K0
• Many-one reduction(s)
• Rice’s Theorem (its proof and its variants)
• Applications of Rice’s Theorem and when it cannot be applied

More Practice Problems

425

Sample Question#1
1. Prove that the following are equivalent

a) S is an infinite recursive (decidable) set.
b) S is the range of a monotonically

increasing total recursive function.
Note: f is monotonically increasing
means that "x f(x+1) > f(x).

4/7/19 © UCF EECS

426

Sample Question#2
2. Let A and B be re sets. For each of the

following, either prove that the set is re,
or give a counterexample that results in
some known non-re set.

a) A È B
b) A Ç B
c) ~A

4/7/19 © UCF EECS

427

Sample Question#3
3. Present a demonstration that the even

function is primitive recursive.
even(x) = 1 if x is even
even(x) = 0 if x is odd
You may assume only that the base
functions are prf and that prf’s are closed
under a finite number of applications of
composition and primitive recursion.

4/7/19 © UCF EECS

428

Sample Question#4
4. Given that the predicate STP and the

function VALUE are prf’s, show that we
can semi-decide

{ f | jf evaluates to 0 for some input}

Note: STP(f, x, s) is true iff jf(x)
converges in s or fewer steps and, if so,
VALUE(f, x, s) = jf(x).

4/7/19 © UCF EECS

429

Sample Question#5
5. Let S be an re (recursively enumerable), non-

recursive set, and T be an re, possibly
recursive set. Let
E = { z | z = x + y, where x Î S and y Î T }.
Answer with proofs, algorithms or
counterexamples, as appropriate, each of the
following questions:
(a) Can E be non re?
(b) Can E be re non-recursive?
(c) Can E be recursive?

4/7/19 © UCF EECS

430

Sample Question#6
6. Assuming that the Uniform Halting

Problem (TOTAL) is undecidable (it’s
actually not even re), use reduction to
show the undecidability of

{ f | "x jf (x+1) > jf (x) }

4/7/19 © UCF EECS

431

Sample Question#7
7. Let Incr = { f | "x, jf(x+1)>jf(x) }.

Let TOT = { f | "x, jf(x)¯ }.
Prove that Incr ºm TOT. Note Q#6 starts
this one.

4/7/19 © UCF EECS

432

Sample Question#8
8. Let Incr = { f | "x jf(x+1)>jf(x) }. Use

Rice’s theorem to show Incr is not
recursive.

4/7/19 © UCF EECS

433

Sample Question#9
9. Let S be a recursive (decidable set),

what can we say about the complexity
(recursive, re non-recursive, non-re) of T,
where T Ì S?

4/7/19 © UCF EECS

434

Sample Question#10
10.Define the pairing function <x,y> and its

two inverses <z>1 and <z>2, where if
z = <x,y>, then x = <z>1 and y = <z>2.

4/7/19 © UCF EECS

435

Sample Question#11
11.Assume A £m B and B £m C.

Prove A £m C.

4/7/19 © UCF EECS

436

Sample Question#12
12.Let P = { f | $ x [STP(f, x, x)] }. Why

does Rice’s theorem not tell us anything
about the undecidability of P?

4/7/19 © UCF EECS

Post Systems

438

Thue Systems
• Devised by Axel Thue
• Just a string rewriting view of finitely

presented monoids
• T = (S, R), where S is a finite alphabet and

R is a finite set of bi-directional rules of
form ai « bi , ai, biÎS*

• We define Û* as the reflexive, transitive
closure of Û, where w Û x iff w=yaz and
x=ybz, where a « b

4/7/19 © UCF EECS

439

Semi-Thue Systems
• Devised by Emil Post
• A one-directional version of Thue systems
• S = (S, R), where S is a finite alphabet and

R is a finite set of rules of form
ai ® bi , ai, biÎS*

• We define Þ* as the reflexive, transitive
closure of Þ, where w Þ x iff w=yaz and
x=ybz, where a ® b

4/7/19 © UCF EECS

440

Word Problems
• Let S = (S, R) be some Thue (Semi-Thue)

system, then the word problem for S is the
problem to determine of arbitrary words w and x
over S, whether or not w Û* x (w Þ* x)

• The Thue system word problem is the problem
of determining membership in equivalence
classes. This is not true for Semi-Thue systems.

• We can always consider just the relation Þ*
since the symmetric property of Û* comes
directly from the rules of Thue systems.

4/7/19 © UCF EECS

441

Post Canonical Systems
• These are a generalization of Semi-Thue systems.
• P = (S, V, R), where S is a finite alphabet, V is a finite set of

“variables”, and R is a finite set of rules.
• Here the premise part (left side) of a rule can have many premise

forms, e.g, a rule appears as
P1,1a1,1 P1,2… a1,n1

P1,n1
a1,n1+1 ,

P2,1a2,1 P2,2… a2,n2
P2,n2

a2,n2+1 ,
…

Pk,1ak,1 Pk,2… ak,nk
Pk,nk

ak,nk+1 ,
®Q1b1 Q2… bnk+1

Qnk+1
bnk+1+1

• In the above, the P’s and Q’s are variables, the a’s and b’s are
strings over S, and each Q must appear in at least one premise.

• We can extend the notion of Þ* to these systems considering sets
of words that derive conclusions. Think of the original set as axioms,
the rules as inferences and the final word as a theorem to be
proved.

4/7/19 © UCF EECS

442

Examples of Canonical Forms
• Propositional rules

P, P É Q ® Q
~P, P È Q ® Q
P Ç Q ® P oh, oh a Ç (b Ç c) Þ a Ç (b
P Ç Q ® Q
(P Ç Q) Ç R « P Ç (Q Ç R)
(P È Q) È R « P È (Q È R)
~(~P) « P
P È Q ® Q È P
P Ç Q ® Q Ç P

• Some proofs over {a,b,(,),~,É,È,Ç}
{a È c, b É ~c, b} Þ {a È c, b É ~c, b, ~c} Þ
{a È c, b É ~c, b, ~c, c È a} Þ
{a È c, b É ~c, b, ~c, c È a, a} which proves “a”

4/7/19 © UCF EECS

443

Simplified Canonical Forms
• Each rule of a Semi-Thue system is a canonical rule of

the form
PaQ ® PbQ

• Each rule of a Thue system is a canonical rule of the
form
PaQ « PbQ

• Each rule of a Post Normal system is a canonical rule of
the form
aP ® Pb

• Tag systems are just Normal systems where all
premises are of the same length (the deletion number),
and at most one can begin with any given letter in S.
That makes Tag systems deterministic.

4/7/19 © UCF EECS

444

Examples of Post Systems
• Alphabet S = {a,b,#}. Semi-Thue rules:

aba ® b
#b# ® l
For above, #anbam# Þ* l iff n=m

• Alphabet S = {0,1,c,#}. Normal rules:
0c ® 1
1c ® c0
#c ® #1
0 ® 0
1 ® 1
® #
For above, binaryc# Þ* binary+1# where binary is some
binary number.

4/7/19 © UCF EECS

445

Simulating Turing Machines
• Basically, we need at least one rule for each 4-

tuple in the Turing machine’s description.
• The rules lead from one instantaneous

description to another.
• The Turing ID aqab is represented by the string

haqabh, a being the scanned symbol.
• The tuple q a b s leads to

qa ® sb
• Moving right and left can be harder due to

blanks.

4/7/19 © UCF EECS

446

Details of Halt(TM) £ Word(ST)
• Let M = (Q, {0,1}, T), T is Turing table.
• If qabs Î T, add rule qa ® sb
• If qaRs Î T, add rules

– q1b ® 1sb a=1, "bÎ{0,1}
– q1h ® 1s0h a=1
– cq0b ® c0sb a=0, "b,cÎ{0,1}
– hq0b ® hsb a=0, "bÎ{0,1}
– cq0h ® c0s0h a=0, "cÎ{0,1}
– hq0h ® hs0h a=0

• If qaLs Î T, add rules
– bqac ® sbac "a,b,cÎ{0,1}
– hqac ® hs0ac "a,cÎ{0,1}
– bq1h ® sb1h a=1, "bÎ{0,1}
– hq1h ® hs01h a=1
– bq0h ® sbh a=0, "bÎ{0,1}
– hq0h ® hs0h a=0

4/7/19 © UCF EECS

447

Clean-Up
• Assume q1 is start state and only one accepting state exists q0
• We will start in h1xq10h, seeking to accept x (enter q0) or reject (run

forever).
• Add rules

– q0a ® q0 "aÎ{0,1}
– bq0 ® q0 "bÎ{0,1}

• The added rule allows us to “erase” the tape if we accept x.
• This means that acceptance can be changed to generating hq0h.

• The next slide shows the consequences.

4/7/19 © UCF EECS

448

Semi-Thue Word Problem
• Construction from TM, M, gets:
• h1xq10h Þå(M)* hq0h iff xÎL(M).
• hq0h ÞÕ(M)* h1xq10h iff xÎL(M).
• hq0h Ûå (M)* h1xq10h iff xÎL(M).
• Can recast both Semi-Thue and Thue

Systems to ones over alphabet {a,b} or
{0,1}. That is, a binary alphabet is
sufficient for undecidability.

4/7/19 © UCF EECS

Formal Language

Undecidability Continued
PCP and Traces

450

Post Correspondence Problem
• Many problems related to grammars can be shown to be

no more complex than the Post Correspondence
Problem (PCP).

• Each instance of PCP is denoted: Given n>0, S a finite
alphabet, and two n-tuples of words
(x1, … , xn), (y1, … , yn) over S,
does there exist a sequence i1, … , ik , k>0, 1 ≤ ij ≤ n,
such that
xi1 … xik = yi1 … yik ?

• Example of PCP:
n = 3, S = { a , b }, (a b a , b b , a), (b a b , b , b a a).
Solution 2 , 3, 1 , 2
b b a a b a b b = b b a a b a b b

4/7/19 © UCF EECS

451

PCP Example#2
• Start with Semi-Thue System

– aba ® ab; a ® aa; b ® a
– Instance of word problem: bbbb Þ*? aa

• Convert to PCP
– [bbbb* ab ab aa aa a a]

[aba aba a a b b *aa]
– And * * a a b b

* * a a b b

4/7/19 © UCF EECS

452

How PCP Construction Works?

• Using underscored letters avoids solutions
that don’t relate to word problem instance.
E.g.,

aba a
ab aa

• Top row insures start with [W0*
• Bottom row insures end with *Wf]
• Bottom row matches Wi, while top

matches Wi+1 (one is underscored)
4/7/19 © UCF EECS

453

Ambiguity of CFG
• Problem to determine if an arbitrary CFG

is ambiguous
S® A | B
A® xi A [i] | xi [i] 1 ≤ i ≤ n
B® yi B [i] | yi [i] 1 ≤ i ≤ n
A Þ* xi1 … xik [ik] … [i1] k > 0
B Þ* yi1 … yik [ik] … [i1] k > 0

• Ambiguous if and only if there is a solution
to this PCP instance.

4/7/19 © UCF EECS

454

Intersection of CFLs
• Problem to determine if arbitrary CFG’s

define overlapping languages
• Just take the grammar consisting of all the

A-rules from previous, and a second
grammar consisting of all the B-rules. Call
the languages generated by these
grammars, LA and LB.
LA Ç LB ≠ Ø, if and only there is a solution
to this PCP instance.

4/7/19 © UCF EECS

455

CSG Produces Something
S ® xi S yi

R | xi T yi
R 1 ≤ i ≤ n

a T a ® * T *
* a ® a *
a * ® * a
T ® *

• Our only terminal is *. We get strings of
form *2j+1, for some j’s if and only if there is
a solution to this PCP instance.

4/7/19 © UCF EECS

Traces and Grammars

4/7/19 © UCF EECS 457

Traces

• A valid trace
– # C1 # C2 # C3 # C4 … # Ck-1 # Ck #,

where k ³ 1 and Ci ÞM Ci+1, for 1 £ i < k.
Here, ÞM means derive in M, and C is a valid
ID (Instantaneous Description)

• An invalid trace
– # C1 # C2 # C3 # C4 … # Ck-1 # Ck #,

where k ³ 1 and for some i, it is false that
Ci ÞM Ci+1.

458

Traces (Valid Computations)
• A terminating trace of a machine M, is a word of the form

C0 # C1 # C2 # C3 # … # Ck-1 # Ck

where Ci Þ Ci+1 0 ≤ i < k, X0 is a starting configuration and Ck is a
terminating configuration.

• We allow some laxness, where the configurations might be encoded
in a manner appropriate to the machine model. Now, a context free
grammar can be devised which approximates traces by either
getting the even-odd pairs right, or the odd-even pairs right. The
goal is to then intersect the two languages, so the result is a trace.
This then allows us to create CFLs L1 and L2, where L1 Ç L2 ≠ Ø ,
just in case the machine has an element in its domain. Since this is
undecidable, the non-emptiness of the intersection problem is also
undecidable. This is an alternate proof to one we already showed
based on PCP.

• Additionally, if L1 Ç L2 = Ø, the complement (bad traces + non-
traces) is Σ*. As this can be shown to be a CFL, determining if a
CFG generates Σ* is undecidable as well.

4/7/19 © UCF EECS

4/7/19 © UCF EECS 459

What’s Undecidable?
• We cannot decide if the set of valid

terminating traces of an arbitrary machine
M is non-empty.

• We cannot decide if the complement of the
set of valid terminating traces of an
arbitrary machine M is everything. In fact,
this is not even semi-decidable.

4/7/19 © UCF EECS 460

What’s a CSL or CFL?
• Given some machine M (I’ll talk about specific

models later)

– The set of valid traces of M is Context Sensitive

(can prove by fact that intersection of two CFLs is a

CSG or by direct construction)

– The complement of the valid traces of M is Context

Free; that is, the set of invalid traces of M is Context

Free (just one mistake required)

– The set of valid terminating traces of M is Context

Sensitive (same as above)

– The complement of the valid terminating traces of M
is Context Free; again, this requires just one mistake

461

L = S*?
• If L is regular, then L = S*? is decidable

– Easy – Reduce to minimal deterministic FSA,
AL accepting L. L = S* iff AL is a one-state
machine, whose only state is accepting

• If L is context free, then L = S*? is
undecidable
– Just produce the complement of a machine’s

valid terminating traces; if it’s S* then the
original machine accepted nothing

4/7/19 © UCF EECS

462

Traces are NOT CFLs
• In the previous, we assumed that a trace is NOT a CFL,

but we never proved that.

• To show the trace language for a TM, M,

{ # C1 # C2 # C3 # C4 … # Ck-1 # Ck # |

k ³ 1 and Ci ÞM Ci+1, for 1 £ i < k } is not a CFL, we can

focus on a simple machine that has just one non-blank

{1} and one state {q} and the rules

q 0 0 q

q 1 1 q

• This machine has traces of the form

{ # C # C # C # C … # C # C # } as it never changes the

tape contents or its state.

4/7/19 © UCF EECS

463

Using Pumping Lemma
• From previous slide, assume that language of traces,

L = { # C # C # C # C … # C # C # },
involving no changes in the ID is Context Free

• Pumping Lemma gives me an N>0
• I choose the valid trace in L that is # q 1N # q 1N # q 1N #
• PL breaks this up into uvwxy, |vwx| ≤ N, |vx|>0 and

∀i≥0 uviwxiy ∈ L
• Case 1: vx contains some 1’s. Due to fact that |vwx| ≤ N, the 1’s can come

from at most two consecutive sequences of 1’s. If i=0, then we reduce 1’s in
at most two subsequences, but not in the third, leading to an imbalance,
and so the result is not in L.

• Case 2: vx contains no 1’s, then it must be either ‘q’, ‘#’, or ‘#q’. In any
case, if i=1 then we remove a state or a divider or both and the result is not
a sequence of fixed configuration, so is not in L.

• By PL, L is not a CFL.

4/7/19 © UCF EECS

464

Language of Traces is a CSL
• The easiest way to show this for Turing machine traces is to describe an

LBA that is given a string and wants to check if it is a valid trace.
• The LBA could make a pass over to be sure the string starts with a #, ends

with a #, has no 0’s immediately following a #, has a leading 0 immediately
prior to a # only if the character preceding that 0 is a state, and has exactly
one state between each pair of #’s.

• The LBA could then check each pair by copying the second member of a
pair under the first (2 tracks) and then marching over the two one character
at a time until a state is found in one or the other. It can then do checks that
are based on the Turing machine rules with there being a need to look at
only 4 characters in each track – state, character to immediate left of state
and up to two characters to immediate right of state on each track (think
about it). Of course, all parts of configuration that are not altered must be
checked to be sure they match on both tracks.

4/7/19 © UCF EECS

465

Non-Traces is a CFL
• There are two ways that a string might not be a valid trace.
• First, it might be ill-formed, but we can easily check if a word looks like a

trace. If not, it is in the complement of valid traces
• Second, we can check pairs of configurations, # Ci # Ci+1 to see if there is a

transcription error; that is, we can check to see if it is the case that Ci+1 does
not follow from Ci in a valid trace. This is a non-deterministic process where
we “guess” which pair might be in error and then, if the guess is correct, we
accept the string as a bad one that just looks like a trace.

• How hard is it to check for one bad transcription? Well, as noted above it
starts with a guess, but then we must check. If it’s a TM trace, we use
alternating ID reversals, so such a pair is either # Ci # Ci+1R or # CiR # Ci+1.
Checking an error here is just looking as was described with the LBA single
step check and can be done with a stack. What the stack cannot do is look
at sequences longer than single pairs.

4/7/19 © UCF EECS

466

Traces of FRS with Residues
• I have chosen, once again to use the Factor Replacement Systems,

but this time, Factor Systems with Residues.
The rules are unordered and each is of the form
a x + b ® c x + d

• These systems need to overcome the lack of ordering when
simulating Register Machines. This is done by
j. INCr[i] pn+j x ® pn+i pr x
j. DECr[s, f] pn+j pr x ® pn+s x

pn+j pr x + k pn+j ® pn+f pr x + k pn+f , 1 ≤ k < pr
We also add the halting rule associated with m+1 of

pn+m+1 x ® 0
• Thus, halting is equivalent to producing 0. We can also add one

more rule that guarantees we can reach 0 on both odd and even
numbers of moves

0 ® 0

4/7/19 © UCF EECS

467

Intersection of CFLs
• Let (n, ((a1,b1,c1,d1) , … ,(ak,bk,ck,dk)) be some factor replacement

system with residues. Define grammars G1 and G2 by using the 4k+2 rules
G : Fi ® 1aiFi1ci | 1ai+bi#1ci+di 1 ≤ i ≤ k

S1 ® # Fi S1 | # Fi # 1 ≤ i ≤ k
S2 ® # 1x0S11z0# Z0 is 0 for us

G1 starts with S1 and G2 with S2
• Thus, using the notation of writing Y in place of 1Y,

L1 = L(G1) = { #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }
where Y2i Þ Y2i+1 , 0 ≤ i ≤ j.
This checks the even/odd steps of an even length computation.
But, L2 = L(G2) = { #X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # }
where X2i-1 Þ X2i , 1 ≤ i ≤ k.
This checks the odd/even steps of an even length computation.

• Given that the intersection of two CFLs is at worst a CSL, we now have an
indirect way of showing that the valid terminating traces are a CSL.

4/7/19 © UCF EECS

468

Intersection Continued
Now, X0 is chosen as some selected input value to the
Factor System with Residues, and Z0 is the unique value
(0 in our case) on which the machine halts. But,
L1 Ç L2 = {#X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # }
where Xi Þ Xi+1 , 0 ≤ i < 2k, and X2k Þ Z0 . This checks
all steps of an even length computation. But our original
system halts if and only if it produces 0 (Z0) in an even
(also odd) number of steps. Thus the intersection is
non-empty just in case the Factor System with residue
eventually produces 0 when started on X0, just in case
the Register Machine halts when started on the register
contents encoded by X0.
This is an independent proof of the undecidability of the
non-empty intersection problem for CFGs and the non-
emptiness problem for CSGs.

4/7/19 © UCF EECS

4/7/19 © UCF EECS 469

What’s a CSL or CFL?
• Given an FRS with Residue

– The set of valid traces is Context Sensitive

(can prove by fact that intersection of two CFLs is a

CSG or by direct construction or by describing an

LBA that accepts this language)

– The complement of the valid traces is Context Free;

that is, the set of invalid traces of M is Context Free

(just one mistake required)

– The set of valid terminating traces is Context

Sensitive (same as above)

– The complement of the valid terminating traces is

Context Free; again, this requires just one mistake

Quotients of CFLs (concept)
Let L1 = L(G1) = { $ # Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }
where Y2i Þ Y2i+1 , 0 ≤ i ≤ j.
This checks the even/odd steps of an even length computation.
Now, let L2=L(G2)={X0 $ # X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 #}
where X2i-1 Þ X2i , 1 ≤ i ≤ k and Z is a unique halting configuration.
This checks the odd/steps of an even length computation and includes
an extra copy of the starting number prior to its $.
Now, consider the quotient of L2 / L1 . The only way a member of L1
can match a final substring in L2 is to line up the $ signs. But then
they serve to check out the validity and termination of the
computation. Moreover, the quotient leaves only the starting point
(the one on which the machine halts.) Thus,
L2 / L1 = { X0 | the system being traced halts}.
Since deciding the members of an re set is in general undecidable, we
have shown that membership in the quotient of two CFLs is also
undecidable.
Note: Intersection of two CFLs is a CSL but quotient of two CFLs is an
re set and, in fact, all re sets can be specified by such quotients.

4/7/19 470© UCF EECS

471

Quotients of CFLs (precise)

• Let (n, ((a1,b1,c1,d1) , … ,(ak,bk,ck,dk)) be some factor replacement system with
residues. Define grammars G1 and G2 by using the 4k+4 rules

G : Fi ® 1aiFi1
ci | 1ai+bi#1ci+di 1 ≤ i ≤ k

T1 ® # Fi T1 | # Fi # 1 ≤ i ≤ k

A ® 1 A 1 | $ #

S1 ® $T1

S2 ® A T1 # 1z0 # Z0 is 0 for us

G1 starts with S1 and G2 with S2

• Thus, using the notation of writing Y in place of 1Y,
L1 = L(G1) = { $ #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }

where Y2i Þ Y2i+1 , 0 ≤ i ≤ j.

This checks the even/odd steps of an even length computation.

But, L2 = L(G2) = { X $ #X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # }

where X2i-1 Þ X2i , 1 ≤ i ≤ k and X = X0

This checks the odd/steps of an even length computation, and includes

an extra copy of the starting number prior to its $.

4/7/19 © UCF EECS

472

Summarizing Quotient
Now, consider the quotient L2 / L1 where L1 and
L2 are the CFLs on prior slide. The only way a
member of L1 can match a final substring in L2
is to line up the $ signs. But then they serve to
check out the validity and termination of the
computation. Moreover, the quotient leaves only
the starting number (the one on which the
machine halts.) Thus,
L2 / L1 = { X | the system F halts on zero }.
Since deciding the members of an re set is in
general undecidable, we have shown that
membership in the quotient of two CFLs is also
undecidable.

4/7/19 © UCF EECS

473

Traces and Type 0
• Here, it is easier to show a simulation of a Turing machine than of an FRS.
• Assume we are given some machine M, with Turing table T (using Post notation). We

assume a tape alphabet of S that includes a blank symbol B.
• Consider a starting configuration C0. Our rules will be

S ® # C0 # where C0 = αq0aβ is initial ID
q a ® s b if q a b s Î T
b q a x ® b a s x if q a R s Î T, a,b,x Î S
b q a # ® b a s B # if q a R s Î T, a,b Î S
q a x ® # a s x if q a R s Î T, a,x Î S, a≠B
q a # ® # a s B # if q a R s Î T, a Î S, a≠B
q a x ® # s x # if q a R s Î T, x Î S, a=B
q a # ® # s B # if q a R s Î T, a=B
b q a x ® s b a x if q a L s Î T, a,b,x Î S
q a x ® # s B a x if q a L s Î T, a,x Î S
b q a # ® s b a # if q a L s Î T, a,b Î S, a≠B
q a # ® # s B a # if q a L s Î T, a Î S, a≠B
b q a # ® s b # if q a L s Î T, b Î S, a=B
q a # ® # s B # if q a L s Î T, a=B
f ® l if f is a final state
® l just cleaning up the dirty linen

4/7/19 © UCF EECS

474

CSG and Undecidability
• We can almost do anything with a CSG that can be done with a Type 0

grammar. The only thing lacking is the ability to reduce lengths, but we can
throw in a character that we think of as meaning “deleted”. Let’s use the
letter d as a deleted character and use the letter e to mark both ends of a
word.

• Let G = (V, T, P , S) be an arbitrary Type 0 grammar.
• Define the CSG G’ = (V È {S’, D}, T È {d, e}, S’, P’), where P’ is

S’ ® e S e
D x ® x D when x Î V È T
D e ® e d push the delete characters to far right
a ® b where a ® b Î P and |a| ≤ |b|
a ® bDk where a ® b Î P and |a| - |b| = k > 0

• Clearly, L(G’) = { e w e dm | w Î L(G) and m≥0 is some integer }
• For each w Î L(G), we cannot, in general, determine for which values of m,

e w e dm Î L(G’). We would need to ask a potentially infinite number of
questions of the form
“does e w e dm Î L(G’)” for some m≥0 to determine if w Î L(G).
That’s a semi-decision procedure because m can be unbounded above.

4/7/19 © UCF EECS

475

Some Consequences
• CSGs are not closed under Init, Final, Mid, quotient with

regular sets, substitution and homomorphism (okay for

l-free homomorphism and non-length reducing

substitutions)

• We also have that the emptiness problem is undecidable

from this result. That gives us two proofs of this one

result.

• For Type 0, emptiness and even the membership

problems are undecidable.

4/7/19 © UCF EECS

Summary of Grammar
Results

477

Decidability
• Everything about regular
• Membership in CFLs and CSLs

– CKY for CFLs
• Emptiness for CFLs

4/7/19 © UCF EECS

478

Undecidability
• Is L =Æ, for CSL, L?
• Is L=S*, for CFL (CSL), L?
• Is L1=L2 for CFLs (CSLs), L1, L2?
• Is L1ÍL2 for CFLs (CSLs), L1, L2?
• Is L1ÇL2=Æ for CFLs (CSLs), L1, L2?

4/7/19 © UCF EECS

479

More Undecidability
• Is CFL, L, ambiguous?
• Is L=L2, L a CFL?
• Does there exist a finite n, Ln=LN+1?
• Is L1/L2 finite, L1 and L2 CFLs?
• Membership in L1/L2, where L1 and L2 are

CFLs?

4/7/19 © UCF EECS

480

Word to Grammar Problem
• Recast semi-Thue system making all

symbols non-terminal, adding S and V to
non-terminals and terminal set S={a}
G: S ® h1xq10h

hq0h ® V
V ® aV
V ® l

• xÎL(M) iff L(G) ≠ Ø iff L(G) infinite
iff l Î L(G) iff a Î L(G) iff L(G) = S*

4/7/19 © UCF EECS

481

Consequences for PSG
• Unsolvables
– L(G) = Ø
– L(G) = S*
– L(G) infinite
– w Î L(G), for arbitrary w
– L(G) Ê L(G2)
– L(G) = L(G2)

• Latter two results follow when have
– G2: S ® aS | l aÎS

4/7/19 © UCF EECS

Finite Convergence for
Concatenation of Context-Free

Languages
Relation to Real-Time

(Constant Time) Execution

Powers of CFLs

Let G be a context free grammar.
Consider L(G)n

Question1: Is L(G) = L(G)2?
Question2: Is L(G)n = L(G)n+1, for some

finite n>0?
These questions are both undecidable.
Think about why question1 is as hard as

whether or not L(G) is S*.
Question2 requires much more thought.
4/7/19 © UCF EECS 483

L(G) = L(G)2?

• The problem to determine if L = S* is Turing
reducible to the problem to decide if
L • L Í L, so long as L is selected from a
class of languages C over the alphabet S for
which we can decide if S È {l} Í L.

• Corollary 1:
The problem “is L • L = L, for L context free
or context sensitive?” is undecidable

4/7/19 © UCF EECS 484

L(G) = L(G)2? is undecidable

• Question: Does L • L get us anything new?
– i.e., Is L • L = L?

• Membership in a CFL is decidable.
• Claim is that L = S* iff

(1) S È {l} Í L ; and
(2) L • L = L

• Clearly, if L = S* then (1) and (2) trivially hold.
• Conversely, we have S* Í L*= È n³0 Ln Í L

– first inclusion follows from (1); second
from (2)

4/7/19 © UCF EECS 485

Finite Power Problem
• The problem to determine, for an arbitrary

context free language L, if there exist a finite
n such that Ln = Ln+1 is undecidable.

• L1 = { C1# C2
R $ |

C1, C2 are configurations },
• L2 = { C1#C2

R$C3#C4
R … $C2k-1#C2k

R$ | where
k ³ 1 and, for some i, 1 £ i < 2k, Ci ÞM Ci+1 is
false },

• L = L1 È L2 È {l}.

4/7/19 © UCF EECS 486

Undecidability of $n Ln = Ln+1

• L is context free.
• Any product of L1 and L2, which contains L2 at least

once, is L2. For instance, L1 • L2 = L2 • L1 = L2 • L2 =
L2.

• This shows that (L1 È L2)n = L1
n È L2.

• Thus, Ln = {l} È L1 È L1
2 … È L1

n È L2.
• Analyzing L1 and L2 we see that L1

n È L2 ¹ L2 just in
case there is a word C1 # C2

R $ C3 # C4
R … $ C2n-1 #

C2n
R $ in L1

n that is not also in L2.
• But then there is some valid trace of length 2n.
• L has the finite power property iff M executes in

constant time.
4/7/19 © UCF EECS 487

Missing Step
• We have that CT (Constant-Time) is many-one

reducible to Finite Power Problem (FPC) for
CFLs

• This means that if CT is unsolvable, so is FPC
for CFLs.

• However, we still lack a proof that CT is
unsolvable. I am keeping that open as one of the
problems that you folks can attack in your
presentation. It takes two papers to get here. I’ll
document that.

4/7/19 © UCF CS 488

Propositional Calculus

Axiomatizable Fragments

4/7/19 © UCF EECS 490

Propositional Calculus
• Mathematical of unquantified logical

expressions

• Essentially Boolean algebra

• Goal is to reason about propositions

• Often interested in determining

– Is a well-formed formula (wff) a tautology?

– Is a wff refutable (unsatisfiable)?

– Is a wff satisfiable? (classic NP-complete)

4/7/19 © UCF EECS 491

Tautology and Satisfiability
• The classic approaches are:

– Truth Table
– Axiomatic System (axioms and inferences)

• Truth Table
– Clearly exponential in number of variables

• Axiomatic Systems Rules of Inference
– Substitution and Modus Ponens
– Resolution / Unification

4/7/19 © UCF EECS 492

Proving Consequences
• Start with a set of axioms (all tautologies)

• Using substitution and MP

(P, P ÉQ Þ Q)

derive consequences of axioms (also

tautologies, but just a fragment of all)

• Can create complete sets of axioms

• Need 3 variables for associativity, e.g.,

(p1 Ú p2) Ú p3 É p1 Ú (p2 Ú p3)

4/7/19 © UCF EECS 493

Some Undecidables
• Given a set of axioms,

– Is this set complete?
– Given a tautology T, is T a consequent?

• The above are even undecidable with one
axiom and with only 2 variables. I will
show this result shortly.

4/7/19 © UCF EECS 494

Refutation
• If we wish to prove that some wff, F, is a

tautology, we could negate it and try to

prove that the new formula is refutable

(cannot be satisfied; contains a logical

contradiction).

• This is often done using resolution.

4/7/19 © UCF EECS 495

Resolution
• Put formula in Conjunctive Normal Form

(CNF)
• If have terms of conjunction

(P Ú Q), (R Ú ~Q)
then can determine that (P Ú R)

• If we ever get a null conclusion, we have
refuted the proposition

• Resolution is not complete for derivation,
but it is for refutation

4/7/19 © UCF EECS 496

Axioms
• Must be tautologies
• Can be incomplete
• Might have limitations on them and on

WFFs, e.g.,
– Just implication
– Only n variables

– Single axiom

4/7/19 © UCF EECS 497

Simulating Machines
• Linear representations require

associativity, unless all operations can be
performed on prefix only (or suffix only)

• Prefix and suffix-based operations are
single stacks and limit us to CFLs

• Can simulate Post normal Forms with just
3 variables.

4/7/19 © UCF EECS 498

Diadic PIPC
• Diadic limits us to two variables

• PIPC means Partial Implicational

Propositional Calculus, and limits us to

implication as only connective

• Partial just means we get a fragment

• Problems

– Is fragment complete?

– Can F be derived by substitution and MP?

4/7/19 © UCF EECS 499

Living without Associativity
• Consider a two-stack model of a TM

• Could somehow use one variable for left

stack and other for right

• Must find a way to encode a sequence as

a composition of forms – that’s the key to

this simulation

4/7/19 © UCF EECS 500

Composition Encoding
• Consider (p É p), (p É (p É p)),

(p É (p É (p É p))), …
– No form is a substitution instance of any of the

other, so they can’t be confused
– All are tautologies

• Consider ((X É Y) É Y)
– This is just X Ú Y

4/7/19 © UCF EECS 501

Encoding
• Use (p É p) as form of bottom of stack
• Use (p É (p É p)) as form for letter 0
• Use (p É (p É (p É p))) as form for 1
• Etc.
• String 01 (reading top to bottom of stack) is

– (((p É p) É ((p É p) É ((p É p) É (p É p)))) É
(((p É p) É ((p É p) É ((p É p) É (p É p)))) É
((p É p) É ((p É p) É ((p É p) É (p É p))))))

Encoding
I(p) abbreviates [p É p]
F0(p) is [p É I(p)] which is [p É [p É p]]
F1(p) is [p É F0(p)]
x1(p) is [p É F1(p)]
x2(p) is [p É x1 (p)]
x3(p) is [p É x2 (p)]
y1(p) is [p É x3 (p)]
y2(p) is [p É y1 (p)]
…
ym(p) is [p É ym-1 (p)]

4/7/19 © UCF EECS 502

4/7/19 © UCF EECS 503

Creating Terminal IDs

4/7/19 © UCF EECS 504

Reversing Print and Left

4/7/19 © UCF EECS 505

Reversing Right

Exam Prep

507

Sample Question

Let A and B be re sets. For each of the following, either
prove that the set is re, or give a counterexample that
results in some known non-re set.
Let A be semi decided by fA and B by fB

a) A È B: must be re as it is semi-decided by
fA È B (x) = $t [stp(fA, x, t) || stp(fB, x, t)]

b) A Ç B: must be re as it is semi-decided by
fA Ç B (x) = $t [stp(fA, x, t) && stp(fB, x, t)]

c) ~A: can be non-re. If ~A is always re, then all re
are recursive as any set that is re and whose
complement is re is decidable. However, A = K
is a non-rec, re set and so ~A is not re.

4/7/19 © UCF EECS

508

Sample Question
Given that the predicate STP and the
function VALUE are prf’s, show that we can
semi-decide
{ f | jf evaluates to 0 for some input}

This can be shown re by the predicate
{f | $<x,t> [stp(f,x,t) && value(f,x,t) = 0] }

4/7/19 © UCF EECS

509

Sample Question
Let S be an re (recursively enumerable), non-recursive
set, and T be re, non-empty, possibly recursive set.
Let E = { z | z = x + y, where x Î S and y Î T }.

(a) Can E be non re? No as we can let S and T
be semi-decided by fS and fT, resp., E is then
semi-dec. by
fE (z) = $<x,y,t> [stp(fS, x, t) && stp(fT, y, t) &&
(z = value(fS, x, t) + value(fT, y, t))]
(b) Can E be re non-recursive? Yes, just let T =
{0}, then E = S which is known to be re, non-
rec.
(c) Can E be recursive? Yes, let T = À, then
E = { x | x ≥ min (S) } which is a co-finite set
and hence rec.

4/7/19 © UCF EECS

510

Sample Question
Assuming TOTAL is undecidable, use
reduction to show the undecidability of
Incr = { f | "x jf (x+1) > jf (x) }

Let f be arb.
Define Gf (x) = jf (x) - jf (x) + x
f Î TOTAL iff "xjf (x)¯ iff "x Gf(x)¯ iff
"x jf (x) - jf (x) + x = x iff Gf Î Incr

4/7/19 © UCF EECS

511

Sample Question

Let Incr = { f | "x, jf(x+1)>jf(x) }.
Let TOTAL = { f | "x, jf(x)¯ }.
Prove that Incr ≤m TOTAL.

Let f be arb.
Define Gf (x) = $t[stp(f,x,t) &&
stp(f,x+1,t) && (value(f,x+1,t) >
value(f,x,t))]
f Î Incr iff "x jf(x+1)>jf(x) iff
"x Gf (x)¯ iff Gf Î TOT

4/7/19 © UCF EECS

512

Sample Question

Let Incr = { f | "x jf(x+1)>jf(x) }.
Use Rice’s theorem to show Incr is not
recursive.
Non-Trivial as

C0(x)=0 Ï Incr; S(x)=x+1 Î Incr

Let f,g be arb. Such that "x jf(x)=jg(x)

f Î Incr iff "x jf(x+1)>jf(x) iff

"x jg(x+1)>jg(x) iff g Î Incr

4/7/19 © UCF EECS

513

Sample Question
Let S be a recursive (decidable set), what
can we say about the complexity (recursive,
re non-recursive, non-re) of T, where T Ì S?

Nothing. Just let S = À, then T could be
any subset of À. There are an
uncountable number of such subsets
and some are clearly in each of the
categories above.

4/7/19 © UCF EECS

514

Sample Question

Let P = { f | $ x [STP(f, x, x)] }. Why does
Rice’s theorem not tell us anything about the
undecidability of P?

This is not an I/O property as we can

have implementations of C0 that are

efficient and satisfy P and others that

do not.

4/7/19 © UCF EECS

ORDER ANALYSIS

4/7/19 © UCF EECS 515

Computability &
Complexity Theory

Charles E. Hughes
COT 6410 – Spring 2019

Notes

Notion of “Order”
Throughout the complexity portion of this course,
we will be interested in how long an algorithm
takes on the instances of some arbitrary "size"
n. Recognizing that different times can be
recorded for two instance of size n, we only ask
about the worst case.

We also understand that different languages,
computers, and even skill of the implementer
can alter the "running time."

4/7/19 © UCF EECS 517

Notion of “Order”
As a result, we really can never know "exactly"
how long anything takes.

So, we usually settle for a substitute function,
and say the function we are trying to measure is
"of the order of" this new substitute function.

4/7/19 © UCF EECS 518

Notion of “Order”
"Order" is something we use to describe an upper bound
upon something else (in our case, time, but it can apply
to almost anything).

For example, let f(n) and g(n) be two functions. We say
"f(n) is order g(n)" when there exists constants c and N
such that f(n) ≤ cg(n) for all n ≥ N.

What this is saying is that when n is 'large enough,' f(n)
is bounded above by a constant multiple of g(n).

4/7/19 © UCF EECS 519

Notion of “Order”
This is particularly useful when f(n) is not known
precisely, is complicated to compute, and/or difficult to
use. We can, by this, replace f(n) by g(n) and know we
aren't "off too far."

We say f(n) is "in the order of g(n)" or, simply,
f(n) Î O(g(n)).

Usually, g(n) is a simple function, like nlog(n), n3, 2n,
etc., that's easy to understand and use.

4/7/19 © UCF EECS 520

Notion of “Order”
Order of an Algorithm: The maximum
number of steps required to find the
answer to any instance of size n, for any
arbitrary value of n.

For example, if an algorithm requires at
most 6n2+3n–6 steps on any instance of
size n, we say it is "order n2" or, simply,
O(n2).

4/7/19 © UCF EECS 521

Order
Let the order of algorithm X be in O(fx(n)).

Then, for algorithms A and B and their respective order
functions, fA(n) and fB(n), consider the limit of fA(n)/fB(n)
as n goes to infinity.

If this value is

0 A is faster than B
constant A and B are "equally slow/fast"
infinity A is slower than B.

4/7/19 © UCF EECS 522

Order of a Problem
Order of a Problem

The order of the fastest algorithm that can
ever solve this problem. (Also known as
the "Complexity" of the problem.)

Often difficult to determine, since this allows
for algorithms not yet discovered.

4/7/19 © UCF EECS 523

Decision vs Optimization
Two types of problems are of particular interest:

Decision Problems ("Yes/No" answers)

Optimization problems ("best" answers)

(there are other types)

4/7/19 © UCF EECS 524

Vertex Cover (VC)
• Suppose we are in charge of a large network (a graph where edges

are links between pairs of cities (vertices). Periodically, a line fails.
To mend the line, we must call in a repair crew that goes over the
line to fix it. To minimize down time, we station a repair crew at one
end of every line. How many crews must you have and where
should they be stationed?

• This is called the Vertex Cover Problem. (Yes, it sounds like it
should be called the Edge Cover problem – something else already
had that name.)

• An interesting problem – it is among the hardest problems, yet is
one of the easiest of the hard problems.

4/7/19 © UCF EECS 525

VC Decision vs Optimization
• As a Decision Problem:

• Instances: A graph G and an integer k.
• Question: Does G possess a vertex Cover with at most k vertices?

• As an Optimization Problem:

• Instances: A graph G.
• Question: What is the smallest k for which G possesses a vertex

cover?

4/7/19 © UCF EECS 526

Relation of VC Problems
• If we can (easily) solve either one of these problems, we can (easily)

solve the other. (To solve the optimization version, just solve the
decision version with several different values of k. Use a binary
search on k between 1 and n. That is log(n) solutions of the
decision problem solves the optimization problem. It's simple to
solve the decision version if we can solve the optimization version.

• We say their time complexity differs by no more than a multiple of
log(n).

• If one is polynomial then so is the other.
• If one is exponential, then so is the other.

• We say they are equally difficult (both poly. or both exponential).

4/7/19 © UCF EECS 527

Smallest VC
• A "stranger version"

• Instances: A graph G and an integer k.
• Question: Does the smallest vertex cover of G have exactly k

vertices?
• This is a decision problem. But, notice that it does not seem to be

easy to verify either Yes or No instances!! (We can easily verify No
instances for which the VC number is less than k, but not when it is
actually greater than k.)

• So, it would seem to be in a different category than either of the
other two. Yet, it also has the property that if we can easily solve
either of the first two versions, we can easily solve this one.

4/7/19 © UCF EECS 528

Natural Pairs of Problems
Interestingly, these usually come in pairs

a decision problem, and

an optimization problem.

Equally easy, or equally difficult, to solve.

Both can be solved in polynomial time, or both require
exponential time.

4/7/19 © UCF EECS 529

A Word about Time
An algorithm for a problem is said to be polynomial if
there exists integers k and N such that t(n), the
maximum number of steps required on any instance of
size n, is at most nk, for all n ≥ N.

Otherwise, we say the algorithm is exponential. Usually,
this is interpreted to mean t(n) ≥ cn for an infinite set of
size n instances, and some constant c > 1 (often, we
simply use c = 2).

4/7/19 © UCF EECS 530

A Word about “Words”
Normally, when we say a problem is "easy" we mean
that it has a polynomial algorithm.

But, when we say a problem is "hard" or “apparently
hard" we usually mean no polynomial algorithm is
known, and none seems likely.

It is possible a polynomial algorithm exists for "hard"
problems, but the evidence seems to indicate otherwise.

4/7/19 © UCF EECS 531

A Word about Abstractions
Problems we will discuss are usually "abstractions" of
real problems. That is, to the extent possible, non-
essential features have been removed, others have been
simplified and given variable names, relationships have
been replaced with mathematical equations and/or
inequalities, etc.

If an abstraction is hard, then the real problem is
probably even harder!!

4/7/19 © UCF EECS 532

A Word about Toy Problems
This process, Mathematical Modeling, is a field of study
in itself, and not our interest here.

On the other hand, we sometimes conjure up artificial
problems to put a little "reality" into our work. This results
in what some call "toy problems."

Again, if a toy problem is hard, then the real problem is
probably harder.

4/7/19 © UCF EECS 533

Very Hard Problems
Some problems have no algorithm (e. g., Halting
Problem.)

No mechanical/logical procedure will ever solve all
instances of any such problem!!

Some problems have only exponential algorithms
(provably so – they must take at least order 2n steps) So
far, only a few have been proven, but there may be
many. We suspect so.

4/7/19 © UCF EECS 534

Easy Problems
Many problems have polynomial algorithms
(Fortunately).

Why fortunately? Because, most exponential
algorithms are essentially useless for problem
instances with n much larger than 50 or 60.
We have algorithms for them, but the best of
these will take 100's of years to run, even on
much faster computers than we now envision.

4/7/19 © UCF EECS 535

Three Classes of Problems
Problems proven to be in these three groups
(classes) are, respectively,

Undecidable, Exponential, and Polynomial.

Theoretically, all problems belong to exactly
one of these three classes.

4/7/19 © UCF EECS 536

Unknown Complexity
Practically, there are a lot of problems (maybe, most)
that have not been proven to be in any of the classes
(Yet, maybe never will be).

Most currently "lie between" polynomial and
exponential – we know of exponential algorithms,
but have been unable to prove that exponential
algorithms are necessary.

Some may have polynomial algorithms, but we have
not yet been clever enough to discover them.

4/7/19 © UCF EECS 537

Why do we Care?
If an algorithm is O(nk), increasing the size of an
instance by one gives a running time that is O((n+1)k)

That’s really not much more.

With an increase of one in an exponential algorithm,
O(2n) changes to O(2n+1) = O(2*2n) = 2*O(2n) – that is, it
takes about twice as long.

4/7/19 © UCF EECS 538

A Word about “Size”
Technically, the size of an instance is the minimum number of
bits (information) needed to represent the instance – its
"length."

This comes from early Formal Language researchers who
were analyzing the time needed to 'recognize' a string of
characters as a function of its length (number of
characters).

When dealing with more general problems there is usually a
parameter (number of vertices, processors, variables, etc.)
that is polynomially related to the length of the instance.
Then, we are justified in using the parameter as a measure
of the length (size), since anything polynomially related to
one will be polynomially related to the other.

4/7/19 © UCF EECS 539

The Subtlety of “Size”
But, be careful.

For instance, if the "value" (magnitude) of n is both
the input and the parameter, the 'length' of the input
(number of bits) is log2(n). So, an algorithm that
takes n time is running in n = 2log2(n) time, which is
exponential in terms of the length, log2(n), but linear
(hence, polynomial) in terms of the "value," or
magnitude, of n.

It's a subtle, and usually unimportant difference, but
it can bite you.

4/7/19 © UCF EECS 540

Subset Sum
• Problem – Subset Sum

• Instances: A list L of n integer values and an integer B.

• Question: Does L have a subset which sums exactly to B?

• No one knows of a polynomial (deterministic) solution to this problem.

• On the other hand, there is a very simple (dynamic programming) algorithm

that runs in O(nB) time.

• Why isn't this "polynomial"?

• Because, the "length" of an instance is nlog(B) and

• nB > (nlog(B))^k for any fixed k.

4/7/19 © UCF EECS 541

Why do we Care?
When given a new problem to solve (design an algorithm
for), if it's undecidable, or even exponential, you will
waste a lot of time trying to write a polynomial solution
for it!!

If the problem really is polynomial, it will be worthwhile
spending some time and effort to find a polynomial
solution.

You should know something about how hard a problem
is before you try to solve it.

4/7/19 © UCF EECS 542

Research Territory
Decidable – vs – Undecidable

(area of Computability Theory)

Exponential – vs – polynomial
(area of Computational Complexity)

Algorithms for any of these
(area of Algorithm Design/Analysis)

4/7/19 © UCF EECS 543

Complexity Theory

Second Part of Course

Models of Computation
NonDeterminism

Since we can't seem to find a model of computation
that is more powerful than a TM, can we find one that
is 'faster'?

In particular, we want one that takes us from
exponential time to polynomial time.

Our candidate will be the NonDeterministic Turing
Machine (NDTM).

4/7/19 © UCF EECS 545

NDTM's
In the basic Deterministic Turing Machine (DTM) we
make one major alteration (and take care of a few
repercussions):

The 'transition functon' in DTM's is allowed to
become a 'transition mapping' in NDTM's.

This means that rather than the next action being
totally specified (deterministic) by the current state
and input character, we now can have many next
actions - simultaneously. That is, a NDTM can be in
many states at once. (That raises some interesting
problems with writing on the tape, just where the
tape head is, etc., but those little things can be
explained away).

4/7/19 © UCF EECS 546

NDTM's
We also require that there be only one halt state - the
'accept' state. That also raises an interesting
question - what if we give it an instance that is not
'acceptable'? The answer - it blows up (or goes into
an infinite loop).

The solution is that we are only allowed to give it
'acceptable' input. That means

NDTM's are only defined for decision problems
and, in particular, only for Yes instances.

4/7/19 © UCF EECS 547

NDTM's
We want to determine how long it takes to get to the
accept state - that's our only motive!!

So, what is a NDTM doing?

In a normal (deterministic) algorithm, we often have
a loop where each time through the loop we are
testing a different option to see if that "choice" leads
to a correct solution. If one does, fine, we go on to
another part of the problem. If one doesn't, we return
to the same place and make a different choice, and
test it, etc.

4/7/19 © UCF EECS 548

NDTM's
If this is a Yes instance, we are guaranteed that an
acceptable choice will eventually be found and we
go on.

In a NDTM, what we are doing is making, and testing,
all of those choices at once by 'spawning' a different
NDTM for each of them. Those that don't work out,
simply die (or something).

This is kind of like the ultimate in parallel
programming.

4/7/19 © UCF EECS 549

NDTM's
To allay concerns about not being able
to write on the tape, we can allow each
spawned NDTM to have its own copy of
the tape with a read/write head.

The restriction is that nothing can be
reported back except that the accept
state was reached.

4/7/19 © UCF EECS 550

NDTM's
Another interpretation of nondeterminism:

From the basic definition, we notice that out of
every state having a nondeterministic choice, at
least one choice is valid and all the rest sort of die
off. That is they really have no reason for being
spawned (for this instance - maybe for another).
So, we station at each such state, an 'oracle' (an
all knowing being) who only allows the correct
NDTM to be spawned.

An 'Oracle Machine.'

4/7/19 © UCF EECS 551

NDTM's
This is not totally unreasonable. We can look
at a non deterministic decision as a
deterministic algorithm in which, when an
"option" is to be tested, it is very lucky, or
clever, to make the correct choice the first
time.

In this sense, the two machines would work
identically, and we are just asking "How long
does a DTM take if it always makes the
correct decisions?"

4/7/19 © UCF EECS 552

NDTM's
As long as we are talking magic, we might as
well talk about a 'super' oracle stationed at
the start state (and get rid of the rest of the
oracles) whose task is to examine the given
instance and simply tell you what sequence
of transitions needs to be executed to reach
the accept state.

He/she will write them to the left of cell 0 (the
instance is to the right).

4/7/19 © UCF EECS 553

NDTM's
Now, you simply write a DTM to run back and
forth between the left of the tape to get the
'next action' and then go back to the right half
to examine the NDTM and instance to verify
that the provided transition is a valid next
action. As predicted by the oracle, the DTM will
see that the NDTM would reach the accept
state and can report the number of steps
required.

4/7/19 © UCF EECS 554

NDTM's
All of this was originally designed with
Language Recognition problems in mind. It
is not a far stretch to realize the Yes
instances of any of our more real word-like
decision problems defines a language, and
that the same approach can be used to
"solve" them.

Rather than the oracle placing the sequence
of transitions on the tape, we ask him/her to
provide a 'witness' to (a 'proof' of) the
correctness of the instance.

4/7/19 © UCF EECS 555

NDTM's
For example, in the SubsetSum problem, we
ask the oracle to write down the subset of
objects whose sum is B (the desired sum).
Then we ask "Can we write a deterministic
polynomial algorithm to test the given
witness."

The answer for SubsetSum is Yes, we can,
i.e., the witness is verifiable in deterministic
polynomial time.

4/7/19 © UCF EECS 556

NDTM's - Witnesses
Just what can we ask and expect of a

"witness"?

The witness must be something that
(1) we can verify to be accurate (for the given

problem and instance) and
(2) we must be able to "finish off" the solution.

All in polynomial time.

4/7/19 © UCF EECS 557

NDTM's - Witnesses
The witness can be nothing!

Then, we are on our own. We have to "solve the
instance in polynomial time."

The witness can be "Yes."
Duh. We already knew that. We have to now
verify the yes instance is a yes instance (same
as above).

The witness has to be something other than nothing
and Yes.

4/7/19 © UCF EECS 558

NDTM's - Witnesses
The information provided must be something we could
have come up with ourselves, but probably at an
exponential cost. And, it has to be enough so that we
can conclude the final answer Yes from it.

Consider a witness for the graph coloring problem:

Given: A graph G = (V, E) and an integer k.
Question: Can the vertices of G be assigned colors so
that adjacent vertices have different colors and use at
most k colors?

4/7/19 © UCF EECS 559

NDTM's - Witnesses
The witness could be nothing, or Yes.

But that's not good enough - we don't know of
a polynomial algorithm for graph coloring.

It could be "vertex 10 is colored Red."
That's not good enough either. Any single
vertex can be colored any color we want.

It could be a color assigned to each vertex.
That would work, because we can verify its
validity in polynomial time, and we can
conclude the correct answer of Yes.

4/7/19 © UCF EECS 560

NDTM's - Witnesses
What if it was a color for all vertices but one?

That also is enough. We can verify the
correctness of the n-1 given to us, then we can
verify that the one uncolored vertex can be
colored with a color not on any neighbor, and
that the total is not more than k.

What if all but 2, 3, or 20 vertices are colored
All are valid witnesses.

What if half the vertices are colored?
Usually, No. There's not enough information.
Sure, we can check that what is given to us is
properly colored, but we don't know how to
"finish it off."

4/7/19 © UCF EECS 561

NDTM's - Witnesses
An interesting question: For a given
problem, what are the limits to what
can be provided that still allows a
polynomial verification?

4/7/19 © UCF EECS 562

NDTM's
A major question remains: Do we have, in
NDTMs, a model of computation that solves all
deterministic exponential (DE) problems in
polynomial time (nondeterministic polynomial
time)??

It definitely solves some problems we think are
DE in nondeterministic polynomial time.

4/7/19 © UCF EECS 563

NDTM's
But, so far, all problems that have been proven
to require deterministic exponential time also
require nondeterministic exponential time.

So, the jury is still out. In the meantime, NDTMs
are still valuable, because they might identify a
larger class of problems than does a
deterministic TM - the set of decision problems
for which Yes instances can be verified in
polynomial time.

4/7/19 © UCF EECS 564

Problem Classes
We now begin to discuss several different classes of
problems. The first two will be:

NP 'Nondeterministic' Polynomial
P 'Deterministic' Polynomial,

The 'easiest' problems in NP

Their definitions are rooted in the depths of
Computability Theory as just described, but it is worth
repeating some of it in the next few slides.

4/7/19 © UCF EECS 565

Problem Classes
We assume knowledge of Deterministic and
Nondeterministic Turing Machines. (DTM's and
NDTM's)

The only use in life of a NDTM is to scan a string of
characters X and proceed by state transitions until an
'accept' state is entered.

X must be in the language the NDTM is designed to
recognize. Otherwise, it blows up!!

4/7/19 © UCF EECS 566

Problem Classes
So, what good is it?

We can count the number of transitions on the
shortest path (elapsed time) to the accept
state!!!

If there is a constant k for which the number of
transitions is at most |X|k, then the language is
said to be 'nondeterministic polynomial.'

4/7/19 © UCF EECS 567

Problem Classes
The subset of YES instances of the set of instances of a decision
problem, as we have described them above, is a language.

When given an instance, we want to know that it is in the subset of
Yes instances. (All answers to Yes instances look alike - we don't
care which one we get or how it was obtained).

This begs the question "What about the No instances?"

The answer is that we will get to them later. (They will actually
form another class of problems.)

4/7/19 © UCF EECS 568

Problem Classes
This actually defines our first Class, NP, the set of decision
problems whose Yes instances can be solved by a
Nondeterministic Turing Machine in polynomial time.

That knowledge is not of much use!! We still don't know
how to tell (easily) if a problem is in NP. And, that's our
goal.

Fortunately, all we are doing with a NDTM is tracing the
correct path to the accept state. Since all we are interested
in doing is counting its length, if someone just gave us the
correct path and we followed it, we could learn the same
thing - how long it is.

4/7/19 © UCF EECS 569

Problem Classes
It is even simpler than that (all this has been proven
mathematically). Consider the following problem:

You have a big van that can carry 10,000 lbs. You
also have a batch of objects with weights w1, w2, …,
wn lbs. Their total sum is more than 10,000 lbs, so
you can't haul all of them.

Can you load the van with exactly 10,000 lbs?
(WOW. That's the SubsetSum problem.)

4/7/19 © UCF EECS 570

Problem Classes
Now, suppose it is possible (i.e., a Yes instance) and
someone tells you exactly what objects to select.

We can add the weights of those selected objects and
verify the correctness of the selection.

This is the same as following the correct path in a
NDTM. (Well, not just the same, but it can be proven to
be equivalent.)

Therefore, all we have to do is count how long it takes
to verify that a "correct" answer" is in fact correct.
4/7/19 © UCF EECS 571

Class – NP

First Significant Class of Problems:
The Class NP

Class – NP
We have, already, an informal definition
for the set NP. We will now try to get a
better idea of what NP includes, what it
does not include, and give a formal
definition.

4/7/19 © UCF EECS 573

Class – NP
Consider two seemingly closely related statements
(versions) of a single problem. We show they are
actually very different. Let G = (V, E) be a graph.

Definition: X Í V(G) is a vertex cover if
every edge in G has at least one endpoint in
X.

4/7/19 © UCF EECS 574

Class – NP
Version 1. Given a graph G and an integer k.

Does G contain a vertex cover
with at most k vertices?

Version 2. Given a graph G and an integer k.
Does the smallest vertex cover of G
have exactly k vertices?

4/7/19 © UCF EECS 575

Class – NP
Suppose, for either version, we are
given a graph G and an integer k for
which the answer is "yes." Someone
also gives us a set X of vertices and
claims

"X satisfies the conditions."

4/7/19 © UCF EECS 576

Class – NP
In Version 1, we can fairly easily check
that the claim is correct – in polynomial
time.

That is, in polynomial time, we can
check that X has k vertices, and that X
is a vertex cover.

4/7/19 © UCF EECS 577

Class – NP
In Version 2, we can also easily check that X has
exactly k vertices and that X is a vertex cover.

But, we don't know how to easily check that there is
not a smaller vertex cover!!

That seems to require exponential time.

These are very similar looking "decision" problems
(Yes/No answers), yet they are VERY different in
this one important respect.

4/7/19 © UCF EECS 578

Class – NP
In the first: We can verify a correct answer
in polynomial time.

In the second: We apparently can not verify
a correct answer in polynomial time.

(At least, we don't know how to verify
one in polynomial time.)

4/7/19 © UCF EECS 579

Class – NP

Could we have asked to be given something
that would have allowed us to easily verify
that X was the smallest such set?

No one knows what to ask for!!

To check all subsets of k or fewer vertices
requires exponential time (there can be an
exponential number of them).

4/7/19 © UCF EECS 580

Class – NP
Version 1 problems make up the class called NP

Definition: The Class NP is the set of all decision problems for
which answers to Yes instances can be verified in polynomial
time.

{Why not the NO instances? We'll answer that later.}

For historical reasons, NP means
"Nondeterministic Polynomial."

(Specifically, it does not mean "not polynomial").

4/7/19 © UCF EECS 581

Class – NP
Version 2 of the Vertex Cover problem is not unique.
There are other versions that exhibit this same
property. For example,

Version 3: Given: A graph G = (V, E) and an
integer k.

Question: Do all vertex covers of G
have more than k vertices?

What would/could a 'witness' for a Yes instance be?

4/7/19 © UCF EECS 582

Class – NP
Again, no one knows except to list all
subsets of at most k vertices. Then we would
have to check each of the possible
exponential number of sets.

Further, this is not isolated to the Vertex
Cover problem. Every decision problem has
a 'Version 3,' also known as the
'complement' problem (we will discuss these
further at a later point).

4/7/19 © UCF EECS 583

Class – NP
All problems in NP are decidable.

That means there is an algorithm.

And, the algorithm is no worse than
O(2n).

4/7/19 © UCF EECS 584

Class – NP
Version 2 and 3 problems are apparently not in NP.

So, where are they??

We need more structure! {Again, later.}

First we look inward, within NP.

4/7/19 © UCF EECS 585

Class – P

Second Significant Class of
Problems: The Class P

Class – P
Some decision problems in NP can be solved
(without knowing the answer in advance) - in
polynomial time. That is, not only can we verify a
correct answer in polynomial time, but we can
actually compute the correct answer in polynomial
time - from "scratch."

These are the problems that make up the class P.

P is a subset of NP.

4/7/19 © UCF EECS 587

Class – P
Problems in P can also have a witness – we
just don't need one. But, this line of thought
leads to an interesting observation. Consider
the problem of searching a list L for a key X.

Given: A list L of n values and a key X.
Question: Is X in L?

4/7/19 © UCF EECS 588

Class – P
We know this problem is in P. But, we can
also envision a nondeterministic solution. An
oracle can, in fact, provide a "witness" for a
Yes instance by simply writing down the
index of where X is located.

We can verify the correctness with one
simple comparison and reporting, Yes the
witness is correct.

4/7/19 © UCF EECS 589

Class – P
Now, consider the complement (Version 3) of
this problem:

Given: A list L of n values and a key X.
Question: Is X not in L?

Here, for any Yes instance, no 'witness' seems
to exist, but if the oracle simply writes down
"Yes" we can verify the correctness in
polynomial time by comparing X with each of
the n values and report "Yes, X is not in the
list."
4/7/19 © UCF EECS 590

Class – P
Therefore, both problems can be verified in
polynomial time and, hence, both are in NP.

This is a characteristic of any problem in P -
both it and its complement can be verified in
polynomial time (of course, they can both be
'solved' in polynomial time, too.)

Therefore, we can again conclude P Í NP.

4/7/19 © UCF EECS 591

Class – P
There is a popular conjecture that if any problem and
its complement are both in NP, then both are also in P.

This has been the case for several problems that for
many years were not known to be in P, but both the
problem and its complement were known to be in NP.

For example, Linear Programming (proven to be in P in
the 1980's), and Prime Number (proven in 2006 to be in
P).

A notable 'holdout' to date is Graph Isomorphism.
4/7/19 © UCF EECS 592

Class – P
There are a lot of problems in NP that we do not
know how to solve in polynomial time. Why?

Because they really don't have polynomial
algorithms?

Or, because we are not yet clever enough to have
found a polynomial algorithm for them?

4/7/19 © UCF EECS 593

Class – P
At the moment, no one knows.

Some believe all problems in NP have polynomial algorithms.
Many do not (believe that).

The fundamental question in theoretical computer science is:
Does P = NP?

There is an award of one million dollars for a proof.
– Either way, True or False.

4/7/19 © UCF EECS 594

Other Classes
We now look at other classes of problems.

Hard appearing problems can turn out to be
easy to solve. And, easy looking problems can
actually be very hard (Graph Theory is rich
with such examples).

We must deal with the concept of "as hard as,"
"no harder than," etc. in a more rigorous way.

4/7/19 © UCF EECS 595

"No harder than"
Problem A is said to be 'no harder than' problem B when the
smallest class containing A is a subset of the smallest class
containing B.

Recall that fX(n) is the order of the smallest complexity class
containing problem X.

If, for some constant a,
fA(n) ≤ na fB(n),

the time to solve A is no more than some polynomial multiple
of the time required to solve B, i.e., A is 'no harder than' B.
4/7/19 © UCF EECS 596

"No harder than"
The requirement for determining the relative difficulty
of two problems A and B requires that we know, at
least, the order of the fastest algorithm for problem B
and the order of some algorithm for Problem A.

We may not know either!!

In the following we exhibit a technique that can allow
us to determine this relationship without knowing
anything about an algorithm for either problem.

4/7/19 © UCF EECS 597

The "Key" to
Complexity Theory

'Reductions,'
'Reductions,'
'Reductions.'

Reductions
For any problem X, let X(IX, AnswerX)
represents an algorithm for problem X – even
if none is known to exist.

IX is an arbitrary instance given to the
algorithm and AnswerX is the returned
answer determined by the algorithm.

4/7/19 © UCF EECS 599

Reductions
Definition: For problems A and B, a (Polynomial)
Turing Reduction is an algorithm A(IA, AnswerA) for
solving all instances of problem A and satisfies the
following:

(1) Constructs zero or more instances of problem B
and invokes algorithm B(IB, AnswerB), on each.

(2) Computes the result, AnswerA, for IA.

(3) Except for the time required to execute algorithm
B, the execution time of algorithm A must be
polynomial with respect to the size of IA.

4/7/19 © UCF EECS 600

Reductions
Proc A(IA, AnswerA)

For i = 1 to alpha
• Compute IB
•

B(IB, AnswerB)
•

End For
Compute AnswerA

End proc

4/7/19 © UCF EECS 601

Reductions
We may assume a 'best' algorithm for
problem B without actually knowing it.

If A(IA, AnswerA) can be written without
algorithm B, then problem A is simply a
polynomial problem.

4/7/19 © UCF EECS 602

Poly Turing Reductions
The existence of a Turing reduction is often
stated as:

"Problem A reduces to problem B" or,
simply,

"A ≤P B"

4/7/19 © UCF EECS 603

PolyTime Reductions

Theorem. If A ≤P B and problem B is
polynomial, then problem A is
polynomial.

Corollary. If A ≤P B and problem A is
exponential, then problem B is
exponential.

4/7/19 © UCF EECS 604

PT Reductions
The previous theorem and its corollary do not
capture the full implication of Turing reductions.

Regardless of the complexity class problem B is
in, a Turing reduction implies problem A is in a
subclass.

Regardless of the class problem A might be in,
problem B is in a super class.

4/7/19 © UCF EECS 605

PT Reductions
Theorem. If A ≤P B , then problem A is "no
harder than" problem B.
Proof: Let tA(n) and tB(n) be the maximum times
for algorithms A and B per the definition. Thus,
fA(n) ≤ tA(n). Further, since we assume the best
algorithm for B, tB(n) = fB(n). Since A ≤P B, there
is a constant k such that tA(n) ≤ nktB(n). Therefore,
fA(n) ≤ tA(n) ≤ nktB(n) = nkfB(n). That is, A is no
harder than B.

4/7/19 © UCF EECS 606

PT Reductions
Theorem.

If A ≤P B and B ≤P C then A ≤P C.

Definition.
If A ≤P B and B ≤P A, then A and B are
polynomially equivalent.

4/7/19 © UCF EECS 607

Polynomial Reductions

A ≤P B means:

'Problem A is no harder within a
polynomial factor than problem B,' and

'Problem B is as hard within a
polynomial factor as is problem A.'

4/7/19 © UCF EECS 608

An Aside
Without condition (3) of the definition, a simple
Reduction results.

If problem B is decidable,
then so is problem A.
Equivalently,
If problem A is undecidable,
then problem B is undecidable.

4/7/19 © UCF EECS 609

NP–Complete

Third Significant Class of Problems:
The Class NP–Complete

NP–Complete
Polynomial Transformations enforce an equivalence
relationship on all decision problems, particularly,
those in the Class NP. Class P is one of those classes
and is the "easiest" class of problems in NP.

Is there a class in NP that is the hardest class in NP?

A problem B in NP such that A ≤P B for every A in
NP.

4/7/19 © UCF EECS 611

NP–Complete

In 1971, Stephen Cook proved there
was. Specifically, a problem called

Satisfiability (or, SAT).

4/7/19 © UCF EECS 612

Satisfiability

U = {u1, u2,…, un}, Boolean variables.

C = {c1, c2,…, cm}, "OR clauses"
For example:

ci = (u4 Ú u35 Ú ~u18 Ú u3… Ú ~u6)

4/7/19 © UCF EECS 613

Satisfiability

Can we assign Boolean values to the
variables in U so that every clause is
TRUE?

There is no known polynomial time
algorithm!!

4/7/19 © UCF EECS 614

NP–Complete
Cooks Theorem:

1) SAT is in NP
2) For every problem A in NP,

A ≤P SAT

Thus, SAT is as hard as every problem in
NP.

4/7/19 © UCF EECS 615

NP–Complete
Since SAT is itself in NP, that means SAT is a
hardest problem in NP (there can be more
than one.).

A hardest problem in a class is called the
"completion" of that class.

Therefore, SAT is NP–Complete.

4/7/19 © UCF EECS 616

NP–Complete
Today, there are 1,000’s of problems that
have been proven to be NP–Complete. (See
Garey and Johnson, Computers and
Intractability: A Guide to the Theory of NP–
Completeness, for a list of over 300 as of the
early 1980's).

P = NP?
If P = NP then all problems in NP are
polynomial problems.

If P ≠ NP then all NP–C problems are at
least super-polynomial and perhaps
exponential. That is, NP-C problems could
require sub-exponential super-polynomial
time. (Example of super-polynomial, sub-
exponential is o(2o(n)), e.g., 2∛n
4/7/19 © UCF EECS 618

P = NP?
Why should P equal NP?
• There seems to be a huge "gap" between the known

problems in P and Exponential. That is, almost all
known polynomial problems are no worse than n3 or
n4.

• Where are the O(n50) problems?? O(n100)? Maybe
they are the ones in NP–Complete?

• It's awfully hard to envision a problem that would
require n100, but surely they exist?

• Some of the problems in NP–C just look like we
should be able to find a polynomial solution (looks
can be deceiving, though).

4/7/19 © UCF EECS 619

P ≠ NP?
Why should P not equal NP?
• P = NP would mean, for any problem in NP, that it is

just as easy to solve an instance form "scratch," as it is
to verify the answer if someone gives it to you. That
seems a bit hard to believe.

• There simply are a lot of awfully hard looking problems
in NP–Complete (and Co–NP-Complete) and some just
don't seem to be solvable in polynomial time.

• Many smart people have tried for a long time to find
polynomial algorithms for some of the problems in NP-
Complete - with no luck.

4/7/19 © UCF EECS 620

4/7/19 COT 6410 © UCF 621

NP-Complete; NP-Hard
A decision problem, C, is NP-complete if:

C is in NP and
C is NP-hard. That is, every problem in NP is polynomially
reducible to C.

D polynomially reduces to C means that there is a deterministic
polynomial-time many-one algorithm, f, that transforms each instance x
of D into an instance f(x) of C, such that the answer to f(x) is YES if and
only if the answer to x is YES.
To prove that an NP problem A is NP-complete, it is sufficient to show
that an already known NP-complete problem polynomially reduces to A.
By transitivity, this shows that A is NP-hard.
A consequence of this definition is that if we had a polynomial time
algorithm for any NP-complete problem C, we could solve all problems
in NP in polynomial time. That is, P = NP.
Note that NP-hard does not necessarily mean NP-complete, as a given
NP-hard problem could be outside NP.

4/7/19 COT 6410 © UCF 622

Returning to SAT
• SAT is the problem to decide of an arbitrary

Boolean formula (wff in the propositional
calculus) whether or not this formula is
satisfiable (has a set of variable assignments
that evaluate the expression to true).

• SAT clearly can be solved in time k2n, where k is
the length of the formula and n is the number of
variables in the formula.

• What we now show is that SAT is NP-complete,
providing us our first concrete example of an
NP-complete decision problem.

Simulating NDTM
• Given a NDTM, M, and an input w, we need to create a

formula, jM,w, containing a polynomial number of terms
that is satisfiable just in case M accepts w in polynomial
time.

• The formula must encode within its terms a trace of
configurations that includes
– A term for the starting configuration of the TM
– Terms for all accepting configurations of the TM
– Terms that ensure the consistency of each configuration
– Terms that ensure that each configuration after the first follows

from the prior configuration by a single move

4/7/19 © UCF EECS 623

Tableaus
A tableau is an array of tape alphabet
symbols.

It represents a configuration history of one
branch of our NDTM’s nondeterminism.
If the NDTM runs in nk time, the tableau is an
(nk ´ nk) tableau.

It’s big enough downward because, well, the
TM runs in nk.
…and rightward because the TM can only
count to nk.

We assume that every configuration starts and
ends with a # symbol.
We think of our tableau as looking like this in
the “beginning”: the starting configuration
across the top, and the other configurations
blank.

(We quote “beginning” because SAT isn’t really
a stateful algorithm, but just go with it for now.)

But we’ve assumed that we can “represent”
alphabet symbols. How do we do that, in
SAT?

q0 w1 w2 … wn □ … □

↑nk↓

#

#

#

#

#

#

#

#

#

← nk →

4/7/19 © UCF EECS 624

Encoding the Tableau: Basics
Consider a set comprised of:

The tape alphabet
The state set
The separator character

C = G È Q È { # }
Consider a cell variable:

xi,j,c

Turning this variable on corresponds to
setting cell (i, j) = c, for some c Î C.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

4/7/19 © UCF EECS 625

Encoding the Tableau: Cells

Consider our tableau alphabet:
C = G È Q È { # }

Consider a cell and corresponding
variable:

xi,j,c
Now we need to make sure the tableau is
consistently encoded.

Create a clause for each cell (i, j).

The left demands xi,j,c be true for some c.
The right demands xi,j,c be true for only
one c.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

!"#$%&" ',) = +
,∈.

/0,1,, ∧ 3
,,4∈.
,54

/0,1,, ⋁ /0,1,4

4/7/19 © UCF EECS 626

Encoding the Tableau: The
Tableau

Tableau alphabet: C = G È Q È { # }
Cell variable: xi,j,c
Create an encoding clause for each cell (i, j).

Now repeat the clause across the tableau.

This is our cell formula. It ensures that each
cell in the tableau is assigned a single
symbol.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

!"#$%&" ',) = +
,∈.

/0,1,, ∧ 3
,,4∈.
,54

/0,1,, ⋁ /0,1,4

!$"778 = 3
9:0,1:;<

!"#$%&" ',)

4/7/19 © UCF EECS 627

Encoding the Tableau:
Complexity

We can create the single-cell
encoding formula in polynomial time
with a |C|2 iteration.

We can create the entire cell formula
in polynomial time with an n2k

iteration around that.
So we can say that fcells is satisfied
by, and only by, a properly
encoded tableau, and is created in
polynomial time.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

!"#$%&" ',) = +
,∈.

/0,1,, ∧ 3
,,4∈.
,54

/0,1,, ⋁ /0,1,4

!$"778 = 3
9:0,1:;<

!"#$%&" ',)

4/7/19 © UCF EECS 628

Starting and Accepting
Starting and accepting are (comparatively) easy.
To start, take the start configuration padded to nk

length with blanks…
S = #q0w1w2…wn�…�# so that |S| = nk

…and require the first row be equal to the start
configuration:

Then to accept, just require an accept state
somewhere in the tableau.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # w1 w2 … qA … □ … □ #
6 # #
7 # #
8 # #
9 # #
10 # #

!"#$%# = '
()*)+,

-(,*,/0

!$1123# = 4
()5,*)+,

-5,*,67

4/7/19 COT 4210 © UCF 629

Starting and Accepting

We can generate the start and accept
formulas in nk and (nk)2 time, both
polynomial.
So now we can say that:
fstart is satisfied by, and only by, a
tableau with the starting configuration
of M on w encoded as its first row,
and is created in polynomial time.

…and…
faccept is satisfied by, and only by, a
tableau encoding an accepting
configuration as one of its rows, and
is created in polynomial time.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # z1 z2 … qA … □ … □ #
6 # #
7 # #
8 # #
9 # #
10 # #

!"#$%# = '
()*)+,

-(,*,/0 !$1123# = 4
()5,*)+,

-5,*,67

4/7/19 © UCF EECS 630

Transitions

Now, for transitions. Recall the discussions
we had about ID changes being limited to
three characters or six, when looking at
transitions..

A given 2x3 window is legal if it does not
violate our machine’s transition function.
Given the linear sets of states and tape
symbols, and the finite size of 2x3 windows,
we can make a polynomial-sized set of all
legal windows.

Let a sequence A = (a1, …, a6) be a 2x3
window, with a1 the top left cell, a2 the top
middle, etc.

We say that A is legal if it represents a legal
window. Here we have q0 a R q1

1 2 3 4 5 6 7 8 9 10
1 # q0 a b c a □ □ □ #
2 # a q1 b c a □ □ □ #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

4/7/19 © UCF EECS 631

Transitions
A given 2x3 window is legal if it does not
violate our machine’s transition function. We
have a polynomial-sized set of all legal
windows.

Let a sequence A = (a1, …, a6) be a 2x3
window. A is legal if it represents a legal
window.

Now we can come up with a formula to say that
the window top-centered at cell (i, j) is legal.

Don’t be intimidated by this formula!
It’s just counting off the six cells of the
window and demanding that each be equal to
the corresponding cell in some legal window.

1 2 3 4 5 6 7 8 9 10

1 # q0 a b c a □ □ □ #

2 # a q1 b c a □ □ □ #

3 # #

4 # #

5 # #

6 # #

7 # #

8 # #

9 # #

10 # #

!"#$%"(',)) = ,
-. /0,…,/2
34 "#$%"

56,789,/0 ∧ 56,7,/; ∧ 56,7<9,/= ∧
56<9,789,/> ∧ 56<9,7,/? ∧ 56<9,7<9,/2

4/7/19 © UCF EECS 632

Transitions
A given 2x3 window is legal if it does
not violate our machine’s transition
function.
We have a polynomial-sized set of all
legal windows.
Let a sequence A = (a1, …, a6) be a
2x3 window. A is legal if it represents
a legal window.

Since we have a polynomial number of
legal windows, this formula is also
polynomial. So we can say:
flegal (i, j) is satisfied by, and only by, a
tableau whose window top-centered at
(i, j) is legal; and is created in
polynomial time.

1 2 3 4 5 6 7 8 9 10

1 # q0 a b c a □ □ □ #

2 # a q1 b c a □ □ □ #

3 # #

4 # #

5 # #

6 # #

7 # #

8 # #

9 # #

10 # #

!"#$%"(',)) = ,
-. /0,…,/2
34 "#$%"

56,789,/0 ∧ 56,7,/; ∧ 56,7<9,/= ∧
56<9,789,/> ∧ 56<9,7,/? ∧ 56<9,7<9,/2

4/7/19 © UCF EECS 633

Windows and Configurations

Consider any upper and lower configuration in the
tableau, so that the lower configuration is the one
immediately below – that is, following – the upper.
If all the windows top-centered on cells in the upper
configuration are legal, then:

The legality of the windows that don’t involve the state
symbol easily ensures the legality of the configuration
below them.
The window top-centered on the state symbol in the
upper configuration is sufficient to ensure that the state
symbol in the lower configuration makes a legal move.

The upper configuration yields the lower one if
and only if all the windows top-centered on cells
in the upper configuration are legal – and that
holds all the way down the tableau.

1 2 3 4 5 6 7 8 9 10
1 # q0 a b c a □ □ □ #
2 # a q1 b c a □ □ □ #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

4/7/19 © UCF EECS 634

Windows and Configurations

flegal (i, j) is satisfied by, and only by, a tableau
whose window top-centered at (i, j) is legal; and
is created in polynomial time.
An upper configuration yields a lower one iff all
the windows top-centered within the upper are
legal.

This holds all the way down the tableau.
Then we have:

And can say fmove is satisfied by, and only by,
a tableau that does not violate the machine’s
transition function; and is created in
polynomial time.

1 2 3 4 5 6 7 8 9 10
1 # q0 a b c a □ □ □ #
2 # a q1 b c a □ □ □ #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

!"#$%"(',)) = ,
-. /0,…,/2
34 "#$%"

56,789,/0 ∧ 56,7,/; ∧ 56,7<9,/= ∧
56<9,789,/> ∧ 56<9,7,/? ∧ 56<9,7<9,/2

!@AB# = C
9D6EFG,
9E7EFG

!"#$%"(',))

4/7/19 © UCF EECS 635

Pulling It Together
We have:
fcells is satisfied by, and only by, a
properly encoded tableau.
fstart is satisfied by, and only by, a
tableau with the starting configuration of
M on w encoded as its first row.
faccept is satisfied by, and only by, a
tableau encoding an accepting
configuration as one of its rows.
fmove is satisfied by, and only by, a
tableau that does not violate the
machine’s transition function.
All are created in polynomial time.

Then fNDTM is satisfied by, and only by,
a tableau encoding an accepting
computation history of M on w, and is
created in polynomial time.

!"#$$% = '
()*,,)-.

!#/"01# 2, 3

!%4564 = '
(),)-.

7(,,,89

!5""#:4 = ;
()*,,)-.

7*,,,<=

!>0?# = '
()*@-.,
(@,@-.

!$#A5$(2, 3)

!DEFG= !"#$$% ∧ !%4564 ∧ !5""#:4 ∧ !>0?#
4/7/19 © UCF EECS 636

SAT is NP-Complete

fNDTM created from NDTM M and
input w is satisfied by, and only by,
a tableau encoding an accepting
computation history of M on w,
and is created in polynomial time.
This means that:

SAT accepts fNDTM if and only if
such a tableau exists…
…if and only if the NDTM we are
encoding into fNDTM accepts w.

We’ve just polynomially reduced
every possible NP language to
SAT.

Let’s convince ourselves of that a bit
more.

By definition, any NP language has an
NDTM M that decides it in polynomial
time.

We can decide any NP language
with a result from SAT using the
following algorithm:
On input <M, w>:

Create fNDTM from M and w.
Run the decider for SAT on fNDTM.
Accept if SAT accepts, reject if it
rejects.

SAT is NP-complete.

!"#$% = !'())* ∧ !*,-., ∧ !-''(/, ∧ !012(

4/7/19 © UCF EECS 637

4/7/19 COT 6410 © UCF 638

Cook’s Theorem
• jM,w = fcells Ù fstart Ù faccept Ù fmove

• See the following for another detailed
description and discussion of the four
terms that make up this formula.

• http://www.cs.tau.ac.il/~safra/Complexity/Cook.ppt

NP–Complete
Within a year, Richard Karp added 22 problems to this
special class.

We will focus on:
3-SAT
Integer Linear Programming
SubsetSum
Partition
Vertex Cover
Independent Set
K-Color
Multiprocessor Scheduling

4/7/19 © UCF EECS 639

Co-NP
• A problem is in co-NP if its complement is in NP

– this is like co-RE, wrt RE problems.
• An example is the problem to determine if a

Boolean expression is a tautology.
– If the answer to the problem "is B in TAUT ?" is NO,

then ¬A is in SAT.
• A more direct example of a co-NP problem is to

determine if a Boolean expression is self-
contradictory.
– This is the complement of satisfiability.

• Both of the above are co-NP Complete
4/7/19 © UCF EECS 640

SAT to 3SAT
• 3-SAT means that each clause has exactly three

terms
• If one term, e.g., (p), expand to (pÚpÚp)
• If two terms, e.g., (pÚq), expand to (pÚqÚp)
• Any clause with three terms is fine
• If n > three terms, can reduce to two clauses, one

with three terms and one with n-1 terms, e.g.,
(p1Úp2Ú…Úpn) to
(p1Úp2Úz) & (p3Ú…ÚpnÚ~z), where z is a new
variable. If n=4, we are done, else apply this
approach again with the clause having n-1 terms

4/7/19 © UCF EECS 641

Integer Linear Programming
• Show for 0-1 integer linear programming by constraining

solution space. Start with an instance of SAT (or 3SAT),
assuming variables v1,…, vn and clauses c1,…, cm

• For each variable vi, have constraint that 0 ≤ vi ≤ 1
• For each clause we provide a constraint that it must be

satisfied (evaluate to at least 1). For example, if clause cj
is v2 � ~v3 � v5 � v6 then add the constraint
v2 � (1-v3) � v5 + v6 ≥ 1

• A solution to this set of integer linear constraints implies
a solution to the instance of SAT and vice versa

4/7/19 © UCF EECS 642

SubsetSum
S = {s1, s2, …, sn}

set of positive integers
and an integer B.

Question: Does S have a subset whose
values sum to B?

No one knows of a polynomial algorithm.

{No one has proven there isn’t one, either!!}

4/7/19 © UCF EECS 643

SubsetSum ≡p Partition

Theorem. SAT ≤P 3SAT

Theorem. 3SAT ≤P SubsetSum

Theorem. SubsetSum ≤P Partition

Theorem. Partition ≤P SubsetSum

Therefore, not only is Satisfiability in NP–Complete, but so is
3SAT, Partition, and SubsetSum.

4/7/19 © UCF EECS 644

3SAT ≤p SubsetSum
Assuming a 3SAT expression (a + ~b + c) (~a + b + ~c)

a b c a+~b+c ~a+b+~c
a 1 0 0 1 0

~a 1 0 0 0 1
b 0 1 0 0 1

~b 0 1 0 1 0
c 0 0 1 1 0

~c 0 0 1 0 1
C1 0 0 0 1 0
C1’ 0 0 0 1 0
C2 0 0 0 0 1
C2’ 0 0 0 0 1

1 1 1 3 3
4/7/19 © UCF EECS 645

SubsetSum≡pPartition Details
• Partition is polynomial equivalent to SubsetSum

– Let i1, i2, .., in , G be an instance of SubsetSum. This
instance has answer �yes� iff
i1, i2, .., in , 2*Sum(i1, i2, .., in) – G,Sum(i1, i2, .., in) + G
has answer �yes� in Partition. Here we assume that
G ≤ Sum(i1, i2, .., in), for, if not, the answer is �no.�

– Let i1, i2, .., in be an instance of Partition. This instance
has answer �yes� iff
i1, i2, .., in , Sum(i1, i2, .., in)/2
has answer �yes� in SubsetSum

4/7/19 © UCF EECS 646

SubsetSum ≡p Partition
• [(15, 17, 27, 11, 4, 12, 33, 5, 6, 21, 2), 57]
• A solution is 15, 17, 11, 12, 2
• Sum of all is 153
• Mapping to Partition is

– (15, 17, 27, 11, 4, 12, 33, 5, 6, 21, 2, 306-57, 153+57)
– (15, 17, 27, 11, 4, 12, 33, 5, 6, 21, 2, 249, 210)
– (15+17+11+12+2+249) = 306
– (27+4+33+5+6+21+210) = 306

• Going other direction map above to
– [(15, 17, 27, 11, 4, 12, 33, 5, 6, 21, 2, 249, 210), 306]

4/7/19 © UCF EECS 647

VERTEX COVERING (VC)
DECISION PROBLEM IS NP-HARD

4/7/19 © UCF EECS 648

3SAT to Vertex Cover

• Vertex cover seeks a set of vertices that cover every edge in some

graph

• Let I3-SAT be an arbitrary instance of 3-SAT. For integers n and m,

U = {u1, u2, …, un} and Ci = {zi1, zi2, zi3} for 1 ≤ i ≤ m,

where each zij is either a uk or uk' for some k.

• Construct an instance of VC as follows.

• For each i, 1 ≤ i ≤ n, construct two vertices, ui and ui' with an edge

between them.

• For each clause Ci = {zi1, zi2, zi3}, 1 ≤ i ≤ m, construct three vertices zi1,

zi2, and zi3 and form a "triangle on them. Each zij is one of the Boolean

variables uk or its complement uk'. Draw an edge between zij and the

Boolean variable (whichever it is). Each zij has degree 3. Finally, set k

= n+2m.

• Theorem. The given instance of 3-SAT is satisfiable if and only if the

constructed instance of VC has a vertex cover with at most k vertices.

4/7/19 © UCF EECS 649

VC Variable Gadget

X ~X

4/7/19 © UCF EECS 650

VC Clause Gadget

a ~c

b

a + b + ~c

4/7/19 © UCF EECS 651

VC Gadgets Combined

COT 4210 © UCF4/7/19 © UCF EECS 652

Independent Set
• Independent Set

– Given Graph G = (V, E), a subset S of the vertices is
independent if there are no edges between vertices in
S

– The k-IS problem is to determine for a k>0 and a
graph G, whether or not G has an independent set of
k nodes

• Note there is a related NP-Hard optimization
problem to find a Maximum Independent Set. It
is even hard to approximate a solution to the
Maximum Independent Set Problem.

4/7/19 © UCF EECS 653

IS (VC) Clause Gadget

4/7/19 COT 4210 © UCF 654

a ~c

b

a + b + ~c

3SAT to IS
(a + ~b + c) (~a + b + ~c)(a + b + c), k=3
(k=number of clauses, not variables)

a c

~b
~a ~c

b

a c

b

4/7/19 © UCF EECS 655

K-COLOR (KC) DECISION
PROBLEM IS NP-HARD

4/7/19 COT 4210 © UCF 656

K-Coloring
Given:
A graph G = (V, E) and an integer k.
Question:
Can the vertices of G be assigned colors
from a palette of size k, so that adjacent
vertices have different colors and use at
most k colors?

3Coloring (3C) uses k=3
4/7/19 © UCF EECS 657

3C Super Gadget

T F

B

4/7/19 © UCF EECS 658

KC Super + Variables Gadget

4/7/19 © UCF EECS 659

KC Clause Gadget

4/7/19 © UCF EECS 660

Consider ~a, ~b, ~c

F TB

F

T / B
B / T

F but not
legal

4/7/19 © UCF EECS 661

Consider a || b, ~c

F TB

F

TB/F

F/B

4/7/19 © UCF EECS 662

Consider ~a, ~b, c

T TF

B

F
B,T

T, BF

F

4/7/19 © UCF EECS 663

Consider one of a || b, c

T TF

B

T
B/F

F/B

4/7/19 © UCF EECS 664

Consider a, b, c

T TF

B

T
B/F

F/BT

T

4/7/19 © UCF EECS 665

KC Gadgets Combined

B

K = 3

(u + ~v + w) (v + x + ~y)

4/7/19 © UCF EECS 666

Register Allocation
• Liveness: A variable is live if its current assignment may be used at

some future point in a program’s flow
• Optimizers often try to keep live variables in registers
• If two variables are simultaneously live, they need to be kept in

separate registers
• Consider the K-coloring problem (can the nodes of a graph be colored

with at most K colors under the constraint that adjacent nodes must
have different colors?)

• Register Allocation reduces to K-coloring by mapping each variable to
a node and inserting an edge between variables that are
simultaneously live

• K-coloring reduces to Register Allocation by interpreting nodes as
variables and edges as indicating concurrent liveness

• This is a simple mapping because it’s an isomorphism

4/7/19 © UCF EECS 667

PROCESSOR SCHEDULING
IS NP-HARD

4/7/19 COT 4210 © UCF 668

Processor Scheduling

• A Process Scheduling Problem can be described by
– m processors P1, P2, …, Pm,

– processor timing functions S1, S2, …, Sm, each describing how the
corresponding processor responds to an execution profile,

– additional resources R1, R2, …, Rk, e.g., memory

– transmission cost matrix Cij (1 £ i , j £ m), based on proc. data sharing,

– tasks to be executed T1, T2, …, Tn,

– task execution profiles A1, A2, …, An,

– a partial order defined on the tasks such that Ti < Tj means that Ti must
complete before Tj can start execution,

– communication matrix Dij (1 £ i , j £ n); Dij can be non-zero only if Ti <
Tj,

– weights W1, W2, …, Wn -- cost of deferring execution of task.

4/7/19 © UCF EECS 669

Complexity Overview
• The intent of a scheduling algorithm is to minimize the sum of

the weighted completion times of all tasks, while obeying the
constraints of the task system. Weights can be made large to
impose deadlines.

• The general scheduling problem is quite complex, but even
simpler instances, where the processors are uniform, there are
no additional resources, there is no data transmission, the
execution profile is just processor time and the weights are
uniform, are very hard.

• In fact, if we just specify the time to complete each task and we
have no partial ordering, then finding an optimal schedule on
two processors is an NP-complete problem. It is essentially the
subset-sum problem.

4/7/19 © UCF EECS 670

2 Processor Scheduling
The problem of optimally scheduling n tasks T1, T2, …, Tn onto 2
processors with an empty partial order < is the same as that of
dividing a set of positive whole numbers into two subsets, such that
the numbers are as close to evenly divided. So, for example, given the
numbers
3, 2, 4, 1
we could try a “greedy” approach as follows:
put 3 in set 1
put 2 in set 2
put 4 in set 2 (total is now 6)
put 1 in set 1 (total is now 4)
This is not the best solution. A better option is to put 3 and 2 in one
set and 4 and 1 in the other. Such a solution would have been attained
if we did a greedy solution on a sorted version of the original
numbers. In general, however, sorting doesn’t work.

4/7/19 © UCF EECS 671

2 Processor Nastiness
Try the unsorted list (2-1/m)
7, 7, 6, 6, 5, 4, 4, 5, 4
Greedy (Always in one that is least used)
7, 6, 5, 5 = 23
7, 6, 4, 4, 4 = 25
Optimal
7, 6, 6, 5 = 24
7, 4, 4, 4, 5 = 24
Sort it (non-increasing) (4/3-1/3m) Sort it (non-decreasing) (2-1/m)
7, 7, 6, 6, 5, 5, 4, 4, 4 4, 4, 4, 5, 5, 6, 6, 7, 7
7, 6, 5, 4, 4 = 26 4, 4, 5, 6, 7 = 26
7, 6, 5, 4 = 22 4, 5, 6, 7 = 22

Both sorts are even worse than greedy unsorted !! (not a general result)

4/7/19 © UCF EECS 672

Challenge Problem
Consider the simple scheduling problem where we have a set of independent tasks
running on a fixed number of processors, and we wish to minimize finishing time.
How would a list (first fit, no preemption) strategy schedule tasks with the following IDs
and execution times onto four processors? Answer using Gantt chart.
(T1,4) (T2,1) (T3,3) (T4,6) (T5,2) (T6,1) (T7,4) (T8,5) (T9,7) (T10,3) (T11,4) (2-1/m)

Now show what would happen if the times were sorted non-decreasing. (2-1/m)

Now show what would happen if the times were sorted non-increasing. (4/3-1/3m)

4/7/19 © UCF EECS 673

2 Processor with partial order

4/7/19 © UCF EECS 674

Anomalies everywhere

4/7/19 © UCF EECS 675

More anomalies

4/7/19 © UCF EECS 676

Critical path or level strategy
A UET is a Unit Execution Tree. Our Tree is funny. It has a
single leaf by standard graph definitions.

1. Assign L(T) = 1, for the leaf task T
2. Let labels 1, …, k-1 be assigned. If T is a task with lowest

numbered immediate successor then define L(T) = k (non-
deterministic)
This is an order n labeling algorithm that can easily be
implemented using a breadth first search.

Note: This can be used for a forest as well as a tree. Just add a
new leaf. Connect all the old leafs to be immediate successors of
the new one. Use the above to get priorities, starting at 0, rather
than 1. Then delete the new node completely.
Note: This whole thing can also be used for anti-trees. Make a
schedule, read it backwards. You cannot just reverse priorities.
4/7/19 © UCF EECS 677

Level strategy and UET

4/7/19 © UCF EECS 678

Theorem: Level Strategy is optimal for unit execution, m arbitrary, forest
precedence

Level – DAG with unit time
1. Assign L(T) = 1, for an arbitrary leaf task T
2. Let labels 1, …, k-1 be assigned. For each task T such that

{ L(T’) is defined for all T’ in Successor(T) }

Let N(T) be decreasing sequence of set members in
{S(T’) | T’ is in S(T)}

Choose T* with least N(T*).
Define L(T*) = K.
This is an order n2 labeling algorithm. Scheduling with it involves n union /
find style operations. Such operations have been shown to be
implementable in nearly constant time using an “amortization” algorithm.

Theorem: Level Strategy is optimal for unit execution, m=2, dag precedence.

4/7/19 © UCF EECS 679

Assignment#5
Looking back at page 678, consider adding two additional tasks
numbered 15 and 16 that are siblings of 13 and 14. These four
tasks must be completed before 12 is started.
a) Show the Gantt chart that reflects the new schedule associated
with this enhanced tree
b) Show the Gantt chart that is associated with the corresponding
anti-tree, in which all arcs are turned in the opposite direction. Use
the technique of reversing the schedule from (a)
c) Show the Gantt chart associated with the anti-tree of b), where
we now use the priorities obtained by treating lower numbered
tasks as higher priority ones
d) Comment on the results seen in (b) versus (c), providing insight
as to why they are different and why one is better than the other.

4/7/19 © UCF EECS 680

NP Co-NP

UNIVERSE OF SETS

PNP-
Complete

HAMILTONIAN CIRCUIT (HC)
DECISION PROBLEM IS NP-HARD

4/7/19 © UCF EECS 682

HC Variable Gadget

4/7/19 © UCF EECS 683

This has many Hamiltonian Circuits

HC Gadgets Combined

4/7/19 © UCF EECS 684

This has a Hamiltonian Circuit iff all clauses are
satisfied with consistent assignments to each variable

We will set convention on xi true to be left to right and xi
false to be right to left (can fix for opposite)

Hamiltonian Path
• Note we can split an arbitrary node, v, into

two (v’,v’’) – one, v’, has in-edges of v,
other, v’’, has out-edges. Path (not cycle)
must start at v’’ and end at v’ and goal is
still K (the number of vertices).

4/7/19 © UCF EECS 685

Travelling Salesman
• Start with HC = (V,E), K=|V|
• Set edges from HC instance to 1
• Add edges between pairs that lack such

edges and make those weights 2 (often
people make these K+1); this means that
the reverse of unidirectional links also get
weight 2

• Goal weight is K for cycle

4/7/19 © UCF EECS 686

Knapsack 0-1 Problem
� The goal is to

maximize the value of
a knapsack that can
hold at most W units
(i.e. lbs or kg) worth of
goods from a list of
items I0, I1, … In-1.
◦ Each item has 2

attributes:
1) Value – let this be vi for

item Ii
2) Weight – let this be wi for

item Ii

Thanks to Arup Guha
4/7/19 © UCF EECS 687

Knapsack 0-1 Problem
� The difference

between this problem
and the fractional
knapsack one is that
you CANNOT take a
fraction of an item.

◦ You can either take it
or not.

◦ Hence the name
Knapsack 0-1
problem.

4/7/19 © UCF EECS 688

Knapsack Optimize vs Decide
• As stated, the Knapsack problem is an

optimization problem.
• We can restate as decision problem to

determine if there exists a set of items ,
each with weight < W, that reaches some
fixed goal value, W.

4/7/19 © UCF EECS 689

Knapsack and SubsetSum
• Let vi = wi for each item Ii.
• By doing so, the value is maximized when the

Knapsack is filled as close to capacity.
• The related decision problem is to determine if

we can attain capacity (W).
• Clearly then, given an instance of the

SubsetSum problem, we can create an instance
of the Knapsack decision problem problem, such
that we reach the goal sum, G, iff we can attain
a Knapsack value of G.

4/7/19 © UCF EECS 690

Knapsack Decision Problem
• The reduction from SubsetSum shows that

the Knapsack decision problem is at least
as hard as SubsetSum, so it is NP-
Complete if it is in NP.

• Think about whether or not it is in NP.
• Now, think about optimization problem.

4/7/19 © UCF EECS 691

Related Bin Packing
• Have a bin capacity of B.
• Have item set S = {s1, s2, …, sn}
• Use all items in S, minimizing the number of

bins, while adhering to the constraint that any
such subset must sum to B or less.

• This is similar to the processor scheduling
problem without constraints, except we optimize
on number of processors, not finishing time for
all tasks. It is NP-Hard (WHY?)

4/7/19 © UCF EECS 692

Knapsack 0-1 Problem
• Brute Force

– The naïve way to solve the 0-1 Knapsack
problem is to cycle through all 2n subsets of
the n items and pick the subset with a legal
weight that maximizes the value of the
knapsack.

– We can come up with a dynamic
programming algorithm that is USUALLY
faster than this brute force technique.

4/7/19 © UCF EECS 693

Knapsack 0-1 Problem
� We are going to solve the problem in terms of

sub-problems.
� Our first attempt might be to characterize a sub-

problem as follows:
◦ Let Sk be the optimal subset of elements from

{I0, I1, …, Ik}.
� What we find is that the optimal subset from the elements {I0,

I1, …, Ik+1} may not correspond to the optimal subset of
elements from {I0, I1, …, Ik} in any regular pattern.

◦ Basically, the solution to the optimization problem for
Sk+1 might NOT contain the optimal solution from
problem Sk.

4/7/19 © UCF EECS 694

Knapsack 0-1 Problem
� Let’s illustrate that point with an example:

Item Weight Value
I0 3 10
I1 8 4
I2 9 9
I3 8 11

� The maximum weight the knapsack can hold is 20.

� The best set of items from {I0, I1, I2} is {I0, I1, I2}
� BUT the best set of items from {I0, I1, I2, I3} is {I0, I2, I3}.
◦ In this example, note that this optimal solution, {I0, I2, I3}, does

NOT build upon the previous optimal solution, {I0, I1, I2}.
� (Instead it builds upon the solution, {I0, I2}, which is really the optimal

subset of {I0, I1, I2} with weight 12 or less.)

4/7/19 © UCF EECS 695

Knapsack 0-1 problem
� So now we must re-work the way we build upon previous sub-

problems…
◦ Let B[k, w] represent the maximum total value of a subset Sk with

weight w.
◦ Our goal is to find B[n, W], where n is the total number of items and W

is the maximal weight the knapsack can carry.

� So our recursive formula for subproblems:
B[k, w] = B[k - 1,w], if wk > w

= max { B[k - 1,w], B[k - 1,w - wk] + vk}, otherwise

� In English, this means that the best subset of Sk that has total weight
w is:
1) The best subset of Sk-1 that has total weight w, or
2) The best subset of Sk-1 that has total weight w-wk plus the item k

4/7/19 © UCF EECS 696

Knapsack 0-1 Problem –
Recursive Formula

� The best subset of Sk that has the total weight w,
either contains item k or not.

� First case: wk > w
◦ Item k can’t be part of the solution! If it was the total weight

would be > w, which is unacceptable.

� Second case: wk ≤ w
◦ Then the item k can be in the solution, and we choose the

case with greater value.

4/7/19 © UCF EECS 697

B[k, w] = B[k - 1,w], if wk > w
= max { B[k - 1,w], B[k - 1,w - wk] + vk}, otherwise

Knapsack 0-1 Algorithm
for w = 0 to W { // Initialize 1st row to 0’s

B[0,w] = 0
}
for i = 1 to n { // Initialize 1st column to 0’s

B[i,0] = 0
}
for i = 1 to n {

for w = 0 to W {
if wi <= w { //item i can be in the solution

if vi + B[i-1,w-wi] > B[i-1,w]
B[i,w] = vi + B[i-1,w- wi]

else
B[i,w] = B[i-1,w]

}
else B[i,w] = B[i-1,w] // wi > w

}
}

4/7/19 © UCF EECS 698

Knapsack 0-1 Problem
� Let’s run our algorithm on the following

data:
◦ n = 4 (# of elements)
◦ W = 5 (max weight)
◦ Elements (weight, value):

(2,3), (3,4), (4,5), (5,6)

4/7/19 © UCF EECS 699

Knapsack 0-1 Example
i / w 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0
2 0
3 0
4 0

// Initialize the base cases
for w = 0 to W

B[0,w] = 0

for i = 1 to n
B[i,0] = 0

4/7/19 © UCF EECS 700

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0
2 0
3 0
4 0

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 1
vi = 3
wi = 2
w = 1
w-wi = -1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0
2 0
3 0
4 0

4/7/19 © UCF EECS 701

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0
2 0
3 0
4 0

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 1
vi = 3
wi = 2
w = 2
w-wi = 0

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3
2 0
3 0
4 0

4/7/19 © UCF EECS 702

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3
2 0
3 0
4 0

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 1
vi = 3
wi = 2
w = 3
w-wi = 1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3
2 0
3 0
4 0

4/7/19 © UCF EECS 703

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3
2 0
3 0
4 0

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 1
vi = 3
wi = 2
w = 4
w-wi = 2

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3
2 0
3 0
4 0

4/7/19 © UCF EECS 704

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3
2 0
3 0
4 0

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 1
vi = 3
wi = 2
w = 5
w-wi = 3

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0
3 0
4 0

4/7/19 © UCF EECS 705

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0
3 0
4 0

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 2
vi = 4
wi = 3
w = 1
w-wi = -2

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0
3 0
4 0

4/7/19 © UCF EECS 706

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0
3 0
4 0

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 2
vi = 4
wi = 3
w = 2
w-wi = -1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3
3 0
4 0

4/7/19 © UCF EECS 707

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3
3 0
4 0

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 2
vi = 4
wi = 3
w = 3
w-wi = 0

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4
3 0
4 0

4/7/19 © UCF EECS 708

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4
3 0
4 0

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 2
vi = 4
wi = 3
w = 4
w-wi = 1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4
3 0
4 0

4/7/19 © UCF EECS 709

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4
3 0
4 0

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 2
vi = 4
wi = 3
w = 5
w-wi = 2

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0
4 0

4/7/19 © UCF EECS 710

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0
4 0

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 3
vi = 5
wi = 4
w = 1..3
w-wi = -3..-1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4
4 0

4/7/19 © UCF EECS 711

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4
4 0

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 3
vi = 5
wi = 4
w = 4
w-wi = 0

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5
4 0

4/7/19 © UCF EECS 712

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5
4 0

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 3
vi = 5
wi = 4
w = 5
w-wi = 1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0

4/7/19 © UCF EECS 713

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0

i = 4
vi = 6
wi = 5
w = 1..4
w-wi = -4..-1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0 0 3 4 5

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

4/7/19 © UCF EECS 714

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0 0 3 4 5

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 4
vi = 6
wi = 5
w = 5
w-wi = 0

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0 0 3 4 5 7

4/7/19 © UCF EECS 715

Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0 0 3 4 5 7

We’re DONE!!
The max possible value that can be carried in this knapsack is $7

4/7/19 © UCF EECS 716

Knapsack 0-1 Problem – Run
Timefor w = 0 to W

B[0,w] = 0

for i = 1 to n
B[i,0] = 0

for i = 1 to n
for w = 0 to W

< the rest of the code >

What is the running time of this algorithm?
O(n*W) – of course, W can be mighty big
What is an analogy in world of sorting?

Remember that the brute-force algorithm takes: O(2n)

O(W)

O(W)
Repeat n times

O(n)

4/7/19 © UCF EECS 717

Tiling

Undecidable and NP-Complete
Variants

Basic Idea of Tiling

4/7/19 © UCF EECS 719

A single tile has colors on all four sides.
Tiles are often called dominoes as
assembling them follows the rules of
placing dominoes. That is, the color
(or number) of a side must match that
of its adjacent tile, e.g., tile, t2, to right
of a tile, t1, must have same color on
Its left as is on the right side of t1.
This constraint applies to top and as
well as sides. Boundary tiles do not
have constraints on their sides that touch
the boundaries.

Instance of Tiling Problem
• A finite set of tile types (a type is determined by

the colors of its edges)
• Some 2d area (finite or infinite) on which the tiles

are to be laid out
• An optional starting set of tiles in fixed positions
• The goal of tiling the plane following the

adjacency constraints and whatever constraints
are indicated by the starting configuration.

4/7/19 © UCF EECS 720

A Valid 3 by 3 Tiling of Tile
Types from Previous Slide

4/7/19 © UCF EECS 721

Some Variations
• Infinite 2d plane (impossible, co-re-non-rec) in general)

– Our two tile types can easily tile the 2d plane
• Finite 2d plane (hard in general)

– Our two tile types can easily tile any finite 2d plane
– This is called the Bounded Tiling Problem.

• One dimensional space (hmm?)
• Infinite 3d space (really impossible – multiple quantifiers,

in general)

4/7/19 © UCF EECS 722

Tiling the Plane
• We will start with a Post Machine, M = (Q, Σ, δ, q0), with tape

alphabet Σ = {B,1} where B is blank and δ maps pairs from Q�Σ to
Q�(Σ È {R,L}). M starts in state q0

– (Turing Machine with each action being L, R or Print)

• We will consider the case of M starting with a blank tape

• We will constrain our machine to never go to the left of its starting
position (semi unbounded tape)

• We will mimic the computation steps of M

• Termination occurs if in state q reading b and δ(q,b) is not defined

• We will use the fact that halting when starting at the left end of a
semi unbounded tape in its initial state with a blank tape is
undecidable

4/7/19 © UCF EECS 723

The Tiling Decision Problem
• Given a finite set of tile types and a

starting tile in lower left corner of 2d plane,
can we tile all places in the plane?

• A place is defined by its coordinates (x,y),
x≥0, y≥0

• The fixed starting tile is at (0,0)

4/7/19 © UCF EECS 724

Colors
• Given M, define our tile colors as
• {X, Y, *, B, 1, YB, Y1} È Q�{B,1} È

Q�{YB,Y1} È Q�{R,L}
• Simplest tile (represents Blank on X axis)

4/7/19 © UCF EECS 725

B
BB

X

Tiles for Copying Tape Cell

4/7/19 © UCF EECS 726

B
**

B

YB
*Y

YB

Copy cells not on
left boundary and
not scanned

1
**

1

Y1
*Y

Y1

Copy cells on
left boundary
but not scanned

Right Move δ(q,a) = (p,R)

4/7/19 © UCF EECS 727

Ya
p,RY

q,Ya

a
p,R*

q,a
p,b

*p,R
b

where bÎΣ={B,1}

Left Move δ(q,a) = (p,L)

4/7/19 © UCF EECS 728

p,Yb
p,LY

Yb

p,b
p,L*

b
a

*p,L
q,a

where bÎΣ={B,1}

Print δ(q,a) = (p,c)

4/7/19 © UCF EECS 729

p,Yc
*Y

q,Ya

p,c
**

q,a

Corner Tile and Bottom Row

4/7/19 © UCF EECS 730

q0,YB
BY

X

Zero-ed Row is forced to be

q0,YB
BY

X

B
BB

X

B
BB

X………...

First Action Print

4/7/19 © UCF EECS 731

p,Ya
*Y

q0,YB

As we cannot move left of leftmost character first action is
either right or print. Assume for now that δ(q0,B) = (p,a)

q0,YB
BY

X

B
BB

X

B
BB

X………...

B
**

B

B
**

B………...

First Action Right Move

4/7/19 © UCF EECS 732

YB
p,RY

q0,YB

As we cannot move left of leftmost character first action is
either right or print. Assume for now that δ(q0,B) = (p,R)

q0,YB
BY

X

B
BB

X

B
BB

X………...

p,B
*p,R

B

B
**

B………...

The Rest of the Story Part 1
• Inductively we can show that, if the i-th

row represents an infinite transcription of
the Turing configuration after step i then
the (i+1)-st represents such a transcription
after step i+1. Since we have shown the
base case, we have a successful
simulation.

4/7/19 © UCF EECS 733

The Rest of the Story Part 2
• Consider the case where M eventually

halts when started on a blank tape in state
q0. In this case we will reach a point where
no actions fill the slots above the one
representing the current state. That means
that we cannot tile the plane.

• If M never halts, then we can tile the plane
(in the limit).

4/7/19 © UCF EECS 734

The Rest of the Story Part 3
• The consequences of Parts 1 and 2 are

that Tiling the plane is as hard as the
complement of the Halting problem which
is co-RE Complete.

• This is not surprising as this problem
involve a universal quantification over all
coordinates (x,y) in the plane.

4/7/19 © UCF EECS 735

Constraints on M
• The starting blank tape is not a real constraint as we can create M

so its first actions are to write arguments on its tape.
• The semi unbounded tape is not new. If you look back at Standard

Turing Computing (STC), we assumed there that we never moved
left of the blank preceding our first argument.

• If you prefer to consider all computation based on the STC model
then we can add to M the simple prologue
(R1)x1R(R1)x2R…(R1)xkR so the actual computation starts with a
vector of x1 … xk on the tape and with the scanned square as the
blank to right of this vector. The rest of the tape is blank.

• Think about how, in the preceding pages, you could actually start
the tiling in this configuration.

4/7/19 © UCF EECS 736

Bounded Tiling Problem #1
• Consider a slight change to our machine M. First, it is non-

deterministic, so our transition function maps to sets.
• Second, we add two auxiliary states

{qa, qr}, where qa is our only accept state and qr is our only reject
state.

• We make it so the reject state has no successor states, but the
accept state always transitions back to itself rewriting the scanned
square unchanged.

• We also assume our machine accepts or rejects in at most nk steps,
where n is the length of its starting input which is written immediately
to the right of the initial scanned square.

4/7/19 © UCF EECS 737

Bounded Tiling Problem #2
• We limit our rows and column to be of size

nk+1. We change our initial condition of the tape
to start with the input to M. Thus, it looks like

• Note that there are nk – n of these blank representations
at the end. We really only need the first as the tiling
constraint will force all the others to be of the same form.

4/7/19 © UCF EECS 738

q0,YB
BY

X

x0
BB

X

B
BB

X…

xn
BB

X …

Bounded Tiling Problem #3
• The finitely bounded Tiling Problem we just described mimics the

operation of any given polynomially-bound non-deterministic Turing
machine.

• This machine can tile the finite plane of size
(nk+1) * (nk+1) just in case the initial string is accepted in nk or fewer
steps on some path (really a trace of at most nk).

• If the string is not accepted then we will hit a reject state on all paths
and never complete tiling.

• This shows that the bounded tiling problem is NP-Hard
• Is it in NP? Yes. How? Well, we can be shown a tiling (posed

solution takes space polynomial in n) and check it for completeness
and consistency (this takes linear time in terms of proposed
solution). Thus, we can verify the solution in time polynomial in n.

4/7/19 © UCF EECS 739

A Final Comment on Tiling
• If you look back at the unbounded version, you can see

that we could have simulated a non-deterministic Turing
machine there, but it would have had the problem that
the plane would be tiled if any of the non-deterministic
choices diverged and that is not what we desired.

• However, we need to use a non-deterministic machine
for the finite case as we made this so it tiled iff some
path led to acceptance. If all lead to rejection, we get
stalled out on all paths as the reject state can go
nowhere.

4/7/19 © UCF EECS 740

Tiling Example
• Turing Machine Recognizes strings of at least

two 1’s in succession.
• q0 0 0 q2
• q0 1 R q1
• q1 0 L q2
• q1 1 1 q3
• q2 0 0 q2
• q2 1 1 q2
• No q3 rules so entering here stops tiling
4/7/19 © UCF CS 741

Tile Replication

4/7/19 © UCF EECS 742

0
**

0

Y0
*Y

Y0

1
**

1

Y1
*Y

Y1

q0 0 0 q2 q0 1 R q1

4/7/19 © UCF EECS 743

**
q0,0

q2,Y0
*Y

q0,Y0

q2,0
q1,R*

q0,1

Y1
Y

q0,Y1

1

q1,R

q1,R *
0

q1,0

q1,R *
1

q1,1

q1 0 L q2 q1 1 1 q3

4/7/19 © UCF EECS 744

*
q1,0

0
q2,L*

0

q2,0
q2,L q2,L*

1

q2,1

q2,LY
Y0

q2,Y0
q2,LY

Y1

q2,Y1

**
q1,1

q3,Y1
*Y

q1,Y1

q3,1

q2 0 0 q2 q2 1 1 q2

4/7/19 © UCF EECS 745

**
q2,0

q2,Y0
*Y

q2,Y0

q2,0
**

q2,1

q2,Y1
*Y

q2,Y1

q2,1

Sample Starting Rows

4/7/19 © UCF EECS 746

q0,Y1
0Y

X

0
00

X

0
00

X………...

q0,Y1
0Y

X

1
00

X

0
00

X

0
00

X…

Case 1; Two More Rows

4/7/19 © UCF EECS 747

q0,Y1
0Y

X

0
00

X

Y1
q1,RY

q0,Y1

q1,0
*

0

0
**

0
…q1,R

0
**

0

0
00

X
…

0
00

X

q2,Y1
q2,LY

Y1

0
*

0
**

0
…q2,L

0
**

0q1,0

Case 1; Row 3 repeated

4/7/19 © UCF EECS 748

q2,Y1
q2,LY

Y1

0
*

0
**

0
…q2,L

0
**

0q1,0

q2,Y1
*Y

q2,Y1

0
*

0
**

0
…*

0
**

00

q2,Y1
*Y

q2,Y1

0
*

0
**

0
…*

0
**

00

Case 2; Only Two More Rows

4/7/19 © UCF EECS 749

Y1
q1,RY

q0,Y1

q1,1
*

1

0
**

0
…q1,R

0
**

0

Y1
*Y

Y1

q3,1
*

0
**

0
…*

0
**

0q1,1

q0,Y1
0Y

X

1
00

X

0
00

X

0
00

X…

Comments on Variations
• One dimensional space (think about it)

• Infinite 3d space (really impossible in general)
– This become a for all, there exists problem
– In fact, one can mimic acceptance on all inputs here,

meaning M is an algorithm iff we can tile the 3d space

4/7/19 © UCF EECS 750

PCP Revisited

Bounded Post Correspondence

Bounded Variation
• Limit correspondence to a length that is

polynomial in n, where n is length of initial input
string.

• Outline of proof we can get for almost free
– Convert halting problem for a Non-deterministic Turing machine

to word problem for a Semi-Thue System
Note: we originally did for deterministic machines but the construction works for
non-determinism and maps nicely to Semi-Thue systems which are non-
deterministic by definition.

– Recast as an instance of PCP
– Limit the length of word to (n+2)k, where original TM accepts or

rejects in nk steps.

4/7/19 © UCF EECS 752

Another Approach
• There is a tighter bound on Bounded PCP.

• Given sequences (x1, x2, …, xn) and (y1, y2, …, yn),
and a positive integer
K≤p(max(|x1|+…+|xn|, |y1|+…+|yn|),
where p is some polynomial, is there a solution to this
instance involving indices i1, …,ik, k≤K (not necessarily
distinct), of integers between 1 and n, such that the
corresponding x and y strings are identical.

• Follows from Constable, Hunt and Sahni (1974). “On the
Computational Complexity of Program Scheme
Equivalence,” Siam Journal of Computing 9(2), 396-416.

4/7/19 © UCF EECS 753

Co-NP

Fourth Significant Class of
Problems

Co–NP
For any decision problem A in NP, there
is a ‘complement’ problem Co–A defined
on the same instances as A, but with a
question whose answer is the negation
of the answer in A. That is, an instance
is a "yes" instance for A if and only if it
is a "no" instance in Co–A.

Notice that the complement of the
complement of a problem is the original
problem.

4/7/19 © UCF EECS 755

Co–NP
Co–NP is the set of all decision
problems whose complements are
members of NP.

For example: consider Graph Color GC
Given: A graph G and an integer k.
Question: Can G be properly colored with k
colors?

4/7/19 © UCF EECS 756

Co–NP
The complement problem of GC

Co–GC
Given: A graph G and an integer k.
Question: Do all proper colorings of G

require more than k colors?

4/7/19 © UCF EECS 757

Co–NP
Notice that Co–GC is a problem that
does not appear to be in the set NP.
That is, we know of no way to check in
polynomial time the answer to a "Yes"
instance of Co–GC.

What is the "answer" to a Yes instance
that can be verified in polynomial time?

4/7/19 © UCF EECS 758

Co–NP
Not all problems in NP behave this way. For
example, if X is a problem in class P, then both
"yes" and "no" instances can be solved in
polynomial time.

That is, both "yes" and "no" instances can be
verified in polynomial time and hence, X and
Co–X are both in NP, in fact, both are in P.

This implies P = Co–P and, further,
P = Co–P Í NP Ç Co–NP.

4/7/19 © UCF EECS 759

Co–NP
This gives rise to a second fundamental
question:

NP = Co–NP?

If P = NP, then NP = Co–NP.
This is not "if and only if."

It is possible that NP = Co–NP and, yet,
P ≠ NP.

4/7/19 © UCF EECS 760

Co–NP
If A ≤P B and both are in NP, then the same
polynomial transformation will reduce Co-A to Co–B.
That is,
Co–A ≤P Co–B. Therefore, Co–SAT is 'complete' in
Co–NP.

In fact, corresponding to NP–Complete is the
complement set Co–NP–Complete, the set of hardest
problems in
Co–NP.

4/7/19 © UCF EECS 761

Turing Reductions
Now, return to Turing Reductions.

Recall that Turing reductions include
polynomial transformations as a special
case. So, we should expect they will be more
powerful.

4/7/19 © UCF EECS 762

Turing Reductions
(1) Problems A and B can, but need not, be

decision problems.

(2) No restriction placed upon the number
of instances of B that are constructed.

(3) Nor, how the result, AnswerA, is computed.

In effect, we use an Oracle for B.
4/7/19 © UCF EECS 763

Turing Reductions
Technically, Turing Reductions include
Polynomial Transformations, but it is
useful to distinguish them.

Polynomial transformations are often
the easiest to apply.

4/7/19 © UCF EECS 764

NP–Hard

Fifth Significant Class of
Problems

NP–Hard
To date, we have concerned ourselves with
decision problems. We are now in a position
to include additional problems. In particular,
optimization problems.

We require one additional tool – the second
type of transformation discussed above –
Turing reductions.

4/7/19 © UCF EECS 766

NP–Hard
Definition: Problem B is NP–Hard if there is a
polynomial time Turing reduction A ≤PT B for
some problem A in NP–Complete.
This implies NP–Hard problems are at least as
hard as NP–Complete problems. Therefore,
they cannot be solved in polynomial time
unless P = NP (and maybe not then).
This use of an oracle, allows us to reduce co-
NP-Complete problems to NP-Complete ones
and vice versa.
4/7/19 © UCF EECS 767

QSAT
• QSAT is the problem to determine if an

arbitrary fully quantified Boolean expression
is true. Note: SAT only uses existential.

• QSAT is NP-Hard but may not be in NP.
• QSAT can be solved in polynomial space

(PSPACE).

4/7/19 © UCF EECS 768

NP–Hard
Polynomial transformations are Turing
reductions.

Thus, NP–Complete is a subset of NP–Hard.
Co–NP–Complete also is a subset of NP–Hard.
NP–Hard contains many other interesting
problems.

4/7/19 © UCF EECS 769

NP-Easy
• NP-Easy is the set of function problems that are

solvable in polynomial time by a deterministic
Turing machine with an oracle for some decision
problem in NP.

• That is, given an Oracle for some NP problem Y,
if X is Turing reducible to Y in polynomial time
then X is NP-Easy.

4/7/19 © UCF EECS 770

NP–Easy
Problem X need not be, but often is, NP–
Complete.

In fact, X can be any problem in NP or Co–NP.

More to the point, an NP-Easy problem does
not even need to be a decision problem – it can
be an optimization problem or some other
problem seeking a numerical rather than binary
(yes/no answer).
4/7/19 © UCF EECS 771

NP–Equivalent

Problem B in NP–Hard is NP–Equivalent when B reduces to some
problem X in NP, That is, B ≤PT X. This is, when B is also NP-Easy.

Since B is in NP–Hard, we already know there is a problem A in
NP–Complete that reduces to B. That is, A ≤PT B.

Since X is in NP, X ≤PT A. Therefore, X ≤PT A ≤PT B ≤PT X.

Thus, X, A, and B are all polynomially equivalent, and we can say

Theorem. Problems in NP–Equivalent are polynomial if and only if
P = NP.

Example: Optimization version of Subset-Sum is NP-Equivalent.

4/7/19 © UCF EECS 772

NP-Easy and Equivalent
• NP-Easy -- these are problems that are

polynomial when using an NP oracle (≤pt)
• NP-Equivalent is the class of NP-Easy and

NP-Hard problems (assuming Turing rather
than many-one reductions)
– In essence this is the functional equivalent

of NP-Complete but also of
Co-NP-Complete since can negate
answers

4/7/19 © UCF EECS 773

SubsetSum Optimization
S = {s1, s2, …, sn}

set of positive integers
and an integer B.

Optimization: Find a subset of S whose
values sum to the largest
attainable value ≤B?

Strategy: Use Oracle for SubsetSum Decision
Problem but only use it a
polynomial number of times

4/7/19 © UCF CS 774

Using SubsetSum Oracle
SUBSET-SUM-OPTIMIZATION(A, b)

int best = b;
for i = floor(log2b) downto 0 do

A = A + { 2i } // add to set
for i = floor(log2b) downto 0 do

A = A - { 2i} // remove from set
if not SUBSET-SUM(A, best) then

best = best - 2i // reduce best
return best

4/7/19 © UCF CS 775

Example of SubsetSum Opt
• Initial Values:
• A = {1, 4, 5, 7}, best = b = 15
• A = {1, 4, 5, 7, 8, 4, 2, 1}, best = 15
• A = {1, 4, 5, 7, 4, 2, 1}, best = 15
• A = {1, 4, 5, 7, 2, 1}, best = 15
• A = {1, 4, 5, 7, 1}, best = 15-2 = 13
• A = {1, 4, 5, 7}, best = 13

4/7/19 © UCF CS 776

Another Example
• Initial Values:
• A = {1, 4, 5, 7}, best = b = 20
• A = {1, 4, 5, 7, 16, 8, 4, 2, 1}, best = 20
• A = {1, 4, 5, 7, 8, 4, 2, 1}, best = 20
• A = {1, 4, 5, 7, 4, 2, 1}, best = 20
• A = {1, 4, 5, 7, 2, 1}, best = 20-2 = 18
• A = {1, 4, 5, 7, 1}, best = 20-2 = 18
• A = {1, 4, 5, 7}, best = 18-1 = 17
4/7/19 © UCF CS 777

Analysis
• Each loop has O(log2b) iterations, which is

linear with respect to the size of b.
• Note that if we tried all values less that b,

we would have O(b) tries and that is
exponential in log2b, the size of b.

• The correct solution takes advantage of
the NP-complete power of the oracle.

4/7/19 © UCF CS 778

Minimum Colors for a Graph
• We know K-Color is NP Complete

• We can reduce KC to Min Color problem just by
seeing if Min is ≤ K.

• How do we reduce Min Color to KC asking only
a log number of questions of the oracle for KC?

• Consider, if N nodes, then can easily N-Color

• Can we N/2-Color?
– If not, then try N/4

– If so, then try 3N/4

• This is a simple binary search for optimal value
4/7/19 © UCF CS 779

PSPACE
• PSPACE is set of problems solvable in

polynomial space with unlimited time
PSPACE = ∪ SPACE(nk)

• PSPACE = co-PSPACE = NPSPACE
• PSPACE is a strict superset of CSLs
• A PSPACE-Complete Problem is, given a

regular expression e over Σ, does e denote all
strings in Σ*?

• Another PSPACE-Complete problem is QSAT
4/7/19 © UCF EECS 780

EXPTIME and EXPSPACE
• EXPTIME is the set of problems solvable

in 2p(n) where is p is some polynomial.
• NEXPTIME is the set of problems solvable

in 2p(n) on a non-deterministic TM.
• EXPSPACE is set of problems solvable in

2p(n) space and unlimited time

4/7/19 © UCF CS 781

Complexity Hierarchy
• P Í NP Í PSPACE = NPSPACE ⊆ EXPTIME Í NEXPTIME Í

EXPSPACE ⊈ 2-EXPTIME ⊈ 3-EXPTIME ⊈ … ⊈ ELEMENTARY ⊈
PRF ⊈ REC

• P ¹ EXPTIME; At least one of these is true
– P ⊈ NP
– NP ⊈ PSPACE
– PSPACE ⊈ EXPTIME

• NP ¹ NEXPTIME
– Note that EXPTIME = NEXPTIME iff P=NP
– Note that k-EXPTIME ⊈ (k+1)-EXPTIME, k>0

• PSPACE ¹ EXPSPACE; At least one of these is true
– PSPACE ⊈ EXPTIME
– EXPTIME ⊈ EXPSPACE

4/7/19 © UCF CS 782

Alternating TM (ATM)
• ATM adds to NDTM notation the notion where,

for each state q, q has one of the following
properties: (accept, reject, Ú, Ù)
– Ú means mean accept the string if any final state

reached after q is accepting
– Ù means mean accept the string if all final states

reached after q are accepting
• AP = PSPACE where AP is class of problems

solvable in polynomial time on an ATM

4/7/19 © UCF EECS 783

QSAT, Petri Net, Presburger
• QSAT is solvable by an alternating TM in

polynomial time and polynomial space
• As noted before, QSAT is PSPACE-Complete
• Petri net reachability is EXPSPACE-hard and

requires 2-EXPTIME
• Presburger arithmetic is at least in 2-EXPTIME,

at most in 3-EXPTIME, and can be solved by an
ATM with n alternating quantifiers in doubly
exponential time

4/7/19 © UCF EECS 784

FP and FNP
• FP is functional equivalent to P

R(x,y) in FP if can provide value y for
input x via a deterministic polynomial
time algorithm

• FNP is functional equivalent to NP;
R(x,y) in FNP if can verify any pair (x,y)
via a deterministic polynomial time
algorithm

4/7/19 © UCF EECS 785

TFNP
• TFNP is the subset of FNP where a solution

always exists, i.e., there is a y for each x
such that R(x,y).
– Task of a TFNP algorithm is to find a y,

given x, such that R(x,y)
– Unlike FNP, the search for a y is always

successful
• FNP properly contains TFNP contains FP (we

don't know if proper)

4/7/19 © UCF EECS 786

Prime Factoring
• Prime factoring is defined as, given n

and k, does n have a prime factor <k?
• Factoring is in NP and co-NP

• Given candidate factor can check its
primality in poly time and then see if it
divides n

• Given candidate set of factors can check
their primalities, and see if product equals
n; if so, and no candidate < k, then answer
is no

4/7/19 © UCF EECS 787

Prime Factoring and TFNP
• Prime Factoring as a functional problem is in

TFNP, but is it in FP?
• If TFNP in FP then TFNP = FP since FP

contained in TFNP
• If that is so, then carrying out Prime

Factoring is in FP and its decision problem is
in P
– If this is so, we must fear for encryption, most of

which depends on difficulty of finding factors of a
large number

4/7/19 © UCF EECS 788

More TFNP
• There is no known recursive enumeration of

TFNP but there is of FNP
– This is similar to total versus partially

recursive functions (analogies are
everywhere)

• It appears that TFNP does not have any
complete problems!!!
– But there are subclasses of TFNP that do

have complete problems!!

4/7/19 © UCF EECS 789

Another Possible Analogy
• Is P = (NP intersect Co-NP)?
• Recall that REC = (RE intersect co-RE)
• The analogous result may not hold here

4/7/19 © UCF EECS 790

Turing vs m-1 Reductions
• In effect, our normal polynomial

reduction (≤p) is a many-one
polynomial time reduction as it just
asks and then accepts its oracle’s
answer

• In contrast, NP-Easy and NP-Equivalent
employ a Turing machine polynomial
time reduction (≤pt) that uses rather
than mimics answers from its oracle

4/7/19 © UCF EECS 791

More Examples of NP
Complete Problems

TipOver

4/7/19 © UCF EECS 793

Rules of Game

4/7/19 © UCF EECS 794

Numbers are height of crate stack;
If could get 4 high out of way we can attain goal

Problematic OR Gadget

4/7/19 © UCF EECS 795

Can go out where did not enter

Directional gadget

4/7/19 © UCF EECS 796

Single stack is two high;
tipped over stack is one high, two long;
red square is location of person travelling the towers

One directional Or gadget

4/7/19 © UCF EECS 797

AND Gadget

4/7/19 © UCF EECS 798

How AND Works

Variable Select Gadget

4/7/19 © UCF EECS 799

Tip A left to set x true; right to set x false
Can build bridge to go back but never to change choice

((xÚ~xÚy)Ù(~yÚzÚw)Ù~w)

4/7/19 © UCF EECS 800

x ~x

Ú

Ú

Ú Ú

y z w~y ~z ~w

Bridges back
for true paths

Ù Ù

Win Strategy is NP-Complete
• TipOver win strategy is NP-Complete
• Minesweeper consistency is NP-Complete
• Phutball single move win is NP-Complete

– Do not know complexity of winning
strategy

• Checkers is really interesting
– Single move to King is in P
– Winning strategy is PSpace-Complete

4/7/19 © UCF EECS 801

Finding Triangle Strips

Adapted from presentation by
Ajit Hakke Patil

Spring 2010

Graphics Subsystem
• The graphics subsystem (GS) receives

graphics commands from the application
running on CPU/GPU over a bus, builds the
image specified by the commands, and
outputs the resulting image to display
hardware

• Graphics Libraries:
– OpenGL, DirectX.

4/7/19 © UCF EECS 803

Surface Visualization

• As Triangle Mesh
• Generated by triangulating the

geometry

4/7/19 © UCF EECS 804

Triangle List vs Triangle Strip

• Triangle List: Arbitrary ordering of triangles.
• Triangle Strip: A triangle strip is a sequential ordering of

triangles. i.e consecutive triangles share an edge
• In case of triangle lists we draw each triangle separately.
• So for drawing N triangles you need to call/send 3N vertex

drawing commands/data.
• However, using a Triangle Strip reduces this requirement from

3N to N + 2, provided a single strip is sufficient.

4/7/19 © UCF EECS 805

Triangle List vs Triangle Strip
• four separate triangles:

ABC, CBD, CDE, and
EDF

• But if we know that it is a
triangle strip or if we
rearrange the triangles
such that it becomes a
triangle strip, then we can
store it as a sequence of
vertices ABCDEF

• This sequence would be
decoded as a set of
triangles ABC, BCD, CDE
and DEF

• Storage requirement:
– 3N => N + 2

4/7/19 © UCF EECS 806

Tri-strips example
• Single tri-strip that describes triangles is:

1,2,3,4,1,5,6,7,8,9,6,10,1,2

4/7/19 © UCF EECS 807

K-Stripability
• Given some positive integer K (less than

the number of triangles).
• Can we create K tri-strips for some given

triangulation – no repeated triangles.

4/7/19 © UCF EECS 808

Triangle List vs Triangle Strip

// Draw Triangle Strip
glBegin(GL_TRIANGLE_STRIP);
For each Vertex
{

glVertex3f(x,y,z); //vertex
}
glEnd();

// Draw Triangle List
glBegin(GL_TRIANGLES);
For each Triangle
{

glVertex3f(x1,y1,z1);// vertex 1
glVertex3f(x2,y2,z2);// vertex 2

glVertex3f(x3,y3,z3);// vertex 3
}
glEnd();

4/7/19 © UCF EECS 809

Problem Definition
• Given a triangulation T = {t1, t2, t3 ,.. tn}. Find the

triangle strip (sequential ordering) for it?
• Converting this to a decision problem.
• Formal Definition:

Given a triangulation T = {t1, t2, t3 ,.. tN}. Does
there exists a triangle strip?

4/7/19 © UCF EECS 810

NP Proof

• Provided a witness of a ‘Yes’ instance of the problem. we can
verify it in polynomial time by checking if the sequential triangles
are connected.

• Cost of checking if the consecutive triangles are connected
– For i to N -1

• Check of ith and i+1th triangle are adjacent (have a
common edge)

• Three edge comparisions or six vertex comparisions
– ~ 6N

• Hence it is in NP.

4/7/19 © UCF EECS 811

Dual Graph
• The dual graph of a

triangulation is obtained by
defining a vertex for each
triangle and drawing an edge
between two vertices if their
corresponding triangles
share an edge

• This gives the triangulations
edge-adjacency in terms of
a graph

• Cost of building a Dual
Graph

– O(N2)

• e.g G’ is a dual graph of G.

4/7/19 © UCF EECS 812

NP-Completeness
• To prove it’s NP-Complete we reduce a known NP-Complete

problem to this one; the Hamiltonian Path Problem.
• Hamiltonian Path Problem:

– Given: A Graph G = (V, E). Does G contains a path that
visits every vertex exactly once?

4/7/19 © UCF EECS 813

NP-Completeness proof by
restriction

• Accept an Instance of Hamiltonian Path, G = (V, E), we restrict this
graph to have max. degree = 3.The problem is still NP-Complete.

• Construct an Instance of HasTriangleStrip
– G’ = G

• V’ = V
• E’ = E

– Let this be the dual graph G’ = (V’, E’) of the triangulation T = {t1, t2,
t3 ,.. tN}.

• V’ ~ Vertex vi represents triangle ti, i = 1 to N
• E’ ~ An edge represents that two triangles are edge-adjacent

(share an edge)
• Return HasTriangleStrip(T)

4/7/19 © UCF EECS 814

NP-Completeness
• G will have a Hamiltonian

Path iff G’ has one (they are
the same).

• G’ has a Hamiltonian Path
iff T has a triangle strip of
length N – 1.

• T will have a triangle strip of
length N – 1 iff G (G’) has a
Hamiltonian Path.

• ‘Yes’ instance maps to ‘Yes’
instance. ‘No’ maps to ‘No.’

4/7/19 © UCF EECS 815

HP <P HasTriangleStrip
• The ‘Yes/No’ instance maps to ‘Yes/No’ instance respectively

and the transformation runs in polynomial time.
• Polynomial Transformation
• Hence finding Triangle Strip in a given triangulation is a NP-

Complete Problem

4/7/19 © UCF EECS 816

Undecidability of Finite
Convergence for Operators on

Formal Languages
Relation to Real-Time

(Constant Time) Execution

818

Simple Operators
• Concatenation

– A • B = { xy | x Î A & y Î B }

• Insertion
– A w B = { xyz | y Î A, xz Î B, x, y, z Î S*}
– Clearly, since x can be l, A • B Í A w B

4/7/19 © UCF EECS

819

K-insertion
• A w [k] B = { x1y1x2y2 … xkykxk+1 |

y1y2 … yk Î A,
x1x2 … xkxk+1 Î B,
xi, yj Î S*}

• Clearly, A • B Í A w [k] B , for all k>0

4/7/19 © UCF EECS

820

Iterated Insertion
• A (1) w[n] B = A w[n] B

• A (k+1) w[n] B = A w[n] (A (k) w[n] B)

4/7/19 © UCF EECS

821

Shuffle
• Shuffle (product and bounded product)

– A ¯ B = È j ³ 1 A w[j] B
– A ¯[k] B = È 1£j£k A w[j] B = A w[k] B

• One is tempted to define shuffle product as
A ¯ B = A w[k] B where

k = µ y [A w[j] B = A w[j+1] B]
but such a k may not exist – in fact, we will show
the undecidability of determining whether or not
k exists

4/7/19 © UCF EECS

822

More Shuffles
• Iterated shuffle

– A ¯0 B = A
– A ¯k +1 B = (A ¯[k] B) ¯ B

• Shuffle closure
– A ¯* B = È k ³ 0 (A ¯[k] B)

4/7/19 © UCF EECS

823

Crossover
• Unconstrained crossover is defined by

A Äu B = { wz, yx | wxÎA and yzÎB}

• Constrained crossover is defined by
A Äc B = { wz, yx | wxÎA and yzÎB,

|w| = |y|, |x| = |z| }

4/7/19 © UCF EECS

824

Who Cares?
• People with no real life (me?)
• Insertion and a related deletion operation are

used in biomolecular computing and
dynamical systems

• Shuffle is used in analyzing concurrency as
the arbitrary interleaving of parallel events

• Crossover is used in genetic algorithms

4/7/19 © UCF EECS

825

Some Known Results
• Regular languages, A and B

– A • B is regular
– A w [k] B is regular, for all k>0
– A ¯ B is regular
– A ¯* B is not necessarily regular

• Deciding whether or not A ¯* B is regular is an
open problem

4/7/19 © UCF EECS

826

More Known Stuff
• CFLs, A and B

– A • B is a CFL
– A w B is a CFL
– A w [k] B is not necessarily a CFL, for k>1

• Consider A=anbn; B = cmdm and k=2
• Trick is to consider (A w [2] B) Ç a*c*b*d*

– A ¯ B is not necessarily a CFL
– A ¯* B is not necessarily a CFL

• Deciding whether or not A ¯* B is a CFL is an open problem

4/7/19 © UCF EECS

827

Immediate Convergence

• L = L2 ?
• L = L wL ?
• L = L ¯ L ?
• L = L ¯* L ?
• L = L Äc L ?
• L = L Äu L ?

4/7/19 © UCF EECS

828

Finite Convergence
• $k>0 Lk = Lk+1

• $k³0 L (k) w L = L (k+1) w L
• $k³0 L w[k] L = L w[k+1] L
• $k³0 L ¯k L = L ¯k +1 L
• $k³0 L (k) Äc L = L (k+1) Äc L
• $k³0 L (k) Äu L = L (k+1) Äu L

• $k³0 A (k) w B = A (k+1) w B
• $k³0 A w[k] B = A w[k+1] B
• $k³0 A ¯k B = A ¯k +1 B
• $k³0 A (k) Äc B = A (k+1) Äc B
• $k³0 A (k) Äu B = A (k+1) Äu L

4/7/19 © UCF EECS

829

Finite Power of CFG
• Let G be a context free grammar.
• Consider L(G)n

• Question1: Is L(G) = L(G)2?
• Question2: Is L(G)n = L(G)n+1, for some finite

n>0?
• These questions are both undecidable.
• Think about why question1 is as hard as

whether or not L(G) is S*.
• Question2 requires much more thought.

4/7/19 © UCF EECS

830

1981 Results
• Theorem 1:

The problem to determine if L = S* is Turing
reducible to the problem to decide if
L • L Í L, so long as L is selected from a class
of languages C over the alphabet S for which we
can decide if S È {l} Í L.

• Corollary 1:
The problem “is L • L = L, for L context free or
context sensitive?” is undecidable

4/7/19 © UCF EECS

831

Proof #1
• Question: Does L • L get us anything new?

– i.e., Is L • L = L?
• Membership in a CSL is decidable.
• Claim is that L = S* iff

(1) S È {l} Í L ; and
(2) L • L = L

• Clearly, if L = S* then (1) and (2) trivially hold.
• Conversely, we have S* Í L*= È n³0 Ln Í L

– first inclusion follows from (1); second from (2)

4/7/19 © UCF EECS

832

Subsuming •
• Let Å be any operation that subsumes

concatenation, that is A • B Í A Å B.
• Simple insertion is such an operation,

since A • B Í A w B.
• Unconstrained crossover also subsumes
•,
A Äc B = { wz, yx | wxÎA and yzÎB}

4/7/19 © UCF EECS

833

L = L Å L ?
• Theorem 2:

The problem to determine if L = S* is
Turing reducible to the problem to decide if
L Å L Í L, so long as
L • L Í L Å L and L is selected from a
class of languages C over S for which we
can decide if
S È {l} Í L.

4/7/19 © UCF EECS

834

Proof #2
• Question: Does L Å L get us anything new?

– i.e., Is L Å L = L?
• Membership in a CSL is decidable.
• Claim is that L = S* iff

(1) S È {l} Í L ; and
(2) L Å L = L

• Clearly, if L = S* then (1) and (2) trivially hold.
• Conversely, we have S* Í L*= È n³0 Ln Í L

– first inclusion follows from (1); second from (1), (2)
and the fact that L • L Í L Å L

4/7/19 © UCF EECS

