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Who, What, Where and When 
•  Instructor: Charles Hughes;  

Harris Engineering 247C; 823-2762  
(phone is not a good way to get me);  
charles.e.hughes@knights.ucf.edu  
(e-mail is a good way to get me) 
Use Subject: COT6410  
Office Hours: TR 3:15PM-4:30PM 

•  Web Page: http://www.cs.ucf.edu/courses/cot6410/Spring2015   
•  Meetings: TR 1:30PM-2:45PM, ENGR1-286;  

28 periods, each 75 minutes long.  
Final Exam (Tuesday, May 5 from 1:00PM to 3:50PM) is 
separate from class meetings  

•  GTA: Elham Havvaei, HEC-354;  
havvaei@knights.ucf.edu;  
Use Subject COT6410 
Office Hours: MW 4:00PM – 5:15PM 
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Text Material 
•  This and other material linked from web site.  
•  References:  

–  Garey&Johnson, Computers and Intractability: A guide to the Theory of NP-Completeness, 
W. H. Freeman & Co., 1979.  

–  Davis, Sigal&Weyuker, Computability, Complexity and Languages 2nd Ed, Acad. Press 
(Morgan Kaufmann), 1994. 

–  Papadimitriou & Lewis, Elements of the Theory of Computation, Prentice-Hall, 1997.  
–  Hopcroft, Motwani&Ullman, Intro to Automata Theory, Languages and Computation 3rd Ed., 

Prentice-Hall, 2006. 
–  Oded Goldreich, Computational Complexity: A Conceptual Approach, Cambridge University 

Press, 2008. http://www.wisdom.weizmann.ac.il/~odedg/cc-drafts.html 
–  Arora&Barak, Computational Complexity: A Modern Approach, Cambridge University Press, 

2009. http://www.cs.princeton.edu/theory/complexity/ 
–  Oded Goldreich, P, NP, and NP-Completeness: The Basics of Complexity Theory, 

Cambridge University Press, 2010. http://www.wisdom.weizmann.ac.il/~odedg/bc-drafts.html  
–  Sipser, Introduction to the Theory of Computation 3rd Ed., Cengage Learning, 2013. 
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Goals of Course 
•  Introduce Computability and Complexity Theory, including 

–  Basic notions in theory of computation 
•  Algorithms and effective procedures 
•  Decision and optimization problems 
•  Decision problems have yes/no answer to each instance 

–  Limits of computation 
•  Turing Machines and other equivalent models 
•  Determinism and non-determinism 
•  Undecidable problems 
•  The technique of reducibility; The ubiquity of undecidability (Rice’s Theorem) 
•  The notions of semi-decidable (re) and of co-re sets 

–  Complexity theory 
•  Order notation (quick review) 
•  Polynomial reducibility 
•  Time complexity, the sets P, NP, co-NP, NP-complete, NP-hard, etc., and the question 

does P=NP? Sets in NP and NP-Complete.  
•  Gadgets and other reduction techniques 
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Expected Outcomes 
•  You will gain a solid understanding of various types of 

computational models and their relations to one another. 
•  You will have a strong sense of the limits that are 

imposed by the very nature of computation, and the 
ubiquity of unsolvable problems throughout CS.  

•  You will understand the notion of computational 
complexity and especially of the classes of problems 
known as P, NP, co-NP, NP-complete and NP-Hard. 

•  You will (hopefully) come away with stronger formal 
proof skills and a better appreciation of the importance of 
discrete mathematics to all aspects of CS.  

5 



4/7/15 © UCF EECS 6 

Keeping Up 
•  I expect you to visit the course web site regularly 

(preferably daily) to see if changes have been made or 
material has been added.  

•  Attendance is preferred, although I do not take roll.  
•  I do, however, ask lots of questions in class and give lots 

of hints about the kinds of questions I will ask on exams. 
It would be a shame to miss the hints, or to fail to 
impress me with your insightful in-class answers. 

•  You are responsible for all material covered in class, 
whether in the notes or not. 

6 



4/7/15 © UCF EECS 7 

Rules to Abide By 
•  Do Your Own Work 

–  When you turn in an assignment, you are implicitly telling me 
that these are the fruits of your labor. Do not copy anyone else's 
homework or let anyone else copy yours. In contrast, working 
together to understand lecture material and solutions to 
problems not posed as assignments is encouraged. 

•  Late Assignments 
–  I will accept no late assignments, except under very unusual 

conditions, and those exceptions must be arranged with me in 
advance unless associated with some tragic event. 

•  Exams 
–  No communication during exams, except with me or a 

designated proctor, will be tolerated. A single offense will lead to 
termination of your participation in the class, and the assignment 
of a failing grade. 
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Grading 
•  Grading of Assignments and Exams 

–  We will endeavor to return each exam within a week 
of its taking place and each assignment within a week 
of its due date. 

•  Exam Weights 
–  The weights of exams will be adjusted to your 

personal benefits, as I weigh the exam you do well in 
more than one in which you do less well. 
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Important Dates 

•  Midterm – Tues., March 3 (tentative) 
•  Spring Break – March 9-14 
•  Withdraw Deadline – Tuesday, March 24 
•  Final – Tues., May 5, 1:00PM–3:50PM 
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Evaluation (tentative) 
•  Mid Term – 125 points ; Final – 175 points  
•  Assignments – 100 points;  

Paper and Presentation – 75 points 
•  Extra – 25 points used to increase weight of 

exams or paper/presentation, always to your 
benefit 

•  Total Available: 500 points 
•  Grading will be  A >= 90%, B+ >= 85%,  

B >= 80%, C+ >= 75%, C >= 70%,  
D >= 50%, F < 50% (Minuses might be used) 
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What We are Studying 
Computability Theory 

 The study of what 
can/cannot be done 
via purely 
computational means. 

Complexity Theory 

 The study of what 
can/cannot be done 
well via purely 
computational means. 
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Decision Problems 
•  A set of input data items (input "instances” or domain) 
•  Each input data item defines a question with an answer 

Yes/No or True/False or 1/0. 
•  A decision problem can be viewed as a relation between 

its domain and its binary range 
•  A decision problem can also be viewed as a partition of 

the input domain into those that give rise to true 
instances and those that give rise to false instances. 

•  In each case, we seek an algorithmic solution (in the 
form of a predicate) or a proof that none exists 

•  When an algorithmic solution exists, we seek an efficient 
algorithm, or proofs of problem’s inherent complexity 
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Graph Coloring 
•  Instance: A graph G = (V, E) and an integer k. 
•  Question: Can G be "properly colored" with at most k colors? 

•  Proper Coloring: a color is assigned to each vertex so that adjacent 
vertices have different colors. 

•  Suppose we have two instances of this problem (1) is True (Yes) 
and the other (2) is False (No). 

•  AND, you know (1) is Yes and (2) is No. (Maybe you have a secret 
program that has analyzed the two instance.) 
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Checking a “Yes” Answer 
•  Without showing how your program works (you may not even know), how 

can you convince someone else that instance (1) is, in fact, a Yes instance? 

•  We can assume the output of the program was an actual coloring of G. Just 
give that to a doubter who can easily check that no adjacent vertices are 
colored the same, and that no more than k colors were used. 

•  How about the No instance? 

•  What could the program have given that allows us to quickly "verify" (2) is a 
No  instance? 

•  No One Knows!! 
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Checking a “No” Answer 
•  The only thing anyone has thought of is to have it test all 

possible ways to k-color the graph – all of which fail, of 
course, if “No” is the correct answer. 

•  There are an exponential number of things (colorings) to 
check. 

•  For some problems, there seems to be a big difference 
between verifying Yes and No instances. 

•  To solve a problem efficiently, we must be able to solve 
both Yes and No instances efficiently. 
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Hard and Easy 
•  True Conjecture: If a problem is easy to solve, then it is 

easy to verify (just solve it and compare). 

•  Contrapositive: If a problem is hard to verify, then it is 
(probably) hard to solve. 

•  There is nothing magical about Yes and No instances – 
sometimes the Yes instances are hard to verify and No 
instances are easy to verify. 

•  And, of course, sometimes both are hard to verify. 
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Easy Verification 
•  Are there problems in which both Yes and No instances 

are easy to verify? 

•  Yes. For example: Search a list L of n values for a key x. 
•  Question: Is x in the list L? 

•  Yes and No instances are both easy to verify. 

•  In fact, the entire problem is easy to solve!! 
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Verify vs Solve 
•  Conjecture: If both Yes and No instances are easy to verify, then the 

problem is easy to solve. 

•  No one has yet proven this claim, but most researchers believe it to 
be true. 

•  Note: It is usually relatively easy to prove something is easy – just 
write an algorithm for it and prove it is correct and that it is fast 
(usually,  we mean polynomial). 

•  But, it is usually very difficult to prove something is hard – we may  
not be clever enough yet. So, you will often see "appears to be 
hard." 
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Instances vs Problems 
•  Each instance has an 'answer.‘ 

– An instance’s answer is the solution of the 
instance - it is not the solution of the problem. 

– A solution of the problem is a computational 
procedure that finds the answer of any 
instance given to it – the procedure must halt 
on all instances – it must be an 'algorithm.' 
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Three Classes of Problems 
 Problems can be classified to be in one of 
three groups (classes): 

 Undecidable, Exponential, and Polynomial. 

 Theoretically, all problems belong to exactly 
one of these three classes and our job is often 
to find which one.  
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Why do we Care? 
 When given a new problem to solve (design an algorithm 
for), if it's undecidable, or even exponential, you will 
waste a lot of time trying to write a polynomial solution 
for it!! 

 
 If the problem really is polynomial, it will be worthwhile 
spending some time and effort to find a polynomial 
solution and, better yet, the lower degree polynomial 
solution. 

 
 You should know something about how hard a problem 
is before you try to solve it. 
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Procedure (Program) 
–  A finite set of operations (statements) such that 

•  Each statement is finitely presented and formed from a 
predetermined finite set of symbols and is constrained by 
some set of language syntax rules. 

•  The current state of the machine model is finitely 
presentable. 

•  The semantic rules of the language specify the effects of 
the operations on the machine’s state and the order in 
which these operations are executed.  

•  If the procedure (eventually) halts when started on some 
input, it produces the correct answer to this given 
instance of the problem. 
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Algorithm 

•  A procedure that 
– Correctly solves any instance of a given 

problem.  
– Completes execution in a finite number of 

steps no matter what input it receives. 
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Sample Algorithm/Procedure 
{ Example algorithm:  

 Linear search of a finite list for a key; 
 If key is found, answer “Yes”; 
 If key is not found, answer “No”; } 

{ Example procedure:  
 Linear search of a finite list for a key; 
 If key is found, answer “Yes”; 
 If key is not found, try this strategy again; } 

Note: Latter is not unreasonable if the list can be 
increased in size by some properly synchronized 
concurrent thread. 

4/7/15 © UCF EECS 24 



Procedure vs Algorithm 
 Looking back at our approaches to “find a key in a finite 
list,” we see that the algorithm always halts and always 
reports the correct answer. In contrast, the procedure 
does not halt in some cases, but never lies.  
  
 What this illustrates is the essential distinction between 
an algorithm and a procedure – algorithms always halt in 
some finite number of steps, whereas procedures may 
run on forever for certain inputs. A particularly silly 
procedure that never lies is a program that never halts 
for any input. 
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Notion of Solvable 
•  A problem is solvable if there exists an algorithm that 

solves it (provides the correct answer for each instance).  
•  The fact that a problem is solvable or, equivalently, 

decidable does not mean it is solved. To be solved, 
someone must have actually produced a correct 
algorithm.  

•  The distinction between solvable and solved is subtle. 
Solvable is an innate property – an unsolvable problem 
can never become solved, but a solvable one may or 
may not be solved in an individual’s lifetime. 
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An Old Solvable Problem 
Does there exist a set of positive whole numbers, a, b, 
c and an n>2 such that an+bn = cn? 

  
 In 1637, the French mathematician, Pierre de Fermat, claimed that 
the answer to this question is “No”. This was called Fermat’s Last 
Theorem, despite the fact that he never produced a proof of its 
correctness.  
 While this problem remained unsolved until Fermat’s claim was 
verified in 1995 by Andrew Wiles, the problem was always solvable, 
since it had just one question, so the solution was either “Yes” or 
“No”, and an algorithm exists for each of these candidate solutions. 
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Research Territory 
 Decidable – vs – Undecidable      
   (area of Computability Theory) 

 Exponential – vs – polynomial    
   (area of Computational Complexity) 

 For “easy” problems, we want to 
determine lower and upper bounds on 
complexity and develop best Algorithms 
   (area of Algorithm Design/Analysis) 
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A CS Grand Challenge 
Does P=NP? 

 There are many equivalent ways to describe P and NP. For now, we 
will use the following.  
 P is the set of decision problems (those whose instances have 
“Yes”/ “No” answers) that can be solved in polynomial time on a 
deterministic computer (no concurrency or guesses allowed).  
 NP is the set of decision problems that can be solved in polynomial 
time on a non-deterministic computer (equivalently one that  can 
spawn an unbounded number of parallel threads; equivalently one 
that can be verified in polynomial time on a deterministic computer).  
 Again, as “Does P=NP?” has just one question, it is solvable, we 
just don’t yet know which solution, “Yes” or “No”, is the correct one. 
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Computability vs Complexity 
 Computability focuses on the distinction between 
solvable and unsolvable problems, providing tools that 
may be used to identify unsolvable problems – ones that 
can never be solved by mechanical (computational) 
means. Surprisingly, unsolvable problems are 
everywhere as you will see.  
 In contrast, complexity theory focuses on how hard it is 
to solve problems that are known to be solvable. Hard 
solvable problems abound in the real world. We will 
address computability theory for the first part of this 
course, returning to complexity theory later in the 
semester. 
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History 

The Quest for Mechanizing 
Mathematics 
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Hilbert, Russell and Whitehead 

•  Late 1800’s to early 1900’s 
•  Axiomatic schemes 

– Axioms plus sound rules of inference 
– Much of focus on number theory 

•  First Order Predicate Calculus 
– ∀x∃y [y > x] 

•  Second Order (Peano’s Axiom) 
– ∀P [[P(0) && ∀x[P(x) ⇒P(x+1)]] ⇒ ∀xP(x)] 
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Hilbert 
•  In 1900 declared there were 23 really 

important problems in mathematics. 
•  Belief was that the solutions to these 

would help address math’s complexity. 
•  Hilbert’s Tenth asks for an algorithm to 

find the integral zeros of polynomial 
equations with integral coefficients. This is 
now known to be impossible (In 1972, 
Matiyacevič showed this undecidable). 
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Hilbert’s Belief 

•  All mathematics could be developed within 
a formal system that allowed the 
mechanical creation and checking of 
proofs.  
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Gödel 
•  In 1931 he showed that any first order theory 

that embeds elementary arithmetic is either 
incomplete or inconsistent. 

•  He did this by showing that such a first order 
theory cannot reason about itself. That is, there 
is a first order expressible proposition that 
cannot be either proved or disproved, or the 
theory is inconsistent (some proposition and its 
complement are both provable). 

•  Gödel also developed the general notion of 
recursive functions but made no claims about 
their strength. 
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Turing (Post, Church, Kleene) 
•  In 1936, each presented a formalism for computability. 

–  Turing and Post devised abstract machines and 
claimed these represented all mechanically 
computable functions. 

–  Church developed the notion of lambda-computability 
from recursive functions (as previously defined by 
Gödel and Kleene) and claimed completeness for this 
model. 

•  Kleene demonstrated the computational equivalence of 
recursively defined functions to Post-Turing machines.  

•  Church’s notation was the lambda calculus, which later 
gave birth to Lisp. 
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More on Emil Post 
•  In the 1920’s, starting with notation developed by Frege and 

others in 1880s, Post devised the truth table form we all use 
now for Boolean expressions (propositional logic). This was a 
part of his PhD thesis in which he showed the axiomatic 
completeness of the propositional calculus (all tautologies can 
be deduced from a finite set of tautologies and a finite set of 
rules of inference). 

•  In the late 1930’s and the 1940’s, Post devised symbol 
manipulation systems in the form of rewriting rules (precursors 
to Chomsky’s grammars). He showed their equivalence to 
Turing machines. 

•  In 1940s, Post showed the complexity (undecidability) of 
determining what is derivable from an arbitrary set of 
propositional axioms.  
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Computability 
The study of what can/cannot be 

done via purely mechanical 
means 



Goals for Computability 
•  Provide characterizations (computational models) of the 

class of effective procedures / algorithms.  

•  Study the boundaries between complete (or so it seems) 
and incomplete models of computation.  

•  Study the properties of classes of solvable and 
unsolvable problems.  

•  Solve or prove unsolvable open problems.  

•  Determine reducibility and equivalence relations among 
unsolvable problems.  

•  Apply results to various other areas of CS. 
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Basic Definitions 
The Preliminaries 
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Effective Procedure 
•  A process whose execution is clearly specified to the 

smallest detail 
•  Such procedures have, among other properties, the 

following: 
–  Processes must be finitely describable and the language used to 

describe them must be over a finite alphabet. 
–  The current state of the machine model must be finitely 

presentable. 
–  Given the current state, the choice of actions (steps) to move to 

the next state must be easily determinable from the procedure’s 
description. 

–  Each action (step) of the process must be capable of being 
carried out in a finite amount of time. 

–  The semantics associated with each step must be clear and 
unambiguous. 
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Algorithm 

•  An effective procedure that halts on all 
input 

•  The key term here is “halts on all input” 
•  By contrast, an effective procedure may 

halt on all, none or some of its input. 
•  The domain of an algorithm is its entire 

domain of possible inputs. 
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Sets, Problems & Predicates 

•  Set -- A collection of atoms from some 
universe U.  Ø denotes the empty set. 

•  (Decision) Problem -- A set of questions, 
each of which has answer “yes” or “no”. 

•  Predicate -- A mapping from some 
universe U into the Boolean set {true, 
false}.  A predicate need not be defined 
for all values in U. 
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How They relate 
•  Let S be an arbitrary subset of some universe U.  The 

predicate χS over U may be defined by: 
χS(x) = true  if and only if  x ∈ S 
χS is called the characteristic function of S. 

•  Let K be some arbitrary predicate defined over some 
universe U.  The problem PK associated with K is the 
problem to decide of an arbitrary member x of U, 
whether or not K(x) is true. 

•  Let P be an arbitrary decision problem and let U denote 
the set of questions in P (usually just the set over which 
a single variable part of the questions ranges).  The set 
SP associated with P is 
  { x | x ∈ U and x has answer “yes” in P } 
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Categorizing Problems (Sets) 
•  Solvable or Decidable -- A problem P is said to 

be solvable (decidable) if there exists an 
algorithm F which, when applied to a question q 
in P, produces the correct answer (“yes” or “no”). 

•  Solved -- A problem P is said to solved if P is 
solvable and we have produced its solution. 

•  Unsolved, Unsolvable (Undecidable) -- 
Complements of above 
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Existence of Undecidables 
•  A counting argument 

–  The number of mappings from ℵ to ℵ is at least as 
great as the number of subsets of ℵ. But the number 
of subsets of ℵ is uncountably infinite (ℵ1). However, 
the number of programs in any model of computation 
is countably infinite (ℵ0). This latter statement is a 
consequence of the fact that the descriptions must be 
finite and they must be written in a language with a 
finite alphabet. In fact, not only is the number of 
programs countable, it is also effectively enumerable; 
moreover, its membership is decidable.  

•  A diagonalization argument 
–  Will be shown later in class 
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Categorizing Problems (Sets) # 2 

•  Recursively enumerable -- A set S is recursively 
enumerable (re) if S is empty (S = Ø) or there 
exists an algorithm F, over the natural numbers 
ℵ, whose range is exactly S.  A problem is said 
to be re if the set associated with it is re. 

•  Semi-Decidable -- A problem is said to be semi-
decidable if there is an effective procedure F 
which, when applied to a question q in P, 
produces the answer “yes” if and only if q has 
answer “yes”.  F need not halt if q has answer 
“no”. 
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Immediate Implications 

•  P solved implies P solvable implies P 
semi-decidable (re). 

•  P non-re implies P unsolvable implies P 
unsolved. 

•  P finite implies P solvable. 
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Slightly Harder Implications 

•  P enumerable iff P semi-decidable. 
•  P solvable iff both SP and (U — SP) are re 

(semi-decidable). 

•  We will prove these later. 
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Hilbert’s Tenth 

Diophantine Equations are 
Unsolvable 

 One Variable Diophantine 
Equations are Solvable 
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Diophantine Equations 

•  Polynomial equation: P(x1, x2, …, xn) = 0 
•  Coefficients and exponents in P must be positive 

integer constants 
•  Implied existential quantifier for each variable, 

indicating a selection of integral values for each 
of x1, x2, …, xn 

•  Answer is “yes” if P(a1, a2, …, an) evaluates to 0, 
for some integer assignment x1=a1, x2=a2, …, 
xn=an 
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Hilbert’s 10th is Semi-Decidable 

•  Consider over one variable: P(x) = 0 
•  Can semi-decide by plugging in  

0, 1, -1, 2, -2, 3, -3, … 
•  This terminates and says “yes” if P(x) evaluates 

to 0, eventually. Unfortunately, it never 
terminates if there is no x such that P(x) =0 

•  Can easily extend to P(x1,x2,..,xk) = 0 
Think about how to do this correctly and 
what the pitfalls are 
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P(x) = 0 is Decidable 

•  cn xn + cn-1 xn-1 +… + c1 x + c0 = 0 
•  xn = -(cn-1 xn-1 + … + c1 x + c0)/cn  
•  |xn| ≤ cmax(|xn-1| + … + |x| + 1|)/|cn| 
•  |xn| ≤ cmax(n |xn-1|)/|cn|, since |x|≥1 
•  |x| ≤ n×cmax/|cn| 
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P(x) = 0 is Decidable 
•  Can bound the search to values of x in range  

[+ n *  cmax / cn , -n * cmax / cn ], where 
n = highest order exponent in P(x) 
cmax = largest absolute value coefficient 
cn = magnitude of coeff. of highest order term  

•  Once we have a search bound and we are 
dealing with a countable set, we have an 
algorithm to decide if there is an x. 

•  Cannot find bound when more than one variable, 
so cannot extend to P(x1,x2,..,xk) = 0. 
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Undecidability 

We Can’t Do It All 



Classic Unsolvable Problem 
 Given an arbitrary program P, in some language L, and 
an input x to P, will P eventually stop when run with input 
x? 
 The above problem is called the “Halting Problem.” It is 
clearly an important and practical one – wouldn't it be 
nice to not be embarrassed by having your program run 
“forever” when you try to do a demo?  
 Unfortunately, there’s a fly in the ointment as one can 
prove that no algorithm can be written in L that solves 
the halting problem for L. 
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Some terminology 
 We will say that a procedure, f, converges on input x if it eventually 
halts when it receives x as input. We denote this as f(x)↓.  

 
 We will say that a procedure, f, diverges on input x if it never halts 
when it receives x as input. We denote this as f(x)↑.  

 
 Of course, if f(x)↓ then f defines a value for x. In fact we also say 
that f(x) is defined if f(x)↓ and undefined if f(x)↑. 

 
 Finally, we define the domain of f as {x | f(x)↓}.  
The range of f is {y | f(x)↓ and f(x) = y }. 
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Halting Problem 
 Assume we can decide the halting problem.  Then there exists some total 
function Halt such that 
    1  if ϕx (y) ↓ 
 Halt(x,y)  = 

      0  if ϕx (y) ↑ 
 Here, we have numbered all programs and ϕx refers to the x-th program in 
this ordering.  Now we can view Halt as a mapping from  ℵ into ℵ  by 
treating its input as a single number representing the pairing of two numbers 
via the one-one onto function 
 
 pair(x,y) = <x,y> = 2x  (2y + 1) – 1 
 
 with inverses   
  <z>1 = log2(z+1) 

  
 <z>2 = ((( z + 1 ) // 2 <z>1  ) – 1 ) // 2 



4/7/15 © UCF EECS 59 

The Contradiction 
 Now if Halt exist, then so does Disagree, where 
   0   if Halt(x,x) = 0, i.e, if ϕx (x) ↑  
 Disagree(x) = 

     µy (y == y+1)  if Halt(x,x) = 1, i.e, if ϕx (x) ↓ 
  
 Since Disagree is a program from  ℵ into ℵ  , Disagree can be 
reasoned about by Halt.  Let d be such that Disagree = ϕd, then 
 Disagree(d) is defined  ⇔ Halt(d,d) = 0  

    ⇔ ϕd (d) ↑ 
 ⇔ Disagree(d) is undefined 
 But this means that Disagree contradicts its own existence.  Since 
every step we took was constructive, except for the original 
assumption, we must presume that the original assumption was in 
error.  Thus, the Halting Problem is not solvable. 



Halting is recognizable 
 While the Halting Problem is not solvable, it is re, recognizable or 
semi-decidable.  
 To see this, consider the following semi-decision procedure. Let P 
be an arbitrary procedure and let x be an arbitrary natural number.  
Run the procedure P on input x until it stops. If it stops, say “yes.” If 
P does not stop, we will provide no answer. This semi-decides the 
Halting Problem. Here is a procedural description. 

 
 Semi_Decide_Halting() { 
  Read P, x; 
  P(x); 
  Print “yes”; 
 } 
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Why not just algorithms? 
 A question that might come to mind is why we could not just have a 
model of computation that involves only programs that halt for all 
input. Assume you have such a model – our claim is that this model 
must be incomplete! 

 
 Here’s the logic. Any programming language needs to have an 
associated grammar that can be used to generate all legitimate 
programs. By ordering the rules of the grammar in a way that 
generates programs in some lexical or syntactic order, we have a 
means to recursively enumerate the set of all programs. Thus, the 
set of procedures (programs) is re. using this fact, we will employ 
the notation that ϕx is the x-th procedure and ϕx(y) is the x-th 
procedure with input y. We also refer to x as the procedure’s index. 
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The universal machine 
 First, we can all agree that any complete model of 
computation must be able to simulate programs in its 
own language. We refer to such a simulator (interpreter) 
as the Universal machine, denote Univ. This program 
gets two inputs. The first is a description of the program 
to be simulated and the second of the input to that 
program. Since the set of programs in a model is re, we 
will assume both arguments are natural numbers; the 
first being the index of the program. Thus, 

 
 Univ(x,y) = ϕx(y) 
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Non-re Problems 
•  There are even “practical” problems that are worse than 

unsolvable -- they’re not even semi-decidable.   
•  The classic non-re problem is the Uniform Halting 

Problem, that is, the problem to decide of an arbitrary 
effective procedure P, whether or not P is an algorithm.   

•  Assume that the algorithms can be enumerated, and that 
F accomplishes this.  Then 
 
F(x) = Fx  
 
where F0, F1, F2, … is a list of indexes of all and only the 
algorithms 
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The Contradiction 
•  Define  G( x ) = Univ ( F(x) , x ) + 1 = ϕF(x)( x ) = Fx(x) + 1 

•  But then G is itself an algorithm.  Assume it is the g-th one 
 

  F(g) = Fg = G 
 
Then,  G(g) = Fg(g) + 1 = G(g) + 1 
 

•  But then G contradicts its own existence since G would need to be 
an algorithm. 

•  This cannot be used to show that the effective procedures are non-
enumerable, since the above is not a contradiction when G(g) is 
undefined.  In fact, we already have shown how to enumerate the 
(partial) recursive functions. 



Consequences 
•  To capture all the algorithms, any model of computation 

must include some procedures that are not algorithms. 

•  Since the potential for non-termination is required, every 
complete model must have some for form of iteration that 
is potentially unbounded. 

•  This means that simple, well-behaved for-loops (the kind 
where you can predict the number of iterations on entry 
to the loop) are not sufficient. While type loops are 
needed, even if implicit rather than explicit. 
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Insights 



Non-re nature of algorithms 
•  No generative system (e.g., grammar) can produce 

descriptions of all and only algorithms 
•  No parsing system (even one that rejects by 

divergence) can accept all and only algorithms 

•  Of course, if you buy Church’s Theorem, the set of all 
procedures can be generated. In fact, we can build an 
algorithmic acceptor of such programs.  
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Many unbounded ways 
•  How do you achieve divergence, i.e., what are the 

various means of unbounded computation in each of 
our models? 

•  GOTO: Turing Machines and Register Machines 
•  Minimization: Recursive Functions 

–  Why not just simple finite iteration or recursion? 

•  Fixed Point: Ordered Petri Nets,   
(Ordered) Factor Replacement Systems 
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Non-determinism 
•  It sometimes doesn’t matter 

–  Turing Machines, Finite State Automata,  
Linear Bounded Automata 

•  It sometimes helps 
–  Push Down Automata 

•  It sometimes hinders 
–  Factor Replacement Systems, Petri Nets 
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Models of Computation 

Turing Machines 
Register Machines 

Factor Replacement Systems 
Recursive Functions 

 



Turing Machines 

1st Model 
A Linear Memory Machine 
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Basic Description 
•  We will use a simplified form that is a variant of Post’s and Turing’s 

models.    
•  Here, each machine is represented by a finite set of states of states 

Q, the simple alphabet {0,1}, where 0 is the blank symbol, and each 
state transition is defined by a 4-tuple of form  
  q a X s 
 where q a is the discriminant based on current state q, scanned 
symbol a; X can be one of {R, L, 0, 1}, signifying move right, move 
left, print 0, or print 1; and s is the new state.   

•  Limiting the alphabet to {0,1} is not really a limitation.  We can 
represent a k-letter alphabet by encoding the j-th letter via j 1’s in 
succession.  A 0 ends each letter, and two 0’s ends a word.  

•  We rarely write quads.  Rather, we typically will build machines from 
simple forms.  
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Base Machines 
•  R -- move right over any scanned symbol 
•  L -- move left over any scanned symbol 
•  0 -- write a 0 in current scanned square 
•  1 -- write a 1 in current scanned square 
•  We can then string these machines together with 

optionally labeled arc. 
•  A labeled arc signifies a transition from one part of the 

composite machine to another, if the scanned square’s 
content matches the label.  Unlabeled arcs are 
unconditional.  We will put machines together without 
arcs, when the arcs are unlabeled.  
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Useful Composite Machines 
R -- move right to next 0 (not including current square)   

 …?11…10… ⇒ …?11…10…    
L -- move left to next 0 (not including current square)   

 …011…1?… ⇒ …011…1?…    
R -- move right to next 00 (not including current square)   

 …?11…1011…10…11…100… ⇒ …?11…1011…10…
11…100…   

L -- move left to next 00 (not including current square) 
 …0011…1011…10…11…1?… ⇒ …0011…1011…10…
11…1?…  

R 1

L 1

 1 R 0 L R 

 1 L 0 R L 
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Commentary on Machines 
•  These machines can be used to move 

over encodings of letters or encodings of 
unary based natural numbers.   

•  In fact, any effective computation can 
easily be viewed as being over natural 
numbers.  We can get the negative 
integers by pairing two natural numbers.  
The first is the sign (0 for +, 1 for -). The 
second is the magnitude. 
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Computing with TMs 
 A reasonably standard definition of a Turing 
computation of some n-ary function F is to 
assume that the machine starts with a tape 
containing the n inputs, x1, … , xn in the form 
  …01x101x20…01xn0… 
 and ends with 
  …01x101x20…01xn01y0… 
 where y = F(x1, … , xn). 
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Addition by TM 

 Need the copy family of useful 
submachines, where Ck copies k-th 
preceding value. 

 
 

  
 The add machine is then 
   C2 C2 L 1 R L 0 

 

1 

0 

R L 
k R 

0 R 

k k+1 1 L 
k+1 

1 



Turing Machine Variations 

•  Two tracks 
•  N tracks 
•  Non-deterministic (We will return to this) 
•  Two-dimensional 
•  K dimensional 
•  Two stack machines 
•  Two counter machines 
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Register Machines 

2nd Model 
Feels Like Assembly Language 



Register Machine Concepts 
•  A register machine consists of a finite length program, 

each of whose instructions is chosen from a small 
repertoire of simple commands. 

•  The instructions are labeled from 1 to m, where there are 
m instructions.  Termination occurs as a result of an 
attempt to execute the m+1-st instruction. 

•  The storage medium of a register machine is a finite set 
of registers, say of cardinality k, numbered 0, …, k,each 
capable of storing an arbitrary natural number. 

•  Any given register machine has a finite, predetermined 
number of registers, independent of its input. 
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Computing by Register Machines 

•  A register machine partially computing some n-
ary function F typically starts with its argument 
values in registers 1 to n and ends with the 
result in the 0-th register. 

•  We extend this slightly to allow the computation 
to start with values in its k+1-st through k+n-th 
register, with the result appearing in the k-th 
register, for any k, such that there are at least  
k+n+1 registers. 
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Register Instructions 
•  Each instruction of a register machine is of 

one of two forms: 
 INCr[i] –  
  increment r and jump to i. 
 DECr[p, z] – 
  if register r > 0, decrement r and jump to p 
  else jump to z 

•  Note, we do not use subscripts if obvious. 
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Addition by RM 
Addition (r0 ← r1 + r2) 
1.  DEC0[1,2]  : Zero result (r0) and work (r3) registers  
2.  DEC3[2,3] 
3.  DEC1[4,6]  : Add r1 to r0, saving original r1 in r3 
4.  INC0[5] 
5.  INC3[3] 
6.  DEC3[7,8]  : Restore r1 
7.  INC1[6] 
8.  DEC2[9,11]  : Add r2 to r0, saving original r2 in r3 
9.  INC0[10] 
10. INC3[8] 
11. DEC3[12,13]  : Restore r2 
12. INC2[11] 
13. : Halt by branching here 
In many cases we just assume registers, other those with input, are zero 
at start. That would remove need instructions 1 and 2. 
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Limited Subtraction by RM 
Subtraction (r0 ← r1 - r2, if r1≥r2; 0, otherwise) 
1.  DEC0[1,2]  : Zero result (r0) and work (r3) registers  
2.  DEC3[2,3] 
3.  DEC1[4,6]  : Add r1 to r0, saving original r1 in r3 
4.  INC0[5] 
5.  INC3[3] 
6.  DEC3[7,8]  : Restore r1 
7.  INC1[6] 
8.  DEC2[9,11]  : Subtract r2 from r0, saving original r2 in r3 
9.  DEC0[10,10]   : Note that decrementing 0 does nothing 
10. INC3[8] 
11. DEC3[12,13]  : Restore r2 
12. INC2[11] 
13.   : Halt by branching here 
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Factor Replacement 
Systems 

3rd Model 
Deceptively Simple 
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Factor Replacement Concepts 
•  A factor replacement system (FRS) consists of a finite 

(ordered) sequence of fractions, and some starting 
natural number x.   

•  A fraction a/b is applicable to some natural number x, 
just in case x is divisible by b.  We always chose the first 
applicable fraction (a/b), multiplying it times x to produce 
a new natural number x*a/b.  The process is then 
applied to this new number.   

•  Termination occurs when no fraction is applicable.   
•  A factor replacement system partially computing n-ary 

function F typically starts with its argument encoded as 
powers of the first n odd primes.  Thus, arguments 
x1,x2,…,xn are encoded as 3x15x2…pn

xn.  The result 
then appears as the power of the prime 2. 
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Addition by FRS 
 Addition is 3x15x2 becomes 2x1+x2  
 or, in more details, 203x15x2 becomes 2x1+x2 3050 
  2 / 3 
  2 / 5 
 Note that these systems are sometimes presented as 
rewriting rules of the form 
  bx  →  ax 
 meaning that a number that has can be factored as bx 
can have the factor b replaced by an a.   
The previous rules would then be written 
  3x  →  2x 
  5x  →  2x 
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Limited Subtraction by FRS 
 Subtraction is 3x15x2 becomes 2max(0,x1-x2)   

 
  3⋅5x  →  x 
  3x     →  2x 
  5x     →  x 
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Ordering of Rules 
•  The ordering of rules are immaterial for the 

addition example, but are critical to the workings 
of limited subtraction. 

•  In fact, if we ignore the order and just allow any 
applicable rule to be used we get a form of non-
determinism that makes these systems 
equivalent to Petri nets.   

•  The ordered kind are deterministic and are 
equivalent to a Petri net in which the transitions 
are prioritized. 
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Why Deterministic? 
To see why determinism makes a difference, consider 

  3⋅5x  →  x 
  3x     →  2x 
  5x     →  x 

Starting with 135 = 3351, deterministically we get 
  135 ⇒   9 ⇒ 6 ⇒ 4 = 22 

Non-deterministically we get a larger, less selective set. 
  135 ⇒   9 ⇒ 6 ⇒ 4 = 22 
  135 ⇒   90 ⇒ 60 ⇒ 40 ⇒ 8 = 23 
  135 ⇒   45 ⇒ 3 ⇒ 2 = 21 
  135 ⇒   45 ⇒ 15 ⇒ 1 = 20 
  135 ⇒   45 ⇒ 15 ⇒ 5 ⇒ 1 = 20 
  135 ⇒   45 ⇒ 15 ⇒ 3 ⇒ 2 = 21 
  135 ⇒   45 ⇒ 9 ⇒ 6 ⇒ 4 = 22 
  135 ⇒   90 ⇒ 60 ⇒ 40 ⇒ 8 = 23 

  …  
This computes 2z where 0 ≤ z≤x1. Think about it. 
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More on Determinism 

 In general, we might get an infinite set 
using non-determinism, whereas 
determinism might produce a finite set.  To 
see this consider a system 
  2x  →  x 
  2x  →  4x 
 starting with the number 2. 
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Sample RM and FRS 
Present a Register Machine that computes IsOdd. Assume R1=x at 
starts; at termination, set R0=1 if x is odd; 0 otherwise.  We 
assume R0=0 at start. We also are not concerned about 
destroying input. 
1. DEC1[2, 4] 
2. DEC1[1, 3] 
3. INC0[4] 
4.  
Present a Factor Replacement System that computes IsOdd. 
Assume starting number is 3^x; at termination, result is 2=2^1 if x 
is odd; 1= 2^0 otherwise.  
3*3 x → x 
3 x → 2 x 
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Sample FRS 
Present a Factor Replacement System that computes IsPowerOf2. 
Assume starting number is 3x 5; at termination, result is 2=21 if x 
is a power of 2; 1= 20 otherwise 
32*5 x → 5*7 x 
3*5*7 x → x 
3*5 x → 2 x 
5*7 x → 7*11 x 
7*11 x → 3*11 x 
11 x → 5 x 
5 x → x 
7 x → x 
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Systems Related to FRS 
•  Petri Nets: 

–  Unordered 
–  Ordered 
–  Negated Arcs 

•  Vector Addition Systems: 
–  Unordered 
–  Ordered 

•  Factors with Residues: 
–  a x + c   →   b x + d 

•  Finitely Presented Abelian Semi-Groups 
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Petri Net Operation 
•  Finite number of places, each of which can hold zero of more 

markers. 
•  Finite number of transitions, each of which has a finite number of 

input and output arcs, starting and ending, respectively, at places. 
•  A transition is enabled if all the nodes on its input arcs have at least 

as many markers as arcs leading from them to this transition. 
•  Progress is made whenever at least one transition is enabled. 

Among all enabled, one is chosen randomly to fire. 
•  Firing a transition removes one marker per arc from the incoming 

nodes and adds one marker per arc to the outgoing nodes. 
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Petri Net Computation 
•  A Petri Net starts with some finite number of markers distributed 

throughout its n nodes.  
•  The state of the net is a vector of n natural numbers, with the i-th 

component’s number indicating the contents of the i-th node. E.g., 
<0,1,4,0,6> could be the state of a Petri Net with 5 places, the 2nd, 
3rd and 5th, having 1, 4, and 6 markers, resp., and the 1st and 4th 
being empty. 

•  Computation progresses by selecting and firing enabled transitions. 
Non-determinism is typical as many transitions can be 
simultaneously enabled. 

•  Petri nets are often used to model coordination algorithms, 
especially for computer networks. 
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Variants of Petri Nets 
•  A Petri Net is not computationally complete. In fact, its halting and 

word problems are decidable. However, its containment problem 
(are the markings of one net contained in those of another?) is not 
decidable. 

•  A Petri net with prioritized transitions, such that the highest priority 
transitions is fired when multiple are enabled is equivalent to an 
FRS. (Think about it). 

•  A Petri Net with negated input arcs is one where any arc with a 
slash through it contributes to enabling its associated transition only 
if the node is empty. These are computationally complete. They can 
simulate register machines. (Think about this also). 
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Petri Net Example 

Marker 

Place 

Transition 

Arc 

… …
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Vector Addition 
•  Start with a finite set of vectors in integer n-space. 
•  Start with a single point with non-negative integral 

coefficients. 
•  Can apply a vector only if the resultant point has non-

negative coefficients. 
•  Choose randomly among acceptable vectors. 
•  This generates the set of reachable points. 
•  Vector addition systems are equivalent to Petri Nets. 
•  If order vectors, these are equivalent to FRS.  
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Vectors as Resource Models 
•  Each component of a point in n-space 

represents the quantity of a particular 
resource. 

•  The vectors represent processes that 
consume and produce resources. 

•  The issues are safety (do we avoid bad 
states) and liveness (do we attain a 
desired state). 

•  Issues are deadlock, starvation, etc. 
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Factors with Residues 
•  Rules are of form 

–  ai x + ci   →   bi x + di 

–  There are n such rules 
–  Can apply if number is such that you get a residue 

(remainder) ci when you divide by ai 
–  Take quotient x and produce a new number  

bi x + di 
–  Can apply any applicable one (no order) 

•  These systems are equivalent to Register 
Machines. 

4/7/15 



© UCF EECS 102 

Abelian Semi-Group 
S = (G, •) is a semi-group if 

G is a set, • is a binary operator, and 
1.  Closure: If x,y ∈ G then x • y ∈ G  
2.  Associativity: x • (y • z) = (x • y) • z 

S is a monoid if 
3.  Identity: ∃e ∈ G ∀x ∈ G [e • x = x • e = x] 

S is a group if  
4.  Inverse: ∀x ∈ G ∃x-1 ∈ G [x-1 • x = x • x-1 = e] 

S is Abelian if • is commutative 
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Finitely Presented 
•  S = (G, •), a semi-group (monoid, group), is finitely 

presented if there is  a finite set of symbols, Σ, called the 
alphabet or generators, and a finite set of equalities  
(αi = βi), the reflexive transitive closure of which 
determines equivalence classes over G.  

•  Note, the set G is the closure of the generators under the 
semi-group’s operator •.  

•  The problem of determining membership in equivalence 
classes for finitely presented Abelian semi-groups is 
equivalent to that of determining mutual derivability in an 
unordered FRS or Vector Addition System with inverses 
for each rule. 
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Recursive Functions 

Primitive and µ-Recursive 



Primitive Recursive 

An Incomplete Model 
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Basis of PRFs 
•  The primitive recursive functions are defined by 

starting with some base set of functions and 
then expanding this set via rules that create new 
primitive recursive functions from old ones. 

•  The base functions are: 
 Ca(x1,…,xn) = a  : constant functions 
     (x1,…,xn) = xi  : identity functions 
     : aka projection  
 S(x) = x+1   : an increment function 

  i
nI
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Building New Functions 
•  Composition:  

 If G, H1, … , Hk are already known to be primitive 
recursive, then so is F, where 
  F(x1,…,xn) = G(H1(x1,…,xn), … , Hk(x1,…,xn)) 

•  Iteration (aka primitive recursion):  
 If G, H are already known to be primitive recursive, then 
so is F, where 
  F(0, x1,…,xn) = G(x1,…,xn) 
  F(y+1, x1,…,xn) = H(y, x1,…,xn, F(y, x1,…,xn)) 
 We also allow definitions like the above, except iterating 
on y as the last, rather than first argument. 
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Addition & Multiplication 
Example: Addition 

  +(0,y) =    (y) 
  +(x+1,y) = H(x,y,+(x,y)) 
   where H(a,b,c) = S(    (a,b,c)) 

Example: Multiplication 
  *(0,y) = C0(y) 
  *(x+1,y) = H(x,y,*(x,y))  
   where H(a,b,c) = +(     (a,b,c),    (a,b,c))  
        = b+c = y + *(x,y) = (x+1)*y 

  2
3I

  1
1I

  3
3I

  3
3I
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Basic Arithmetic 
x + 1:   

 x + 1 = S(x) 
x – 1:   

 0 - 1 = 0    
 (x+1) - 1 = x 

x + y:   
 x + 0 = x 
 x+ (y+1) = (x+y) + 1 

x – y:  // limited subtraction 
 x – 0 = x  
 x – (y+1) = (x–y) – 1 
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2nd Grade Arithmetic 
x * y:   

 x * 0 = 0 
 x * (y+1) = x*y + x 

 
x!: 

 0! = 1   
 (x+1)! = (x+1) * x! 
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Basic Relations 
x == 0: 

 0 == 0 = 1 
 (y+1) == 0 = 0 

x == y:   
 x==y = ((x – y) + (y – x )) == 0 

x ≤y :   
 x≤y = (x – y) == 0 

x ≥ y:   
 x≥y = y≤x 

x > y :   
 x>y = ~(x≤y)  /* See ~ on next page */   

x < y :   
 x<y = ~(x≥y) 
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Basic Boolean Operations 
~x: 

 ~x = 1 – x  or  (x==0) 
 
signum(x):  1 if x>0; 0 if x==0 

 ~(x==0) 
 
x && y: 

 x&&y = signum(x*y) 
 
x || y: 

 x||y = ~((x==0) && (y==0)) 
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Definition by Cases  
One case   

   g(x)   if P(x)  
 f(x) =   
     h(x)   otherwise 
 f(x) = P(x) * g(x) + (1-P(x)) * h(x) 

 
Can use induction to prove this is true for all k>0, where 

   g1(x)   if P1(x)  
   g2(x)   if P2(x) && ~P1(x) 
  f(x) =  … 
   gk(x)   if Pk(x) && ~(P1(x) || … || ~Pk-1(x)) 
     h(x)   otherwise 
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Bounded Minimization 1 
 f(x) = µ z (z ≤ x) [ P(z) ] if ∃ such a z, 
    = x+1, otherwise 
 where P(z) is primitive recursive.  

 
 Can show f is primitive recursive by  
f(0)  =  1-P(0) 
 f(x+1)  =  f(x)    if f(x) ≤ x  
   =  x+2-P(x+1)  otherwise 
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Bounded Minimization 2 
 f(x) = µ z (z < x) [ P(z) ] if ∃ such a z, 
    = x, otherwise 
 where P(z) is primitive recursive.  

 
 Can show f is primitive recursive by  
f(0) = 0 
 f(x+1) = µ z (z ≤ x) [ P(z) ]   
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Intermediate Arithmetic 
x // y: 

 x//0 = 0  : silly, but want a value 
 x//(y+1) = µ z (z<x) [ (z+1)*(y+1) > x ] 

 
x | y: x is a divisor of y 

 x|y = ((y//x) * x) == y 
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Primality 
firstFactor(x): first non-zero, non-one factor of x. 

 firstfactor(x) =  µ z  (2 ≤ z ≤ x) [ z|x ] ,  
    0 if none 

 
isPrime(x): 

 isPrime(x) = firstFactor(x) == x && (x>1) 
 
prime(i) = i-th prime: 

 prime(0) = 2 
 prime(x+1) = µ z(prime(x)< z ≤prime(x)!+1)[isPrime(z)] 

We will abbreviate this as pi for prime(i) 
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Exponents 

x^y: 
 x^0 = 1 
 x^(y+1) = x * x^y 

 
exp(x,i): the exponent of pi in number x. 

 exp(x,i) = µ z  (z<x) [ ~(pi^(z+1) | x) ] 
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Pairing Functions 
•  pair(x,y) = <x,y> = 2x  (2y + 1) – 1 

 
•  with inverses   

  <z>1 = exp(z+1,0) 
  
 <z>2 = ((( z + 1 ) // 2 <z>1  ) – 1 ) // 2 

•  These are very useful and can be extended to 
encode n-tuples 
  <x,y,z> = <x, <y,z> > (note: stack analogy) 
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Pairing Function is 1-1 Onto 
Prove that the pairing function <x,y> = 2^x (2y + 1) - 1 
is 1-1 onto the natural numbers. 
Approach 1: 
We will look at two cases, where we use the following 
modification of the pairing function, <x,y>+1, which implies 
the problem of mapping the pairing function to Z+. 
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Case 1 (x=0) 
Case 1: 
For x = 0, <0,y>+1 = 20(2y+1) = 2y+1. But every odd 
number is by definition one of the form 2y+1, where y≥0; 
moreover, a particular value of y is uniquely associated with 
each such odd number and no odd number is produced 
when x=0. Thus, <0,y>+1 is 1-1 onto the odd natural 
numbers. 
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Case 2 (x > 0) 
Case 2: 
For x > 0, <x,y>+1 = 2x(2y+1), where 2y+1 ranges over all odd number 
and is uniquely associated with one based on the value of y (we saw 
that in case 1). 2x must be even, since it has a factor of 2 and hence 
2x(2y+1) is also even. Moreover, from elementary number theory, we 
know that every even number except zero is of the form 2xz, where 
x>0, z is an odd number and this pair x,y is unique. Thus, <x,y>+1 is 
1-1 onto the even natural numbers, when x>0. 
 
The above shows that <x,y>+1 is 1-1 onto Z+, but then <x,y> is 1-1 
onto ℵ, as was desired. 
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Pairing Function is 1-1 Onto 
Approach 2: 
Another approach to show a function f over S is  
1-1 onto T is to show that  
f -1(f(x)) = x, for arbitrary x∈S and that  
f (f-1 (z)) = z, for arbitrary z∈T.  
 
Thus, we need to show that  
(<x,y>1,<x,y>2) = (x,y) for arbitrary (x,y)∈ℵ×ℵ and  
<<z>1,<z>2> = z for arbitrary z∈ℵ.  
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Alternate Proof 
Let x,y be arbitrary natural number, then <x,y> = 2x(2y+1)-1.  
Moreover, <2x(2y+1)-1>1 = Factor(2x(2y+1),0) = x, since 2y+1 must be 
odd, and  
<2x(2y+1)-1>2 = ((2x(2y+1)/2^Factor(2x(2y+1),0))-1)/2 = 2y/2 = y. 
Thus, (<x,y>1,<x,y>2) = (x,y), as was desired.  
Let z be an arbitrary natural number, then the inverse of the pairing is 
(<z>1,<z>2) 
Moreover, <<z>1,<z>2> = 2^<z>1 *(2<z>2+1)-1 
= 2^Factor(z+1,0)*(2*((z+1)/ 2^Factor(z+1,0))/2-1+1)-1 
= 2^Factor(z+1,0)*( (z+1)/ 2^Factor(z+1,0))-1 
= (z+1) – 1 
= z, as was desired. 
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Application of Pairing 
Show that prfs are closed under Fibonacci induction. Fibonacci 
induction means that each induction step after calculating the 
base is computed using the previous two values, where the 
previous values for f(1) are f(0) and 0; and for x>1, f(x) is based on 
f(x-1) and f(x-2).  
 
The formal hypothesis is:  
Assume g and h are already known to be prf, then so is f, where 
f(0,x) = g(x);  
f(1,x) = h(f(0,x), 0); and  
f(y+2,x) = h(f(y+1,x), f(y,x)) 
 
Proof is by construction 
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Fibonacci Recursion 
Let K be the following primitive recursive function, defined by induction 
on the primitive recursive functions, g, h, and the pairing function. 
K(0,x) = B(x) 
B(x) = < g(x), C0(x) >   // this is just <g(x), 0> 
K(y+1, x) = J(y, x, K(y,x)) 
J(y,x,z) = < h(<z>1, <z>2), <z>1 >  
// this is < f(y+1,x), f(y,x)>, even though f is not yet shown to be prf!! 
This shows K is prf.  
 
f is then defined from K as follows: 
f(y,x) = <K(y,x)>1  // extract first value from pair encoded in K(y,x) 
This shows it is also a prf, as was desired. 
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µ Recursive 

4th Model 
A Simple Extension to Primitive 

Recursive 
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µ Recursive Concepts 
•  All primitive recursive functions are algorithms 

since the only iterator is bounded.  That’s a clear 
limitation. 

•  There are algorithms like Ackerman’s function 
that cannot be represented by the class of 
primitive recursive functions.   

•  The class of recursive functions adds one more 
iterator, the minimization operator (µ), read “the 
least value such that.” 
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Ackermann’s Function 
•  A(1, j)=2j for j ≥ 1  
•  A(i, 1)=A(i-1, 2) for i ≥ 2  
•  A(i, j)=A(i-1, A(i, j-1)) for i, j ≥ 2  
•  Wilhelm Ackermann observed in 1928 that this is not a 

primitive recursive function. 
•  Ackermann’s function grows too fast to have a for-loop 

implementation. 
•  The inverse of Ackermann’s function is important to 

analyze Union/Find algorithm. Note: A(4,4) is  
a supper exponential number involving six levels of 
exponentiation. α(n) = A-1(n, n) grows so slowly that it is 
less than 5 for any value of n that can be written. 
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Union/Find 
•  Start with a collection S of unrelated elements – 

singleton equivalence classes 
•  Union(x,y), x and y are in S, merges the class 

containing x ([x]) with that containing y ([y]) 
•  Find(x) returns the canonical element of [x] 
•  Can see if x≡y, by seeing if Find(x)==Find(y) 
•  How do we represent the classes?  

4/7/15 



© UCF EECS 131 

The µ Operator 

•  Minimization:  
 If G is already known to be recursive, then 
so is F, where 
  F(x1,…,xn) = µy (G(y,x1,…,xn) == 1) 

•  We also allow other predicates besides 
testing for one.  In fact any predicate that 
is recursive can be used as the stopping 
condition. 
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Equivalence of Models 

Equivalency of computation by  
Turing machines, 

register machines,  
factor replacement systems,  

recursive functions 
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Proving Equivalence 
•  Constructions do not, by themselves, 

prove equivalence.  
•  To do so, we need to develop a notion of 

an “instantaneous description” (id) of each 
model of computation (well, almost as 
recursive functions are a bit different).  

•  We then show a mapping of id’s between 
the models. 
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Instantaneous Descriptions 
•  An instantaneous description (id) is a finite description of 

a state achievable by a computational machine, M. 
•  Each machine starts in some initial id, id0.  
•  The semantics of the instructions of M define a relation 
⇒M such that, idi ⇒M idi+1, i≥0, if the execution of a 
single instruction of M would alter M’s state from idi to idi
+1 or if M halts in state idi and idi+1=idi. 

•  ⇒+
M is the transitive closure of ⇒M 

•  ⇒*M is the reflexive transitive closure of ⇒M  
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id Definitions 
•  For a register machine, M, an id is an s+1 tuple of the form  

(i, r1,…,rs)M specifying the number of the next instruction to be 
executed and the values of all registers prior to its execution.   

•  For a factor replacement system, an id is just a natural number. 
•  For a Turing machine, M, an id is some finite representation of the 

tape, the position of the read/write head and the current state. This 
is usually represented as a string αqxβ, where α (β) is the shortest 
string representing all non-blank squares to the left (right) of the 
scanned square, x is the symbol at the scanned square and q is the 
current state. 

•  Recursive functions do not have id’s, so we will handle their 
simulation by an inductive argument, using the primitive functions 
are the basis and composition, induction and minimization in the 
inductive step. 

4/7/15 



© UCF EECS 136 

Equivalence Steps 
•  Assume we have a machine M in one model of computation and a 

mapping of M into a machine M’ in a second model. 
•  Assume the initial configuration of M is id0 and that of M’ is id’0  
•  Define a mapping, h, from id’s of M into those of M’, such that,  

RM = { h(d) | d is an instance of an id of M }, and 
–  id’0⇒*M’ h(id0), and h(id0) is the only member of RM in the 

configurations encountered in this derivation. 
–  h(idi)⇒+

M’ h(idi+1), i≥0, and h(idi+1) is the only member of RM in 
this derivation. 

•  The above, in effect, provides an inductive proof that  
–  id0⇒*M id implies id’0⇒*M’ h(id), and 
–  If id’0⇒*M’ id’ then either id0⇒*M id, where id’ = h(id), or  

id’ ∉ RM 
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All Models are Equivalent 

Equivalency of computation by  
Turing machines, register machines,  

factor replacement systems,  
recursive functions 
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Our Plan of Attack 

•  We will now show  
TURING ≤ REGISTER ≤ FACTOR ≤  

 RECURSIVE ≤ TURING  
where by A ≤ B, we mean that every 
instance of A can be replaced by an 
equivalent instance of B.  

•  The transitive closure will then get us the 
desired result. 
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Encoding a TM’s State 
•  Assume that we have an n state Turing machine.  Let 

the states be numbered 0,…, n-1.   
•  Assume our machine is in state 7, with its tape 

containing 
… 0 0 1 0 1 0 0 1 1 q7 0 0 0 … 

•  The underscore indicates the square being read.  We 
denote this by the finite id 
1 0 1 0 0 1 1 q7 0  

•  In this notation, we always write down the scanned 
square, even if it and all symbols to its right are blank.   
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More on Encoding of TM 
•  An id can be represented by a triple of natural numbers, 

(R,L,i), where R is the number denoted by the reversal of 
the binary sequence to the right of the qi, L is the 
number denoted by the binary sequence to the left, and i 
is the state index.   

•  So,  
… 0 0 1 0 1 0 0 1 1 q7 0 0 0 …  
is just (0, 83, 7). 
… 0 0 1 0 q5 1 0 1 1 0 0 … 
is represented as (13, 2, 5). 

•  We can store the R part in register 1, the L part in 
register 2, and the state index in register 3.  
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Simulation by RM 
1.   DEC3[2,q0]  : Go to simulate actions in state 0 
2.   DEC3[3,q1]  : Go to simulate actions in state 1 
… 
n.   DEC3[ERR,qn-1]  : Go to simulate actions in state n-1 
… 
qj.   IF_r1_ODD[qj+2]  : Jump if scanning a 1 
qj+1.  JUMP[set_k]  : If (qj 0 0 qk) is rule in TM 
qj+1.  INC1[set_k]  : If (qj 0 1 qk) is rule in TM 
qj+1.  DIV_r1_BY_2  : If (qj 0 R qk) is rule in TM 

  MUL_r2__BY_2 
  JUMP[set_k] 

qj+1.  MUL_r1_BY_2  : If (qj 0 L qk) is rule in TM 
  IF_r2_ODD then INC1 
  DIV_r2__BY_2[set_k] 

… 
set_n-1.  INC3[set_n-2]  : Set r3 to index n-1 for simulating state n-1 
set_n-2.  INC3[set_n-3]  : Set r3 to index n-2 for simulating state n-2 
… 
set_0.  JUMP[1]   : Set r3 to index 0 for simulating state 0 
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Fixups 
•  Need epilog so action for missing quad 

(halting) jumps beyond end of simulation 
to clean things up, placing result in r0.   

•  Can also have a prolog that starts with 
arguments in registers r1 to rn and stores 
values in r1, r2 and r3 to represent Turing 
machines starting configuration. 
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Prolog 
Example assuming n arguments (fix as needed) 
1.   MUL_rn+1_BY_2[2] : Set rn+1 = 11…102, where, #1's = r1 
2.   DEC1[3,4]  : r1 will be set to 0 
3.   INCn+1[1]  :  
4.   MUL_rn+1_BY_2[5] : Set rn+1 = 11…1011…102, where, #1's = r1, then r2 
5.   DEC2[6,7]  : r2 will be set to 0 
6.   INCn+1[4]  :  
… 
3n-2.  DECn[3n-1,3n+1]  : Set rn+1 = 11…1011…1011…12, where, #1's = r1, r2,… 
3n-1.  MUL_rn+1_BY_2[3n] : rn will be set to 0 
3n.  INCn+1[3n-2]  :  
3n+1  DECn+1[3n+2,3n+3] : Copy rn+1 to r2, rn+1 is set to 0 
3n+2.  INC2[3n+1]  :  
3n+3.    : r2 = left tape, r1 = 0 (right), r3 = 0 (initial state) 
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Epilog 
1.   DEC3[1,2]   : Set r3 to 0 (just cleaning up) 
2.   IF_r1_ODD[3,5]  : Are we done with answer? 
3.   INC0[4]   : putting answer in r0 
4.    DIV_r1_BY_2[2]  : strip a 1 from r1 
5.       : Answer is now in r0 
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Encoding a RM’s State 
•  This is a really easy one based on the fact that every member of Z+ 

(the positive integers) has a unique prime factorization.  Thus all 
such numbers can be uniquely written in the form 
 
 
 
where the pi's are distinct primes and the ki's are non-zero values, 
except that the number 1 would be represented by 20.  

•  Let R be an arbitrary n+1-register machine, having m instructions. 
 

Encode the contents of registers r0,…,rn by the powers of p0,…pn .  
 
Encode rule number's 1,…,m by primes pn+1 ,…, pn+m  
 
Use pn+m+1 as prime factor that indicates simulation is done. 

•  This is in essence a Gödel number of the RM’s state. 

1i
1kp

2i
2kp …

ji
jkp
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Simulation by FRS 
•  Now, the j-th instruction (1≤j≤m) of R has 

associated factor replacement rules as follows: 
 j.  INCr[i]   

   pn+jx   →  pn+iprx  
 j.  DECr[s, f]   

   pn+jprx  →  pn+sx  
    pn+jx   →  pn+fx  

•  We also add the halting rule associated with m
+1 of 
    pn+m+1x  →   x  
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Importance of Order 
•  The relative order of the two rules to 

simulate a DEC are critical.   
•  To test if register r has a zero in it, we, in 

effect, make sure that we cannot execute 
the rule that is enabled when the r-th 
prime is a factor.   

•  If the rules were placed in the wrong order, 
or if they weren't prioritized, we would be 
non-deterministic.   
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Example of Order 

 Consider the simple machine to compute 
r0:=r1 – r2 (limited) 
 1.  DEC2[2,3] 
 2.  DEC1[1,1] 
 3.  DEC1[4,5] 
 4.  INC0[3] 
 5.   
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Subtraction Encoding 
Start with 3x5y7 

7 • 5 x  →  11 x 
7 x  →  13 x 
11 • 3 x  →  7 x 
11 x  →  7 x 
13 • 3 x  →  17 x 
13 x  →  19 x 
17 x  →  13 • 2 x 
19 x  →  x 
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Analysis of Problem 
•  If we don't obey the ordering here, we could take 

an input like 35527 and immediately apply the 
second rule (the one that mimics a failed 
decrement).   

•  We then have 355213, signifying that we will 
mimic instruction number 3, never having 
subtracted the 2 from 5.   

•  Now, we mimic copying r1 to r0 and get 255219 .  
•  We then remove the 19 and have the wrong 

answer. 
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Universal Machine 
•  In the process of doing this reduction, we will 

build a Universal Machine.   
•  This is a single recursive function with two 

arguments.  The first specifies the factor system 
(encoded) and the second the argument to this 
factor system.   

•  The Universal Machine will then simulate the 
given machine on the selected input. 
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Encoding FRS 

•  Let (n, ((a1,b1), (a2,b2), … ,(an,bn)) be 
some factor replacement system, where 
(ai,bi) means that the i-th rule is 
  aix  →  bix 

•  Encode this machine by the number F, 
 
 pppp nnnn

n bababa nn

2212212117532 2211

++−
…
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Simulation by Recursive # 1 
•  We can determine the rule of F that applies to x by 

 
 RULE(F, x) = µ z (1 ≤ z ≤ exp(F, 0)+1) [ exp(F, 2*z-1) | x ] 

•  Note: exp(F,2*i-1) = ai where ai is the exponent of the prime factor 
p2i-1 of F.  

•  If x is divisible by ai, and i is the least integer, 1≤i≤n, for which this is 
true, then RULE(F,x) = i.  
 
If x is not divisible by any ai, 1≤i≤n, then x is divisible by 1, and 
RULE(F,x) returns n+1.  That’s why we added p2n+1 p2n+2. 

•  Given the function RULE(F,x), we can determine NEXT(F,x), the 
number that follows x, when using F, by 
 
NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x)) 
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Simulation by Recursive # 2 
•  The configurations listed by F, when started on x, are 
CONFIG(F, x, 0) = x 
CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y)) 
 
•  The number of the configuration on which F halts is 
HALT(F, x) = µ y [CONFIG(F, x, y) == CONFIG(F, x, y+1)] 
This assumes we converge to a fixed point as our 
means of halting. Of course, no applicable rule meets 
this definition as the n+1-st rule divides and then 
multiplies the latest value by 1. 
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Simulation by Recursive # 3 
•  A Universal Machine that simulates an arbitrary Factor 

System, Turing Machine, Register Machine, Recursive 
Function can then be defined by  
 
Univ(F, x) =  exp ( CONFIG ( F, x, HALT ( F, x ) ), 0) 
 

•  This assumes that the answer will be returned as the 
exponent of the only even prime, 2.  We can fix F for any 
given Factor System that we wish to simulate.  It is that 
ability that makes this function universal. 

4/7/15 



© UCF EECS 159 

FRS Subtraction 
•  203a5b ⇒ 2a-b  

3*5x → x or 1/15 
5x → x or 1/5 
3x → 2x or 2/3 

•  Encode F = 23 315 51 75 111 133 172 191 231 
•  Consider a=4, b=2 
•  RULE(F, x) = µ z (1 ≤ z ≤ 4) [ exp(F, 2*z-1) | x ] 

RULE (F,34 52) = 1, as 15 divides 34 52  
•  NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x)) 

NEXT(F,34 52) = (34 52 // 15 * 1) = 3351  
NEXT(F,33 51) = (33 51 // 15 * 1) = 32 
NEXT(F,32) = (32 // 3 * 2) = 2131 
NEXT(F, 2131) = (2131 // 3 * 2) = 22 
NEXT(F, 22) = (22 // 1 * 1) = 22 
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Rest of simulation 
•  CONFIG(F, x, 0) = x 

CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y)) 
•  CONFIG(F,34 52,0) = 34 52  

CONFIG(F,34 52,1) = 3351  
CONFIG(F,34 52,2) = 32 
CONFIG(F,34 52,3) = 2131 
CONFIG(F,34 52,4) = 22 
CONFIG(F,34 52,5) = 22 

•  HALT(F, x)=µy[CONFIG(F,x,y)==CONFIG(F,x,y+1)] = 4 
•  Univ(F, x) =  exp ( CONFIG ( F, x, HALT ( F, x ) ), 0) 

= exp(22,0) = 2 
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Simplicity of Universal 

•  A side result is that every computable 
(recursive) function can be expressed in 
the form 
 

 F(x) = G(µ y H(x, y)) 
 
where G and H are primitive recursive.  
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Standard Turing Computation 
•  Our notion of standard Turing computability of 

some n-ary function F assumes that the machine 
starts with a tape containing the n inputs, x1, … , 
xn in the form 
 
…01x101x20…01xn0… 
 
and ends with 
 
…01x101x20…01xn01y0… 
 
where y = F(x1, … , xn). 
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More Helpers 
•  To build our simulation we need to construct some useful 

submachines, in addition to the R, L, R, L, and Ck machines already 
defined. 

•  T -- translate moves a value left one tape square  
…?01x0… ⇒ …?1x00…   

•  Shift -- shift a rightmost value left, destroying value to its left 
…01x101x20… ⇒ …01x20…   
 
 

•  Rotk -- Rotate a k value sequence one slot to the left   
…01x101x20…01xk0…  

 ⇒ …01x20…01xk01x10… 

 R1 L0 R 

 
R 1 

L T 

R 

0 
k L k 

k+1 1 L k L 0 T k L k+1 

 
L 1 

T 
L 0 T 

0 
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Basic Functions 

 All Basis Recursive Functions are Turing 
computable: 

•  Ca
n(x1,…,xn) = a   
     (R1)aR 

•      (x1,…,xn) = xi   
     Cn-i+1 

•  S(x) = x+1   
     C11R 

  i
nI
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Closure Under Composition 
 If G, H1, … , Hk are already known to be Turing computable, then so 
is F, where 
 
F(x1,…,xn) = G(H1(x1,…,xn), … , Hk(x1,…,xn)) 
 
To see this, we must first show that if E(x1,…,xn) is Turing 
computable then so is  
 
E<m>(x1,…,xn, y1,…,ym) = E(x1,…,xn) 
  
This can be computed by the machine 
 
Ln+m (Rotn+m)n Rn+m E  Ln+m+1 (Rotn+m)m Rn+m+1  
 
Can now define F by  
 
H1 H2<1> H3<2> … Hk<k-1> G Shiftk 
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Closure Under Induction 
To prove that Turing Machines are closed under induction (primitive 
recursion), we must simulate some arbitrary primitive recursive function 
F(y,x1,x2, …, xn) on a Turing Machine, where 
F(0, x1,x2, …, xn) = G(x1,x2, …, xn) 
F(y+1, x1,x2, …, xn) = H(y, x1,x2, …, xn, F(y,x1,x2, …, xn)) 
Where, G and H are Standard Turing Computable.  We define the 
function F for the Turing Machine as follows: 
 
  
 
Since our Turing Machine simulator can produce the same value for 
any arbitrary PRF, F, we show that Turing Machines are closed under 
induction (primitive recursion). 
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GLn+1 L 
1

0

0Rn+2 H Shift Ln+2 1 
Rn+2  
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Closure Under Minimization 

 If G is already known to be Turing 
computable, then so is F, where 
 
F(x1,…,xn) = µy (G(x1,…,xn, y) == 1) 
 
This can be done by 

 
R G L 1 0 L 

0 
1 
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Consequences of Equivalence 

•  Theorem: The computational power of Recursive 
Functions, Turing Machines, Register Machine, 
and Factor Replacement Systems are all 
equivalent. 

•  Theorem: Every Recursive Function (Turing 
Computable Function, etc.) can be performed 
with just one unbounded type of iteration. 

•  Theorem: Universal machines can be 
constructed for each of our formal models of 
computation. 
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Additional Notations 

Includes comment on our notation 
versus that of others 
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Universal Machine 
•  Others consider functions of n arguments, whereas we 

had just one. However, our input to the FRS was actually 
an encoding of n arguments.  

•  The fact that we can focus on just a single number that is 
the encoding of n arguments is easy to justify based on 
the pairing function. 

•  Some presentations order arguments differently, starting 
with the n arguments and then the Gödel number of the 
function, but closure under argument permutation follows 
from closure under substitution. 
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Universal Machine Mapping 

•  ϕ(n)(f, x1,…,xn) = Univ (f,          ) 
•  We will sometimes adopt the above and 

also its common shorthand 
  ϕf

(n)(x1,…,xn) = ϕ(n)(f, x1,…,xn)  
 and the even shorter version 
  ϕf(x1,…,xn) = ϕ(n)(f, x1,…,xn)  

∏ =

n

i

x

ip
i

1
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SNAP and TERM 
•  Our CONFIG is essentially a snapshot 

function as seen in other presentations of 
a universal function 
 SNAP(f, x, t) = CONFIG(f, x, t) 

•  Termination in our notation occurs when 
we reach a fixed point, so 
 TERM(f, x) = (NEXT(f, x) == x) 

•  Again, we used a single argument but that can 
be extended as we have already shown. 
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STP Predicate 

•  STP(f, x1,…,xn, t ) is a predicate defined 
to be true iff ϕf (x1,…,xn) converges in at 
most t steps. 

•  STP is primitive recursive since it can be 
defined by 
 STP(f, x, s ) = TERM(f, CONFIG(f, x, s) ) 
 Extending to many arguments is easily done as 
before. 

4/7/15 



© UCF EECS 175 

VALUE PRF 

•  VALUE(f, x1,…,xn, t ) is a primitive 
recursive function (algorithm) that returns 
ϕf (x1,…,xn) so long as  
STP(f, x1,…,xn, t ) is true. 

•  VALUE(f, x1,…,xn, t ) returns a value if 
STP(f, x1,…,xn, t ) is false, but the 
returned value is meaningless. 
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Recursively Enumerable 

Properties of re Sets 
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Definition of re 
•  Some texts define re in the same way as I have defined 

semi-decidable.  
 S ⊆ ℵ is semi-decidable iff there exists a partially 
computable function g where 
  S = { x ∈ ℵ | g(x)↓ } 

•  I prefer the definition of re that says  
S ⊆ ℵ is re iff S = ∅ or there exists a totally computable 
function f where  
  S = { y | ∃x f(x) == y } 

•  We will prove these equivalent. Actually, f can be a 
primitive recursive function. 
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Semi-Decidable Implies re 
Theorem: Let S be semi-decided by GS. Assume 

GS is the gS–th function in our enumeration of 
effective procedures.  If S = Ø then S is re by 
definition, so we will assume wlog that there is 
some a ∈ S. Define the enumerating algorithm 
FS by 
 FS(<x,t>) =  x * STP(gs, x, t )  
    + a * (1-STP(gs, x, t )) 
 Note: FS is primitive recursive and it enumerates 
every value in S infinitely often.  
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re Implies Semi-Decidable 
Theorem: By definition, S is re iff S == Ø or there 

exists an algorithm FS, over the natural numbers 
ℵ, whose range is exactly S. Define  

  µy [y == y+1] if S == Ø  
  ψS(x) = 
   signum((µy[FS(y)==x])+1), otherwise 
 This achieves our result as the domain of ψS is 
the range of FS, or empty if S == Ø. Note that 
this is an existence proof in that we cannot test if 
S == Ø  
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Domain of a Procedure 
Corollary: S is re/semi-decidable iff S is the 

domain / range of a partial recursive predicate 
FS. 

Proof: The predicate ψS we defined earlier to semi-
decide S, given its enumerating function, can be 
easily adapted to have this property. 
   µy [y == y+1]  if S == Ø  
 ψS(x) = 
   x*signum((µy[FS(y)==x])+1), otherwise 
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Recursive Implies re  
Theorem: Recursive implies re. 
Proof: S is recursive implies there is a total 

recursive function fS such that 
  S = { x ∈ ℵ | fs(x) == 1 } 
 Define gs(x) = µy (fs(x) == 1) 
 Clearly  
dom(gs)  = {x ∈ ℵ | gs(x)↓}  

  = { x ∈ ℵ | fs(x) == 1 }  
  = S 
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Related Results 
Theorem: S is re iff S is semi-decidable. 
Proof: That’s what we proved. 
Theorem: S and ~S are both re (semi-decidable) 

iff S (equivalently ~S) is recursive (decidable). 
Proof: Let fS semi-decide S and fS’ semi-decide ~S. We can 

decide S by gS  
 gS(x) = STP(fS, x, µt (STP(fS, x, t) || STP(fS’ ,x, t))  
 ~S is decided by gS’(x) = ~gS(x) = 1- gS(x). 
 The other direction is immediate since, if S is decidable 
then ~S is decidable (just complement gS) and hence 
they are both re (semi-decidable). 
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Enumeration Theorem 
•  Define  

 Wn = { x ∈ ℵ | ϕ(n,x)↓ } 
•  Theorem: A set B is re iff there exists an n 

such that B = Wn. 
Proof: Follows from definition of ϕ(n,x). 

•  This gives us a way to enumerate the 
recursively enumerable sets. 

•  Note: We will later show (again) that we 
cannot enumerate the recursive sets. 
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The Set K 

•  K = { n ∈ ℵ | n ∈ Wn } 
•  Note that  

n ∈ Wn ⇔ ϕ(n,n)↓ ⇔ HALT(n,n) 
•  Thus, K is the set consisting of the indices 

of each program that halts when given its 
own index 

•  K can be semi-decided by the HALT 
predicate above, so it is re. 
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K is not Recursive 

•  Theorem: We can prove this by showing 
~K is not re. 

•  If ~K is re then ~K = Wi, for some i. 
•  However, this is a contradiction since 

 i ∈ K ⇔ i ∈ Wi ⇔ i ∈ ~K ⇔ i ∉ K 
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re Characterizations 
Theorem: Suppose S ≠∅ then the following are 

equivalent: 
1.  S is re 
2.  S is the range of a primitive rec. function 
3.  S is the range of a recursive function 
4.  S is the range of a partial rec. function 
5.  S is the domain of a partial rec. function 

 

4/7/15 



S-m-n Theorem 
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Parameter (S-m-n) Theorem 
•  Theorem: For each n,m>0, there is a prf 

Sm
n(y, u1,…,un) such that 

 
ϕ(m+n)(y, x1,…,xm, u1,…,un)  

 = ϕ(m)(Sm
n(y,u1,…,un), x1,…, xm) 

•  The proof of this is highly dependent on 
the system in which you proved 
universality and the encoding you chose.  
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S-m-n for FRS 
•  We would need to create a new FRS, from an existing one F, that 

fixes the value of ui as the exponent of the prime pm+i.  
•  Sketch of proof: 

Assume we normally start with p1
x1 … pm

xm p1
u1 … pm+n

un σ  
Here the first m are variable; the next n are fixed; σ denotes prime 
factors used to trigger first phase of computation.  
Assume that we use fixed point as convergence. 
We start with just p1

x1 … pm
xm, with q the first unused prime.  

 
q α x → q β x  replaces α x→ β x in F, for each rule in F  
q x → q x   ensures we loop at end 
x → q pm+1

u1 … pm+n
un σ x  

   adds fixed input, start state and q 
   this is selected once and never again 

 
Note: q = prime(max(n+m, lastFactor(Product[i=1 to r] αi βi ))+1) 

   where r is the number of rules in F. 
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Details of S-m-n for FRS 
•  The number of F (called F, also) is 2r3a15b1…p2r-1

arp2r
br 

•  Sm,n(F, u1,…un) = 2r+23q×a15q×b1…p2r-1
q×arp2r

q×br  

                                                    p2r+1
qp2r+2

q p2r+3p2r+4 
q pm+1u1 … pm+nun σ  

•  This represents the rules we just talked about. The first 
added rule pair means that if the algorithm does not use 
fixed point, we force it to do so. The last rule pair is the 
only one initially enabled and it adds the prime q, the 
fixed arguments u1,…un, the enabling prime q, and the σ 
needed to kick start computation. Note that σ could be a 
1, if no kick start is required. 

•  Sm,n= Sm
n is clearly primitive recursive. I’ll leave the 

precise proof of that as a challenge to you. 
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Quantification#1 
•  S is decidable iff there exists an algorithm χS (called S’s 

characteristic function) such that 
x ∈ S ⇔ χS(x) 
This is just the definition of decidable. 

•  S is re iff there exists an algorithm AS where  
 x ∈ S ⇔ ∃t AS(x,t) 
This is clear since, if gS is the index of the procedure ψS 
defined earlier that semi-decides S then 
 x ∈ S ⇔ ∃t STP(gS, x, t) 
So, AS(x,t) = STPgS( x, t ), where STPgS is the STP 
function with its first argument fixed.  

•  Creating new functions by setting some one or more 
arguments to constants is an application of Sm

n. 
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Quantification#2 
•  S is re iff there exists an algorithm AS such that 

 x ∉ S ⇔ ∀t AS(x,t) 
This is clear since, if gS is the index of the procedure ψS 
that semi-decides S, then 
 x ∉ S ⇔ ~∃t STP(gS, x, t) ⇔ ∀t ~STP(gS, x, t) 
So, AS(x,t) = ~STPgS( x, t ), where STPgS is the STP 
function with its first argument fixed.  

•  Note that this works even if S is recursive (decidable). 
The important thing there is that if S is recursive then it 
may be viewed in two normal forms, one with existential 
quantification and the other with universal quantification. 

•  The complement of an re set is co-re. A set is recursive 
(decidable) iff it is both re and co-re. 
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Diagonalization and 
Reducibility 
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Non-re Problems 
•  There are even “practical” problems that are worse than 

unsolvable -- they’re not even semi-decidable.   
•  The classic non-re problem is the Uniform Halting 

Problem, that is, the problem to decide of an arbitrary 
effective procedure P, whether or not P is an algorithm.   

•  Assume that the algorithms can be enumerated, and that 
F accomplishes this.  Then 
 
F(x) = Fx  
 
where F0, F1, F2, … is a list of all the algorithms 
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The Contradiction 
•  Define  G( x ) = Univ ( F(x) , x ) + 1 = ϕ(F(x), x)+1 = Fx(x) + 1 

•  But then G is itself an algorithm.  Assume it is the g-th one 
 

  F(g) = Fg = G 
 
Then,  G(g) = Fg(g) + 1 = G(g) + 1 
 

•  But then G contradicts its own existence since G would need to be 
an algorithm. 

•  This cannot be used to show that the effective procedures are non-
enumerable, since the above is not a contradiction when G(g) is 
undefined.  In fact, we already have shown how to enumerate the 
(partial) recursive functions. 
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The Set TOT 

•  The listing of all algorithms can be viewed 
as 
 
TOT = { f ∈ ℵ | ∀x ϕ(f, x)↓ } 

•  We can also note that 
 
TOT = { f ∈ ℵ | Wf =ℵ } 

•  Theorem: TOT is not re. 
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Quantification#3 
•  The Uniform Halting Problem was already 

shown to be non-re. It turns out its complement 
is also not re. We’ll cover that later. In fact, we 
will show that TOT requires an alternation of 
quantifiers. Specifically, 
 
f ∈ TOT⇔ ∀x∃t ( STP( f, x, t ) ) 
and this is the minimum quantification we can 
use, given that the quantified predicate is 
recursive. 
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Reducibility 
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Reduction Concepts 
•  Proofs by contradiction are tedious after you’ve 

seen a few.  We really would like proofs that 
build on known unsolvable problems to show 
other, open problems are unsolvable.  The 
technique commonly used is called reduction.  It 
starts with some known unsolvable problem and 
then shows that this problem is no harder than 
some open problem in which we are interested. 



Diagonalization is a Bummer 
•  The issues with diagonalization are that it is tedious and 

is applicable as a proof of undecidability or non-re-ness 
for only a small subset of the problems that interest us. 

•  Thus, we will now seek to use reduction wherever 
possible. 

•  To show a set, S, is undecidable, we can show it is as 
least as hard as the set K0. That is, K0 ≤ S. Here the 
mapping used in the reduction does not need to run in 
polynomial time, it just needs to be an algorithm.  

•  To show a set, S, is not re, we can show it is as least as 
hard as the set TOTAL (the set of algorithms). That is, 
TOTAL ≤ S.  
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Reduction to TOTAL 
•  We can show that the set K0 (Halting) is no harder than 

the set TOTAL (Uniform Halting).  Since we already 
know that K0 is unsolvable, we would now know that 
TOTAL is also unsolvable.  We cannot reduce in the 
other direction since TOTAL is in fact harder than K0. 

•  Let ϕF be some arbitrary effective procedure and let x be 
some arbitrary natural number. 

•  Define Fx(y) = ϕF(x), for all  y ∈ ℵ 
•  Then Fx is an algorithm if and only if ϕF halts on x.  
•  Thus, K0 ≤ TOTAL, and so a solution to membership in 

TOTAL would provide a solution to K0, which we know is 
not possible. 
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Reduction to ZERO 
•  We can show that the set TOTAL is no harder 

than the set ZERO = { f | ∀x ϕf(x) = 0 }.  Since 
we already know that TOTAL is non-re, we 
would now know that ZERO is also non-re.  

•  Let ϕf be some arbitrary effective procedure. 
•  Define Ff(y) = ϕf(x) – ϕf(x), for all  x ∈ ℵ 
•  Then Ff is an algorithm that produces 0 for all 

input (is in the set ZERO) if and only if ϕf halts 
on all input x. Thus, TOTAL ≤ ZERO. 

•  Thus a semi-decision procedure for ZERO would 
provide one for TOTAL, a set already known to 
be non-re. 
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Classic Undecidable Sets 
•  The universal language 

K0 = Lu = { <f, x> | ϕf (x) is defined } 
 

•  Membership problem for Lu is the Halting Problem.  
•  The sets Lne and Le, where 

 
NON-EMPTY = Lne = { f | ∃ x ϕf (x) ↓ } 
 
EMPTY = Le = { f | ∀ x ϕf (x) ↑ } 
 
are the next ones we will study. 
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Lne is re 
•  Lne is enumerated by  

 
 F( <f, x, t> ) = f * STP( f, x, t ) 

 
•  This assumes that 0 is in Lne  since 0 probably 

encodes some trivial machine.  If this isn’t so, 
we’ll just slightly vary our enumeration of the 
recursive functions so it is true.   

•  Thus, the range of this total function F is exactly 
the indices of functions that converge for some 
input, and that’s Lne. 
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Lne is Non-Recursive 
•  Note in the previous enumeration that F is a function of 

just one argument, as we are using an extended pairing 
function <x,y,z> = <x,<y,z>>. 

•  Now Lne cannot be recursive, for if it were then Lu is 
recursive by the reduction we showed before.   

•  In particular, from any index x and input y, we created a 
new function which accepts all input just in case the x-th 
function accepts y.  Hence, this new function’s index is in 
Lne just in case (x, y)  is in Lu.   

•  Thus, a decision procedure for Lne (equivalently for Le) 
implies one for Lu. 
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Lne is re by Quantification 

•  Can do by observing that 
 
 f ∈ Lne ⇔ ∃ <x,t> STP( f, x, t) 

•  By our earlier results, any set whose 
membership can be described by an existentially 
quantified recursive predicate is re (semi-
decidable).  
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Le is not re 
•  If Le were re, then Lne would be recursive 

since it and its complement would be re. 
•  Can also observe that Le is the 

complement of an re set since 
 
 f ∈ Le  ⇔ ∀ <x,t> ~STP( f, x, t)  

  ⇔ ~∃ <x,t> STP( f, x, t) 
  ⇔ f ∉ Lne  
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Reduction and Equivalence 

m-1, 1-1, Turing Degrees 
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Many-One Reduction 
•  Let A and B be two sets.  
•  We say A many-one reduces to B,  

A ≤m B, if there exists a total recursive function f 
such that 
x ∈ A ⇔ f(x) ∈ B 

•  We say that A is many-one equivalent to B,  
A ≡m B, if A ≤m B and B ≤m A 

•  Sets that are many-one equivalent are in some 
sense equally hard or easy. 
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Many-One Degrees 
•  The relationship A ≡m B is an equivalence 

relationship (why?) 
•  If A ≡m B, we say A and B are of the same 

many-one degree (of unsolvability). 
•  Decidable problems occupy three m-1 degrees: 
∅, ℵ, all others. 

•  The hierarchy of undecidable m-1 degrees is an 
infinite lattice (I’ll discuss in class) 
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One-One Reduction 
•  Let A and B be two sets.  
•  We say A one-one reduces to B, A ≤1 B,  

if there exists a total recursive 1-1 function f 
such that 
x ∈ A ⇔ f(x) ∈ B 

•  We say that A is one-one equivalent to B,  
A ≡1 B, if A ≤1 B and B ≤1 A 

•  Sets that are one-one equivalent are in a strong 
sense equally hard or easy. 
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One-One Degrees 
•  The relationship A ≡1 B is an equivalence 

relationship (why?) 
•  If A ≡1 B, we say A and B are of the same one-

one degree (of unsolvability). 
•  Decidable problems occupy infinitely many 1-1 

degrees: each cardinality defines another 1-1 
degree (think about it). 

•  The hierarchy of undecidable 1-1 degrees is an 
infinite lattice. 

4/7/15 



© UCF EECS 213 

Turing (Oracle) Reduction 
•  Let A and B be two sets.  
•  We say A Turing reduces to B, A ≤t B, if the 

existence of an oracle for B would provide us 
with a decision procedure for A. 

•  We say that A is Turing equivalent to B,  
A ≡t B, if A ≤t B and B ≤t A 

•  Sets that are Turing equivalent are in a very 
loose sense equally hard or easy. 
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Turing Degrees 
•  The relationship A ≡t B is an equivalence 

relationship (why?) 
•  If A ≡t B, we say A and B are of the same Turing 

degree (of unsolvability). 
•  Decidable problems occupy one Turing degree. 

We really don’t even need the oracle. 
•  The hierarchy of undecidable Turing degrees is 

an infinite lattice. 
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Complete re Sets 
•  A set C is re 1-1 (m-1, Turing) complete if, for 

any re set A, A ≤1 (≤m , ≤t ) C. 
•  The set HALT is an re complete set (in regard to 

1-1, m-1 and Turing reducibility). 
•  The re complete degree (in each sense of 

degree) sits at the top of the lattice of re 
degrees. 
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The Set Halt = K0 = Lu 
•  Halt = K0 = Lu = { <f, x> | ϕf (x) ↓} 
•  Let A be an arbitrary re set. By definition, there exists an 

effective procedure ϕa, such that dom(ϕa) = A. Put 
equivalently, there exists an index, a, such that A = Wa. 

•  x ∈ A iff x ∈ dom(ϕa) iff ϕa(x)↓ iff <a,x> ∈ K0 
•  The above provides a 1-1 function that reduces A to K0 

(A ≤1 K0)  
•  Thus the universal set, Halt = K0 = Lu, is an re  

(1-1, m-1, Turing) complete set. 
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The Set K 
•  K = { f | ϕf(f) is defined } 
•  Define fx(y) = ϕf(x). That is, fx(y) = ϕf(x). The index for fx 

can be computed from f and x using S1,1, where we add 
a dummy argument, y, to ϕf. Let that index be fx. (Yeah, 
that’s overloading.) 

•  <f,x> ∈ K0 iff x ∈ dom(ϕf) iff ∀y[ϕfx(y)↓] iff fx ∈ K. 
•  The above provides a 1-1 function that reduces K0 to K.  
•  Since K0 is an re (1-1, m-1, Turing) complete set and K 

is re, then K is also re (1-1, m-1, Turing) complete. 
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Reduction and Rice’s 
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Either Trivial or Undecidable 
•  Let P be some set of re languages, e.g. P = { L | L is infinite re }.   

•  We call P a property of re languages since it divides the class of all 
re languages into two subsets, those having property P and those 
not having property P.   

•  P is said to be trivial if it is empty (this is not the same as saying P 
contains the empty set) or contains all re languages.   

•  Trivial properties are not very discriminating in the way they divide 
up the re languages (all or nothing). 
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Rice’s Theorem 
Rice’s Theorem: Let P be some non-trivial 

property of the re languages. Then 
  LP = { x | dom [x] is in P (has property P) } 
 is undecidable.  Note that membership in LP is 
based purely on the domain of a function, not on 
any aspect of its implementation. 
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Rice’s Proof-1 
Proof:  We will assume, wlog, that P does not 

contain Ø.  If it does we switch our attention to 
the complement of P.  Now, since P is non-
trivial, there exists some language L with 
property P.  Let [r] be a recursive function whose 
domain is L (r is the index of a semi-decision 
procedure for L).  Suppose P were decidable.  
We will use this decision procedure and the 
existence of r to decide K0.   



4/7/15 © UCF EECS 222 

Rice’s Proof-1 
 First we define a function Fr,x,y for r and each 
function ϕx and input y as follows. 
  Fr,x,y( z ) = ϕ( x , y ) + ϕ( r , z ) 
 The domain of this function is L if ϕx (y) 
converges, otherwise it’s Ø.  Now if we can 
determine membership in LP , we can use this 
algorithm to decide K0 merely by applying it to 
Fr,x,y.  An answer as to whether or not Fr,x,y has 
property P is also the correct answer as to 
whether or not ϕx (y) converges. 
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Rice’s Proof-1 
 Thus, there can be no decision procedure for P.  
And consequently, there can be no decision 
procedure for any non-trivial property of re 
languages. 

 
 Note: This does not apply if P is trivial, nor does 
it apply if P can differentiate indices that 
converge for precisely the same values. 

 



I/O Property 
•  An I/O property, P, of indices of recursive function is one 

that cannot differentiate indices of functions that produce 
precisely the same value for each input.  

•  This means that if two indices, f and g, are such that ϕf 
and  ϕg converge on the same inputs and, when they 
converge, produce precisely the same result, then both f 
and g must have property P, or neither one has this 
property. 

•  Note that any I/O property of recursive function indices 
also defines a property of re languages, since the 
domains of functions with the same I/O behavior are 
equal. However, not all properties of re languages are I/
O properties. 
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Strong Rice’s Theorem 

Rice’s Theorem: Let P be some non-trivial 
I/O property of the indices of recursive 
functions. Then 
  SP = { x | ϕx has property P) } 
 is undecidable.  Note that membership in 
SP is based purely on the input/output 
behavior of a function, not on any aspect 
of its implementation. 
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Strong Rice’s Proof 

•  Given x, y, r, where r is in the set  
SP.= {f | ϕf has property P},  
define the function  
fx,y,r(z) = ϕx(y) - ϕx(y) + ϕr(z).  

 

•  fx,y,r(z) = ϕr(z) if ϕx(y)↓ ; = φ if ϕx(y)↑ .  
Thus, ϕx(y)↓ iff fx,y,r has property P, and so  
K0 ≤ SP. 
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Picture Proof 
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Black is for standard Rice’s Theorem; 
Black and Red are needed for Strong Version 
Blue is just another version based on range 
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Corollaries to Rice’s 

 Corollary:  The following properties of re 
sets are undecidable 
  a)   L = Ø 
  b)   L is finite 
  c)   L is a regular set 
  d)   L is a context-free set 



Constant time:  
Not amenable to Rice’s 



Constant Time 
•  CTime = { M | ∃K [ M halts in at most K steps 

independent of its starting configuration ] }  
•  RT cannot be shown undecidable by Rice’s Theorem as 

it breaks property 2 
–  Choose M1 and M2 to each Standard Turing Compute (STC) 

ZERO 
–  M1 is R (move right to end on a zero) 
–  M2 is L R  R (time is dependent on argument) 
–  M1 is in CTime; M2 is not , but they have same I/O behavior, so 

CTime does not adhere to property 2 
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Quantifier Analysis 
•  CTime = { M | ∃K ∀C [ STP(M, C, K) ] } 
•  This would appear to imply that CTime is not 

even re. However, a TM that only runs for K 
steps can only scan at most K distinct tape 
symbols. Thus, if we use unary notation, CTime 
can be expressed 

•  CTime = { M | ∃K ∀C|C|≤K [ STP(M, C, K) ] } 
•  We can dovetail over the set of all TMs, M, and 

all K, listing those M that halt in constant time. 
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Complexity of CTime 

•  Can show it is equivalent to the Halting 
Problem for TM’s with Infinite Tapes (not 
unbounded but truly infinite) 

•  This was shown in 1966 to be 
undecidable. 

•  It was also shown to be re, just as we 
have done so for CTime. 
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Post Systems 
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Thue Systems 
•  Devised by Axel Thue 
•  Just a string rewriting view of finitely 

presented monoids 
•  T = (Σ, R), where Σ is a finite alphabet and 

R is a finite set of bi-directional rules of 
form αi ↔ βi , αi, βi∈Σ* 

•  We define ⇔* as the reflexive, transitive 
closure of ⇔, where w ⇔ x iff w=yαz and 
x=yβz, where α ↔ β
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Semi-Thue Systems 
•  Devised by Emil Post 
•  A one-directional version of Thue systems 
•  S = (Σ, R), where Σ is a finite alphabet and 

R is a finite set of rules of form  
αi → βi , αi, βi∈Σ* 

•  We define ⇒* as the reflexive, transitive 
closure of ⇒, where w ⇒ x iff w=yαz and 
x=yβz, where α → β
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Word Problems 
•  Let S = (Σ, R) be some Thue (Semi-Thue) 

system, then the word problem for S is the 
problem to determine of arbitrary words w and x 
over S, whether or not w ⇔* x (w ⇒* x ) 

•  The Thue system word problem is the problem 
of determining membership in equivalence 
classes. This is not true for Semi-Thue systems. 

•  We can always consider just the relation ⇒* 
since the symmetric property of ⇔* comes 
directly from the rules of Thue systems. 
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Post Canonical Systems 
•  These are a generalization of Semi-Thue systems. 
•  P = (Σ, V, R), where Σ is a finite alphabet, V is a finite set of 

“variables”, and R is a finite set of rules. 
•  Here the premise part (left side) of a rule can have many premise 

forms, e.g, a rule appears as 
P1,1α1,1 P1,2… α1,n1

P1,n1
α1,n1+1 ,  

P2,1α2,1 P2,2… α2,n2
P2,n2

α2,n2+1 ,  
 …

 
Pk,1αk,1 Pk,2… αk,nk

Pk,nk
αk,nk+1 ,  

→ Q1β1 Q2… βnk+1
Qnk+1

βnk+1+1 
•  In the above, the P’s and Q’s are variables, the α’s and β’s are 

strings over Σ, and each Q must appear in at least one premise. 
•  We can extend the notion of ⇒* to these systems considering sets 

of words that derive conclusions. Think of the original set as axioms, 
the rules as inferences and the final word as a theorem to be 
proved. 
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Examples of Canonical Forms 
•  Propositional rules 

P, P ⊃ Q  → Q 
~P, P ∪ Q → Q 
P ∩ Q → P   oh, oh a ∩ (b ∩ c) ⇒ a ∩ (b  
P ∩ Q → Q 
(P ∩ Q) ∩ R ↔ P ∩ (Q ∩ R)  
(P ∪ Q) ∪ R ↔ P ∪ (Q ∪ R)  
 ~(~P) ↔ P 
P ∪ Q → Q ∪ P  
P ∩ Q → Q ∩ P  

•  Some proofs over {a,b,(,),~,⊃,∪,∩} 
{a ∪ c, b ⊃ ~c, b} ⇒ {a ∪ c, b ⊃ ~c, b, ~c} ⇒  
{a ∪ c, b ⊃ ~c, b, ~c, c ∪ a} ⇒  
{a ∪ c, b ⊃ ~c, b, ~c, c ∪ a, a} which proves “a” 
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Simplified Canonical Forms 
•  Each rule of a Semi-Thue system is a canonical rule of 

the form 
PαQ → PβQ 

•  Each rule of a Thue system is a canonical rule of the 
form 
PαQ ↔ PβQ 

•  Each rule of a Post Normal system is a canonical rule of 
the form 
αP → Pβ 

•  Tag systems are just Normal systems where all premises 
are of the same length (the deletion number), and at 
most one can begin with any given letter in Σ. That 
makes Tag systems deterministic. 
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Examples of Post Systems 
•  Alphabet Σ = {a,b,#}. Semi-Thue rules: 

aba → b 
#b# → λ 
For above, #anbam#  ⇒* λ iff n=m 

•  Alphabet Σ = {0,1,c,#}. Normal rules: 
0c → 1 
1c → c0 
#c → #1  
0 → 0  
1 → 1 
# → #  
For above, binaryc#  ⇒* binary+1# where binary is some 
binary number. 
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Simulating Turing Machines 
•  Basically, we need at least one rule for each 4-

tuple in the Turing machine’s description. 
•  The rules lead from one instantaneous 

description to another. 
•  The Turing ID αqaβ is represented by the string 

hαqaβh, a being the scanned symbol. 
•  The tuple q a b s leads to  

qa → sb 
•  Moving right and left can be harder due to 

blanks.  
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Details of Halt(TM) ≤ Word(ST) 
•  Let M = (Q, {0,1}, T), T is Turing table. 
•  If qabs ∈ T, add rule qa → sb 
•  If qaRs ∈ T, add rules  

–  q1b → 1sb   a=1, ∀b∈{0,1} 
–  q1h → 1s0h  a=1 
–  cq0b → c0sb  a=0, ∀b,c∈{0,1} 
–  hq0b → hsb  a=0, ∀b∈{0,1} 
–  cq0h → c0s0h  a=0, ∀c∈{0,1} 
–  hq0h → hs0h  a=0 

•  If qaLs ∈ T, add rules  
–  bqac → sbac  ∀a,b,c∈{0,1} 
–  hqac → hs0ac  ∀a,c∈{0,1} 
–  bq1h → sb1h  a=1, ∀b∈{0,1} 
–  hq1h → hs01h  a=1 
–  bq0h → sbh  a=0, ∀b∈{0,1} 
–  hq0h → hs0h  a=0 
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Clean-Up 
•  Assume q1 is start state and only one accepting state exists q0 
•  We will start in h1xq10h, seeking to accept x (enter q0) or reject (run 

forever). 
•  Add rules  

–  q0a → q0   ∀a∈{0,1} 
–  bq0 → q0   ∀b∈{0,1} 

•  The added rule allows us to “erase” the tape if we accept x. 
•  This means that acceptance can be changed to generating hq0h. 

•  The next slide shows the consequences. 
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Semi-Thue Word Problem 

•  Construction from TM, M, gets: 
•  h1xq10h ⇒∑(M)* hq0h iff x∈L(M). 
•  hq0h ⇒∏(M)* h1xq10h iff x∈L(M). 
•  hq0h ⇔∑ (M)* h1xq10h iff x∈L(M). 
•  Can recast both Semi-Thue and Thue 

Systems to ones over alphabet {a,b} or 
{0,1}. That is, a binary alphabet is 
sufficient for undecidability. 
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Closure Properties 
•  Regular (Finite State) Languages 

–  Union, intersection, complement, substitution, 
quotient (with anything), max, min, cycle, reversal 

–  Use of Pumping Lemma and Myhill-Nerode 
•  Context Free 

–  Union, intersection with regular, substitution, quotient 
with regular, cycle, reversal 

–  Use of Pumping and Ogden’s Lemma 
•  Context Sensitive Languages 

–  Union, intersection, complement, Epsilon-free 
substitution, cycle, reversal 
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Non-Closure 

•  CFLs not closed under 
–  Intersection, complement, max, min 

•  CSLs not closed under 
– Homomorphism (or substitution with empty 

string), max (similar to homomorphism)  
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Grammars and re Sets 

•  Every grammar lists an re set. 
•  Some grammars (regular, CFL and CSG) 

produce recursive sets. 
•  Type 0 grammars are as powerful at listing 

re sets as Turing machines are at 
enumerating re sets (Proof later). 



Formal Language 

Undecidability Continued 
PCP and Traces 
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Post Correspondence Problem 
•  Many problems related to grammars can be shown to be 

no more complex than the Post Correspondence 
Problem (PCP).   

•  Each instance of PCP is denoted: Given n>0, Σ a finite 
alphabet, and two n-tuples of words   
( x1, … , xn ), ( y1, … , yn ) over Σ,  
does there exist a sequence i1, … , ik  , k>0, 1 ≤ ij ≤ n, 
such that 
xi1 … xik = yi1 … yik  ?   

•  Example of PCP:  
n = 3, Σ = { a , b }, ( a b a , b b , a ),  ( b a b , b , b a a ). 
Solution 2 , 3, 1 , 2     
b b   a   a b a   b b   =   b   b a a   b a b   b 
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PCP Example#2 

•  Start with Semi-Thue System 
– aba → ab; a → aa; b → a 
–  Instance of word problem: bbbb ⇒*? aa 

•  Convert to PCP 
–  [bbbb* ab  ab  aa  aa  a  a  ] 
 [  aba  aba  a  a  b  b  *aa] 

– And  *  *  a  a  b  b 
    *  *  a  a  b  b 
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How PCP Construction Works? 

•  Using underscored letters avoids solutions 
that don’t relate to word problem instance. 
E.g., 

 aba  a 
 ab  aa 

•  Top row insures start with [W0* 
•  Bottom row insures end with *Wf] 
•  Bottom row matches Wi, while top 

matches Wi+1 (one is underscored) 
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Ambiguity of CFG 
•  Problem to determine if an arbitrary CFG 

is ambiguous  
S → A  |  B 
A → xi A [i]  |   xi [i]  1 ≤ i ≤ n 
B → yi B [i]  |   yi [i]  1 ≤ i ≤ n 
A ⇒*  xi1 … xik [ik] … [i1]   k > 0 
B ⇒* yi1 … yik [ik] … [i1]   k > 0 

•  Ambiguous if and only if there is a solution 
to this PCP instance.  
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Intersection of CFLs 
•  Problem to determine if arbitrary CFG’s 

define overlapping languages 
•  Just take the grammar consisting of all the 

A-rules from previous, and a second 
grammar consisting of all the B-rules.  Call 
the languages generated by these 
grammars, LA and LB.  
LA ∩ LB ≠  Ø, if and only there is a solution 
to this PCP instance. 
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CSG Produces Something 
 S   → xi S yi

R | xi T yi
R  1 ≤ i ≤ n 

 a T a  → * T * 
 * a  → a * 
 a *  → * a 
 T    → * 

•  Our only terminal is *.  We get strings of 
form *2j+1, for some j’s if and only if there is 
a solution to this PCP instance. 
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Sample Question#1 

1.  Prove that the following are equivalent 
a)  S is an infinite recursive (decidable) set. 
b)   S is the range of a monotonically 

increasing total recursive function.  
Note: f is monotonically increasing 
means that ∀x f(x+1) > f(x). 
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Sample Question#2 

2.  Let A and B be re sets. For each of the 
following, either prove that the set is re, 
or give a counterexample that results in 
some known non-re set. 

a)  A ∪ B 
b)   A ∩ B 
c)  ~A 
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Sample Question#3 

3.  Present a demonstration that the even 
function is primitive recursive. 
even(x) = 1 if x is even 
even(x) = 0 if x is odd 
You may assume only that the base 
functions are prf and that prf’s are closed 
under a finite number of applications of 
composition and primitive recursion. 
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Sample Question#4 

4.  Given that the predicate STP and the 
function VALUE are prf’s, show that we 
can semi-decide  
 
{ f | ϕf evaluates to 0 for some input} 
 
Note: STP( f, x, s ) is true iff ϕf(x) 
converges in s or fewer steps and, if so, 
VALUE(f, x, s) = ϕf(x).   
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Sample Question#5 
5.  Let S be an re (recursively enumerable), non-

recursive set, and T be an re, possibly 
recursive set. Let  
 E = { z | z = x + y, where x ∈ S and y ∈ T }.  
 Answer with proofs, algorithms or 
counterexamples, as appropriate, each of the 
following questions: 
 (a)  Can E be non re? 
 (b)  Can E be re non-recursive? 
 (c)  Can E be recursive?  
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Sample Question#6 

6.  Assuming that the Uniform Halting 
Problem (TOTAL) is undecidable (it’s 
actually not even re), use reduction to 
show the undecidability of 
 
{ f | ∀x ϕf (x+1) > ϕf (x) } 
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Sample Question#7 

7.  Let Incr = { f | ∀x, ϕf(x+1)>ϕf(x) }.  
Let TOT = { f | ∀x, ϕf(x)↓ }. 
Prove that Incr ≡m TOT. Note Q#6 starts 
this one. 
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Sample Question#8 

8.  Let Incr = { f | ∀x ϕf(x+1)>ϕf(x) }. Use 
Rice’s theorem to show Incr is not 
recursive. 
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Sample Question#9 

9.  Let S be a recursive (decidable set), 
what can we say about the complexity 
(recursive, re non-recursive, non-re) of T, 
where T ⊂ S? 
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Sample Question#10 

10. Define the pairing function <x,y> and its 
two inverses <z>1 and <z>2, where if  
z = <x,y>, then x = <z>1 and y = <z>2. 
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Sample Question#11 

11. Assume A ≤m B and B ≤m C.  
Prove A ≤m C. 
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Sample Question#12 

12. Let P = { f | ∃ x [ STP(f, x, x) ] }. Why 
does Rice’s theorem not tell us anything 
about the undecidability of P? 
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Exclusions 

•  No explicit Turing Machines to write 
•  No explicit FRSs to write 
•  No explicit Register Machines to write 
•  No explicit S-m-n theorem, but assumed 

ability to apply it 
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Inclusions 
•  A question with multiple parts that uses quantification (STP/VALUE) 
•  Various re and recursive equivalent definitions  
•  Proofs of equivalence of definitions 
•  Consequences of recursiveness or re-ness of a problem 
•  Closure of recursive/re sets 
•  Gödel numbering (pairing functions and inverses) 
•  Models of computation/equivalences (not details but understanding) 
•  Primitive recursion and its limitation; bounded versus unbounded µ 
•  Notion of universal machine 
•  A proof by diagonalization (there are just two possibilities) 
•  A question about K and/or K0 
•  Many-one reduction(s) 
•  Rice’s Theorem (its proof and its variants) 
•  Applications of Rice’s Theorem and when it cannot be applied 
 



Traces and Grammars 
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Traces (Valid Computations) 
•  A trace of a machine M, is a word of the form 

 
# X0 # X1 # X2 # X3 # … # Xk-1 # Xk # 
 
where Xi ⇒ Xi+1 0 ≤ i < k, X0 is a starting configuration and Xk is a 
terminating configuration.   

•  We allow some laxness, where the configurations might be encoded 
in a convenient manner.  Many texts show that a context free 
grammar can be devised which approximates traces by either 
getting the even-odd pairs right, or the odd-even pairs right.  The 
goal is to then to intersect the two languages, so the result is a 
trace.  This then allows us to create CFLs L1 and L2, where L1 ∩ L2 
≠ Ø , just in case the machine has an element in its domain.  Since 
this is undecidable, the non-emptiness of the intersection problem is 
also undecidable. This is an alternate proof to one we already 
showed based on PCP. 
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Traces of FRS 
•  I have chosen, once again to use the Factor Replacement Systems, 

but this time, Factor Systems with Residues.   
The rules are unordered and each is of the form 
a x + b  → c x + d 

•  These systems need to overcome the lack of ordering when 
simulating Register Machines.  This is done by 
j.  INCr[i]   pn+j  x    → pn+i  pr  x  
j.  DECr[s, f]  pn+j   pr  x   → pn+s   x  

   pn+j   pr x + k pn+j    → pn+f   pr x + k pn+f , 1 ≤ k <  pr 
 We also add the halting rule associated with m+1 of 
    pn+m+1  x → 0  

•  Thus, halting is equivalent to producing 0.  We can also add one 
more rule that guarantees we can reach 0 on both odd and even 
numbers of moves 
    0 → 0  
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Intersection of CFLs 
•  Let (n, ((a1,b1,c1,d1) , … ,(ak,bk,ck,dk) ) be some factor replacement 

system with residues.  Define grammars G1 and G2 by using the 4k+2 rules 
G : Fi  →   1aiFi1ci  |  1ai+bi#1ci+di  1 ≤ i ≤ k 

  S1  →  # Fi S1  |  # Fi #  1 ≤ i ≤ k 
  S2  →   # 1x0S11z0#  Z0 is 0 for us 

G1 starts with S1 and G2 with S2 
•  Thus, using the notation of writing Y in place of 1Y,  

L1 =  L( G1 ) = { #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # } 
where Y2i ⇒ Y2i+1 , 0 ≤ i ≤ j.   
This checks the even/odd steps of an even length computation. 
But, L2 =  L( G2 ) = { #X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # } 
where X2i-1 ⇒ X2i , 1 ≤ i ≤ k.   
This checks the odd/even steps of an even length computation. 
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Intersection Continued 
 Now, X0 is chosen as some selected input value to the 
Factor System with Residues, and Z0 is the unique value 
(0 in our case) on which the machine halts.  But, 
 L1 ∩ L2  = {#X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # } 
 where Xi ⇒ Xi+1 , 0 ≤ i < 2k, and X2k ⇒ Z0 .  This checks 
all steps of an even length computation.  But our original 
system halts if and only if it produces 0 (Z0) in an even 
(also odd) number of steps.  Thus the intersection is non-
empty just in case the Factor System with residue 
eventually produces 0 when started on X0, just in case 
the Register Machine halts when started on the register 
contents encoded by X0. 
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Quotients of CFLs (concept) 
Let L1 =  L( G1 ) = { $ # Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # } 
where Y2i ⇒ Y2i+1 , 0 ≤ i ≤ j.   
This checks the even/odd steps of an even length computation. 
Now, let L2 =  L( G2 ) = {X0 $ # X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 #} 
where X2i-1 ⇒ X2i , 1 ≤ i ≤ k and Z is a unique halting configuration. 
This checks the odd/steps of an even length computation, and includes an 
extra copy of the starting number prior to its $. 
 Now, consider the quotient of L2 / L1 .  The only ways a member of L1 can 
match a final substring in L2 is to line up the $ signs.  But then they serve to 
check out the validity and termination of the computation.  Moreover, the 
quotient leaves only the starting point (the one on which the machine halts.)  
Thus, 
 L2 / L1  = { X0 | the system halts}.  
 Since deciding the members of an re set is in general undecidable, we have 
shown that membership in the quotient of two CFLs is also undecidable. 
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Quotients of CFLs (precise) 
•  Let (n, ((a1,b1,c1,d1) , … ,(ak,bk,ck,dk) ) be some factor replacement system with 

residues.  Define grammars G1 and G2 by using the 4k+4 rules 
G : Fi  →   1aiFi1ci  |  1ai+bi#1ci+di  1 ≤ i ≤ k 

  T1  →  # Fi T1  |  # Fi #   1 ≤ i ≤ k 
  A  →   1 A 1 | $ # 
  S1  →  $T1 
  S2  →    A T1 # 1z0 #  Z0 is 0 for us 

G1 starts with S1 and G2 with S2 
•  Thus, using the notation of writing Y in place of 1Y,  

L1 =  L( G1 ) = { $ #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # } 
where Y2i ⇒ Y2i+1 , 0 ≤ i ≤ j.   
This checks the even/odd steps of an even length computation. 
But, L2 =  L( G2 ) = { X $  #X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # } 
where X2i-1 ⇒ X2i , 1 ≤ i ≤ k and X = X0  
This checks the odd/steps of an even length computation, and includes  
an extra copy of the starting number prior to its $.   
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Finish Quotient 
 Now, consider the quotient of L2 / L1 .  The only 
ways a member of L1 can match a final 
substring in L2 is to line up the $ signs.  But then 
they serve to check out the validity and 
termination of the computation.  Moreover, the 
quotient leaves only the starting number (the 
one on which the machine halts.)  Thus, 
 L2 / L1  = { X | the system F halts on zero }.  
 Since deciding the members of an re set is in 
general undecidable, we have shown that 
membership in the quotient of two CFLs is also 
undecidable. 
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Traces and Type 0  
•  Here, it is actually easier to show a simulation of a Turing machine than of a Factor 

System.   
•  Assume we are given some machine M, with Turing table T (using Post notation). We 

assume a tape alphabet of Σ that includes a blank symbol B. 
•  Consider a starting configuration C0. Our rules will be 

S    →  # C0 #  where C0 = Yq0aX is initial ID 
q a   →  s b  if q a b s ∈ T 
b q a x  →   b a s x  if q a R s ∈ T, a,b,x ∈ Σ 
b q a #  →   b a s B #  if q a R s ∈ T, a,b ∈ Σ 
# q a x  →   # a s x  if q a R s ∈ T, a,x ∈ Σ, a≠B 
# q a #  →   # a s B #  if q a R s ∈ T, a ∈ Σ, a≠B 
# q a x  →   # s x #  if q a R s ∈ T, x ∈ Σ, a=B 
# q a #  →   # s B #  if q a R s ∈ T, a=B 
b q a x  →   s b a x  if q a L s ∈ T, a,b,x ∈ Σ 
# q a x  →   # s B a x  if q a L s ∈ T, a,x ∈ Σ 
b q a #  →   s b a #  if q a L s ∈ T, a,b ∈ Σ, a≠B 
# q a #  →   # s B a #  if q a L s ∈ T, a ∈ Σ, a≠B 
b q a #  →   s b #  if q a L s ∈ T, b ∈ Σ, a=B 
# q a #  →   # s B #  if q a L s ∈ T, a=B 
f    →   λ  if f is a final state 
#    →   λ  just cleaning up the dirty linen  
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CSG and Undecidability 
•  We can almost do anything with a CSG that can be done with a Type 0 

grammar.  The only thing lacking is the ability to reduce lengths, but we can 
throw in a character that we think of as meaning “deleted”.  Let’s use the 
letter d as a deleted character, and use the letter e to mark both ends of a 
word. 

•  Let G = ( V, T, P , S) be an arbitrary Type 0 grammar. 
•  Define the CSG G’ = (V ∪ {S’, D}, T ∪ {d, e}, S’, P’), where P’ is 

S’   →  e S e 
D x  →  x D  when x ∈ V ∪ T 
D e  →  e d  push the delete characters to far right 
α   →  β  where α → β ∈ P and |α| ≤ |β| 
α   →  βDk  where α → β ∈ P and |α| - |β| = k > 0 

•  Clearly, L(G’) = { e w e dm | w ∈ L(G) and m≥0 is some integer } 
•  For each w ∈ L(G), we cannot, in general, determine for which values of m, 

e w e dm ∈ L(G’).  We would need to ask a potentially infinite number of 
questions of the form  
“does e w e dm ∈ L(G’)” to determine if w ∈ L(G).  That’s a semi-decision 
procedure. 
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Some Consequences 
•  CSGs are not closed under Init, Final, Mid, quotient with 

regular sets and homomorphism (okay for λ-free 
homomorphism) 

•  We also have that the emptiness problem is undecidable 
from this result.  That gives us two proofs of this one 
result. 

•  For Type 0, emptiness and even the membership 
problems are undecidable. 
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Decidability 

•  Everything about regular 
•  Membership in CFLs and CSLs 

– CKY for CFLs 
•  Emptiness for CFLs 
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Undecidability 
•  Is L =∅, for CSL, L? 
•  Is L=Σ*, for CFL (CSL), L? 
•  Is L1=L2 for CFLs (CSLs), L1, L2? 
•  Is L1⊆L2 for CFLs (CSLs ), L1, L2? 
•  Is L1∩L2=∅ for CFLs (CSLs ), L1, L2? 
•  Is L regular, for CFL (CSL), L? 
•  Is L1∩L2 a CFL for CFLs, L1, L2? 
•  Is ~L CFL, for CFL, L? 
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More Undecidability 

•  Is CFL, L, ambiguous? 
•  Is L=L2, L a CFL? 
•  Does there exist a finite n, Ln=LN+1? 
•  Is L1/L2 finite, L1 and L2 CFLs? 
•  Membership in L1/L2, L1 and L2 CFLs? 

4/7/15 © UCF EECS 



287 

Word to Grammar Problem 
•  Recast semi-Thue system making all 

symbols non-terminal, adding S and V to 
non-terminals and terminal set Σ={a} 
G: S → h1xq10h 
  hq0h → V 
  V → aV 
  V →  λ 

•  x∈L(M) iff L(G) ≠ Ø iff L(G) infinite  
iff λ ∈ L(G) iff a ∈ L(G) iff L(G) = Σ* 
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Consequences for Grammar 
•  Unsolvables 

– L(G) = Ø 
– L(G) = Σ* 
– L(G) infinite 
– w ∈ L(G), for arbitrary w 
– L(G) ⊆ L(G2) 
– L(G) = L(G2) 

•  Latter two results follow when have 
– G2: S → aS | λ   a∈Σ 
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Turing Machine Traces 

•  A valid trace 
– C1 # C2

R $ C3 # C4
R  … $ C2k-1 # C2k

R $, where 
k ≥ 1 and Ci  ⇒M  Ci+1, for 1 ≤ i < 2k. Here, ⇒M 
means derive in M, and CR means C with its 
characters reversed  

•  An invalid trace 
– C1 # C2

R $ C3 # C4
R  … $ C2k-1 # C2k

R $, where 
k ≥ 1 and for some i, it is false that  
Ci  ⇒M  Ci+1.  
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What’s Context Free? 
•  Given a Turing Machine M 

– The set of invalid traces of M is Context Free 
– The set of valid traces is Context Sensitive 
– The set of valid terminating traces is Context 

Sensitive 
– The complement of the valid traces is Context 

Free 
– The complement of the valid terminating 

traces is Context Free 



Partially correct traces 
L1 =  L( G1 ) = { #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # } 
where Y2i ⇒ Y2i+1 , 0 ≤ i ≤ j.   
This checks the even/odd steps of an even length computation. 
But, L2 =  L( G2 ) = {#X0#X1#X2#X3#X4 #…# X2k-1#X2k#Z0#} 
where X2i-1 ⇒ X2i , 1 ≤ i ≤ k.   
This checks the odd/steps of an even length computation. 
 
L = L1 ∩ L2 describes correct traces (checked even/odd and odd/
even). If Z0 is chosen to be a terminal configuration, then these are 
terminating traces. If we pick a fixed X0, then X0 is a halting 
configuration iff L is non-empty. This is an independent proof of the 
undecidability of the non-empty intersection problem for CFGs and 
the non-emptiness problem for CSGs. 
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What’s Undecidable? 

•  We cannot decide if the set of valid 
terminating traces of an arbitrary machine 
M is non-empty. 

•  We cannot decide if the complement of the 
set of valid terminating traces of an 
arbitrary machine M is everything. In fact, 
this is not even semi-decidable. 
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L = Σ*?  

•  If L is regular, then L = Σ*?  is decidable 
– Easy – Reduce to minimal deterministic FSA, 

AL accepting L. L = Σ* iff AL is a one-state 
machine, whose only state is accepting 

•  If L is context free, then L = Σ*?  is 
undecidable 
– Just produce the complement of a Turing 

Machine’s valid terminating traces 
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Finite Convergence for 
Concatenation of Context-Free 

Languages 
Relation to Real-Time  

(Constant Time) Execution 



Powers of CFLs 
Let G be a context free grammar. 
Consider L(G)n 

Question1: Is L(G) = L(G)2? 
Question2: Is L(G)n = L(G)n+1, for some 

finite n>0? 
These questions are both undecidable. 
Think about why question1 is as hard as 

whether or not L(G) is Σ*.  
Question2 requires much more thought. 
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L(G) = L(G)2? 

•  The problem to determine if L = Σ* is Turing 
reducible to the problem to decide if  
L • L ⊆ L, so long as L is selected from a 
class of languages C over the alphabet Σ for 
which we can decide if Σ ∪ {λ} ⊆ L.  

•  Corollary 1:  
The problem “is L • L = L, for L context free 
or context sensitive?” is undecidable  
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L(G) = L(G)2? is undecidable 

•  Question: Does L • L get us anything new? 
–  i.e., Is L • L = L? 

•  Membership in a CSL is decidable. 
•  Claim is that L = Σ* iff   

(1) Σ ∪ {λ} ⊆ L ; and 
(2) L • L = L  

•  Clearly, if L = Σ* then (1) and (2) trivially hold. 
•  Conversely, we have Σ* ⊆ L*= ∪ n≥0 Ln ⊆ L 

–  first inclusion follows from (1); second 
from (2) 
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Finite Power Problem 
•  The problem to determine, for an arbitrary 

context free language L, if there exist a finite 
n such that Ln = Ln+1 is undecidable. 

•  L1 = { C1# C2
R $ |  

   C1, C2 are configurations }, 
•  L2 = { C1#C2

R$C3#C4
R  … $C2k-1#C2k

R$ | where 
k ≥ 1 and, for some i, 1 ≤ i < 2k, Ci  ⇒M  Ci+1 is 
false }, 

•  L = L1 ∪ L2 ∪ {λ}. 
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Undecidability of ∃n Ln = Ln+1 

•  L is context free.  
•  Any product of L1 and L2, which contains L2 at least 

once, is L2. For instance, L1 • L2 = L2 • L1 = L2 • L2 = 
L2.   

•  This shows that (L1 ∪ L2)n = L1
n ∪ L2.  

•  Thus, Ln = {λ} ∪ L1 ∪ L1
2 …  ∪ L1

n ∪ L2.  
•  Analyzing L1 and L2 we see that L1

n ∪ L2 ≠  L2 just in 
case there is a word C1 # C2

R $ C3 # C4
R  … $ C2n-1 # 

C2n
R $ in L1

n that is not also in L2.  
•  But then there is some valid trace of length 2n.  
•  L has the finite power property iff M executes in 

constant time. 
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Summary of Grammar 
Results 
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Decidability 

•  Everything about regular 
•  Membership in CFLs and CSLs 

– CKY for CFLs 
•  Emptiness for CFLs 
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Undecidability 
•  Is L =∅, for CSL, L? 
•  Is L=Σ*, for CFL (CSL), L? 
•  Is L1=L2 for CFLs (CSLs), L1, L2? 
•  Is L1⊆L2 for CFLs (CSLs ), L1, L2? 
•  Is L1∩L2=∅ for CFLs (CSLs ), L1, L2? 
•  Is L regular, for CFL (CSL), L? 
•  Is L1∩L2 a CFL for CFLs, L1, L2? 
•  Is ~L CFL, for CFL, L? 
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More Undecidability 

•  Is CFL, L, ambiguous? 
•  Is L=L2, L a CFL? 
•  Does there exist a finite n, Ln=LN+1? 
•  Is L1/L2 finite, L1 and L2 CFLs? 
•  Membership in L1/L2, L1 and L2 CFLs? 



Propositional Calculus 

Axiomatizable Fragments 
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Propositional Calculus 

•  Mathematical of unquantified logical 
expressions 

•  Essentially Boolean algebra 
•  Goal is to reason about propositions 
•  Often interested in determining 

–  Is a well-formed formula (wff) a tautology? 
–  Is a wff refutable (unsatisfiable)? 
–  Is a wff satisfiable? (classic NP-complete) 
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Tautology and Satisfiability 

•  The classic approaches are: 
– Truth Table 
– Axiomatic System (axioms and inferences) 

•  Truth Table 
– Clearly exponential in number of variables 

•  Axiomatic Systems Rules of Inference 
– Substitution and Modus Ponens 
– Resolution / Unification 
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Proving Consequences 
•  Start with a set of axioms (all tautologies) 
•  Using substitution and MP  

(P, P ⊃Q ⇒ Q) 
derive consequences of axioms (also 
tautologies, but just a fragment of all) 

•  Can create complete sets of axioms 
•  Need 3 variables for associativity, e.g.,  

(p1 ∨ p2) ∨ p3   ⊃   p1 ∨ (p2 ∨ p3) 
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Some Undecidables 

•  Given a set of axioms, 
–  Is this set complete? 
– Given a tautology T, is T a consequent? 

•  The above are even undecidable with one 
axiom and with only 2 variables. I will 
show this result shortly. 
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Refutation 

•  If we wish to prove that some wff, F, is a 
tautology, we could negate it and try to 
prove that the new formula is refutable 
(cannot be satisfied; contains a logical 
contradiction). 

•  This is often done using resolution. 
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Resolution 
•  Put formula in Conjunctive Normal Form 

(CNF) 
•  If have terms of conjunction 

(P ∨ Q), (R  ∨ ~Q) 
then can determine that (P ∨ R) 

•  If we ever get a null conclusion, we have 
refuted the proposition 

•  Resolution is not complete for derivation, 
but it is for refutation 
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Axioms 

•  Must be tautologies 
•  Can be incomplete 
•  Might have limitations on them and on 

WFFs, e.g., 
– Just implication 
– Only n variables 
– Single axiom 
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Simulating Machines 

•  Linear representations require 
associativity, unless all operations can be 
performed on prefix only (or suffix only) 

•  Prefix and suffix based operations are 
single stacks and limit us to CFLs 

•  Can simulate Post normal Forms with just 
3 variables. 
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Diadic PIPC 

•  Diadic limits us to two variables 
•  PIPC means Partial Implicational 

Propositional Calculus, and limits us to 
implication as only connective 

•  Partial just means we get a fragment 
•  Problems 

–  Is fragment complete? 
– Can F be derived by substitution and MP? 
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Living without Associativity 

•  Consider a two-stack model of a TM 
•  Could somehow use one variable for left 

stack and other for right 
•  Must find a way to encode a sequence as 

a composition of forms – that’s the key to 
this simulation 
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Composition Encoding 

•  Consider (p ⊃ p), (p ⊃ (p ⊃ p) ),  
 (p ⊃ (p ⊃ (p ⊃ p) ) ), … 
– No form is a substitution instance of any of the 

other, so they can’t be confused 
– All are tautologies 

•  Consider ((X ⊃ Y) ⊃ Y) 
– This is just X ∨ Y 
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Encoding 
•  Use (p ⊃ p) as form of bottom of stack 
•  Use (p ⊃ (p ⊃ p)) as form for letter 0 
•  Use (p ⊃ (p ⊃ (p ⊃ p))) as form for 1 
•  Etc. 
•  String 01 (reading top to bottom of stack) is 

–   (   ( (p ⊃ p) ⊃ ( (p ⊃ p) ⊃ ( (p ⊃ p) ⊃ (p ⊃ p) ) ) ) ⊃  
   ( ( (p ⊃ p) ⊃ ( (p ⊃ p) ⊃ ( (p ⊃ p) ⊃ (p ⊃ p) ) ) ) ⊃  
     ( (p ⊃ p) ⊃ ( (p ⊃ p) ⊃ ( (p ⊃ p) ⊃ (p ⊃ p) ) ) ) ) ) 



Encoding 
Ι(p) abbreviates [p ⊃ p] 
Φ0(p) is [p ⊃ Ι(p)] which is [p ⊃ [p ⊃ p]] 
Φ1(p) is [p ⊃ Φ0(p)] 
ξ1(p) is [p ⊃ Φ1(p)] 
ξ2(p) is [p ⊃ ξ1 (p)] 
ξ3(p) is [p ⊃ ξ2 (p)] 
ψ1(p) is [p ⊃ ξ3 (p)] 
ψ2(p) is [p ⊃ ψ1 (p)] 
… 
ψm(p) is [p ⊃ ψm-1 (p)] 
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Creating Terminal IDs 
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Reversing Print and Left 
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Reversing Right  



ORDER ANALYSIS 
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Notion of “Order” 
 Throughout the complexity portion of this course, 
we will be interested in how long an algorithm 
takes on the instances of some arbitrary "size" n. 
Recognizing that different times can be recorded 
for two instance of size n, we only ask about the 
worst case.  
  
 We also understand that different languages, 
computers, and even skill of the implementer 
can alter the "running time." 
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Notion of “Order” 
 As a result, we really can never know "exactly" 
how long anything takes. 

 
 So, we usually settle for a substitute function, 
and say the function we are trying to measure is 
"of the order of" this new substitute function.   
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Notion of “Order” 
 "Order" is something we use to describe an upper bound 
upon something else (in our case, time, but it can apply 
to almost anything). 

 For example, let f(n) and g(n) be two functions. We say 
"f(n) is order g(n)" when there exists constants c and N 
such that f(n) ≤ cg(n) for all n ≥ N. 

 What this is saying is that when n is 'large enough,' f(n) 
is bounded above by a constant multiple of g(n). 
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Notion of “Order” 
 This is particularly useful when f(n) is not known 
precisely, is complicated to compute, and/or difficult to 
use. We can, by this, replace f(n) by g(n) and know we 
aren't "off too far." 

 We say f(n) is "in the order of g(n)" or, simply,  
f(n) ∈ O(g(n)). 

 Usually, g(n) is a simple function, like nlog(n), n3, 2n, 
etc., that's easy to understand and use. 
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Notion of “Order” 

 Order of an Algorithm: The maximum 
number of steps required to find the 
answer to any instance of size n, for any 
arbitrary value of n.  

 For example, if an algorithm requires at 
most 6n2+3n–6 steps on any instance of 
size n, we say it is "order n2" or, simply, 
O(n2). 
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Order 
Let the order of algorithm X be in O(fx(n)). 

 Then, for algorithms A and B and their respective order 
functions, fA(n) and fB(n), consider the limit of fA(n)/fB(n) 
as n goes to infinity. 

 
 If this value is 

 
      0   A is faster than B 
 constant   A and B are "equally slow/fast" 
 infinity    A is slower than B. 

4/7/15 © UCF EECS 327 



Order of a Problem 

Order of a Problem  
 The order of the fastest algorithm that can 
ever solve this problem. (Also known as 
the "Complexity" of the problem.) 

 Often difficult to determine, since this allows 
for algorithms not yet discovered. 
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Decision vs Optimization 
Two types of problems are of particular interest:  

Decision Problems   ("Yes/No" answers) 

Optimization problems  ("best" answers) 
 
  (there are other types) 
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Vertex Cover (VC) 

•  Suppose we are in charge of a large network (a graph where edges 
are links between pairs of cities (vertices). Periodically, a line fails. 
To mend the line, we must call in a repair crew that goes over the  
line to fix it. To minimize down time, we station a repair crew at one 
end of every line. How many crews must you have and where 
should they be stationed? 

•  This is called the Vertex Cover Problem. (Yes, it sounds like it  
should be called the Edge Cover problem – something else already 
had that name.) 

•  An interesting problem – it is among the hardest problems, yet is 
one of the easiest of the hard problems. 
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VC Decision vs Optimization 
•  As a Decision Problem: 

•  Instances: A graph G and an integer k. 
•  Question: Does G possess a vertex Cover with at most k vertices? 

•  As an Optimization Problem: 

•  Instances: A graph G. 
•  Question: What is the smallest k for which G possesses a vertex 

cover? 
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Relation of VC Problems 
•  If we can (easily) solve either one of these problems, we can (easily) 

solve the other. (To solve the optimization version, just solve the  
decision version with several different values of k. Use a binary 
search on  k  between 1 and  n.  That is log(n) solutions  of the  
decision problem solves the  optimization problem. It's simple to 
solve the  decision version if we can  solve the  optimization version. 

•  We say their time complexity differs by no more than a multiple of 
log(n). 

•  If one is polynomial then so is the other. 
•  If one is exponential, then so is the other. 

•  We say they are equally difficult (both poly. or both exponential). 
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Smallest VC 
•  A "stranger version" 

•  Instances: A graph G and an integer k. 
•  Question: Does the smallest vertex cover of G have exactly k 

vertices? 
•  This is a decision problem. But, notice that it does not seem to be 

easy to verify either Yes or No instances!! (We can easily verify No 
instances for which the VC number is less than k, but not when it is 
actually greater than k.) 

•  So, it would seem to be in a different category than either of the  
other two. Yet, it also has the property that if we can easily solve 
either of the first two versions, we can easily solve this one. 
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Natural Pairs of Problems 
 Interestingly, these usually come in pairs  

 
  a decision problem, and 

 
   an optimization problem. 
 
Equally easy, or equally difficult, to solve. 

  
Both can be solved in polynomial time, or both require 

exponential time. 
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A Word about Time 
 An algorithm for a problem is said to be polynomial if 
there exists integers k and N such that t(n), the 
maximum number of steps required on any instance of 
size n, is at most nk, for all n ≥ N. 

 Otherwise, we say the algorithm is exponential. Usually, 
this is interpreted to mean t(n) ≥ cn for an infinite set of 
size n instances, and some constant c > 1 (often, we 
simply use c = 2). 
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A Word about “Words” 
 Normally, when we say a problem is "easy" we mean 
that it has a polynomial algorithm.  

 
 But, when we say a problem is "hard" or “apparently 
hard" we usually mean no polynomial algorithm is 
known, and none seems likely.  

 
 It is possible a polynomial algorithm exists for "hard" 
problems, but the evidence seems to indicate otherwise. 
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A Word about Abstractions 
 Problems we will discuss are usually "abstractions" of 
real problems. That is, to the extent possible, non-
essential features have been removed, others have been 
simplified and given variable names, relationships have 
been replaced with mathematical equations and/or 
inequalities, etc. 

 
     If an abstraction is hard, then the real problem is 

probably even harder!! 
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A Word about Toy Problems 
 This process, Mathematical Modeling, is a field of study 
in itself, and not our interest here.  
  
 On the other hand, we sometimes conjure up artificial 
problems to put a little "reality" into our work. This results 
in what some call "toy problems." 

 Again, if a toy problem is hard, then the real problem is 
probably harder. 
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Very Hard Problems 
 Some problems have no algorithm (e. g., Halting 
Problem.)  
   
 No mechanical/logical procedure will ever solve all 
instances of any such problem!! 

 Some problems have only exponential algorithms 
(provably so – they must take at least order 2n steps) So 
far, only a few have been proven, but there may be 
many. We suspect so. 
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Easy Problems 
 Many problems have polynomial algorithms 
(Fortunately).  

 Why fortunately? Because, most exponential 
algorithms are essentially useless for problem 
instances with n much larger than 50 or 60. 
We have algorithms for them, but the best of 
these will take 100's of years to run, even on 
much faster computers than we now envision. 
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Three Classes of Problems 
 Problems proven to be in these three groups 
(classes) are, respectively, 

 Undecidable, Exponential, and Polynomial. 

 Theoretically, all problems belong to exactly 
one of these three classes.  

4/7/15 © UCF EECS 341 



Unknown Complexity 
 Practically, there are a lot of problems (maybe, most) 
that have not been proven to be in any of the classes 
(Yet, maybe never will be).  

 
    Most currently "lie between" polynomial and 

exponential – we know of exponential algorithms, 
but have been unable to prove that exponential 
algorithms are necessary.  

 
 Some may have polynomial algorithms, but we have 
not yet been clever enough to discover them. 
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Why do we Care? 
 If an algorithm is O(nk), increasing the size of an 
instance by one gives a running time that is O((n+1)k) 

 That’s really not much more. 

 With an increase of one in an exponential algorithm, 
O(2n) changes to O(2n+1) = O(2*2n) = 2*O(2n) – that is, it 
takes about twice as long. 
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A Word about “Size” 
 Technically, the size of an instance is the minimum number of 
bits (information) needed to represent the instance – its 
"length."  

  
 This comes from early Formal Language researchers who 
were analyzing the time needed to 'recognize' a string of 
characters as a function of its length (number of 
characters). 

 When dealing with more general problems there is usually a 
parameter (number of vertices, processors, variables, etc.) 
that is polynomially related to the length of the instance. 
Then, we are justified in using the parameter as a measure 
of the length (size), since anything polynomially related to 
one will be polynomially related to the other.  
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The Subtlety of “Size” 
 But, be careful. 

 For instance, if the "value" (magnitude) of n is both 
the input and the parameter, the 'length' of the input 
(number of bits) is log2(n). So, an algorithm that 
takes n time is running in n = 2log2(n) time, which is 
exponential in terms of the length, log2(n), but linear 
(hence, polynomial) in terms of the "value," or 
magnitude, of n. 

 It's a subtle, and usually unimportant difference, but 
it can bite you. 
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Subset Sum 
•  Problem – Subset Sum 

•  Instances: A list L of n integer values and an integer B. 
•  Question: Does L have a subset which sums exactly to B? 

•  No one knows of a polynomial (deterministic) solution to this  problem. 

•  On the other hand, there is a very simple (dynamic programming) algorithm 
that runs in O(nB) time. 

•  Why isn't this "polynomial"?  
•     Because, the "length" of an instance is nlog(B) and 
•     nB > (nlog(B))^k for any fixed k. 
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Why do we Care? 
 When given a new problem to solve (design an algorithm 
for), if it's undecidable, or even exponential, you will 
waste a lot of time trying to write a polynomial solution 
for it!! 

 
 If the problem really is polynomial, it will be worthwhile 
spending some time and effort to find a polynomial 
solution. 

 
 You should know something about how hard a problem 
is before you try to solve it. 
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Research Territory 
 Decidable – vs – Undecidable      
   (area of Computability Theory) 

 Exponential – vs – polynomial    
   (area of Computational Complexity) 

 Algorithms for any of these          
   (area of Algorithm Design/Analysis) 
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Complexity Theory 

Second Part of Course 



Models of Computation 
NonDeterminism 

 
 Since we can't seem to find a model of computation 
that is more powerful than a TM, can we find one that 
is 'faster'? 

 
 In particular, we want one that takes us from 
exponential time to polynomial time. 

 
 Our candidate will be the NonDeterministic Turing 
Machine (NDTM). 



NDTM's 
 In the basic Deterministic Turing Machine (DTM) we 
make one major alteration (and take care of a few 
repercussions):  

 The 'transition functon' in DTM's is allowed to 
become a 'transition mapping' in NDTM's. 

 This means that rather than the next action being 
totally specified (deterministic) by the current state 
and input character, we now can have many next 
actions - simultaneously. That is, a NDTM can be in 
many states at once. (That raises some interesting 
problems with writing on the tape, just where the 
tape head is, etc., but those little things can be 
explained away). 



NDTM's 
 We also require that there be only one halt state - the 
'accept' state. That also raises an interesting 
question - what if we give it an instance that is not 
'acceptable'? The answer - it blows up (or goes into 
an infinite loop).  

 The solution is that we are only allowed to give it 
'acceptable' input. That means 

 NDTM's are only defined for decision problems 
 and, in particular, only for Yes instances. 



NDTM's 
 We want to determine how long it takes to get to the 
accept state - that's our only motive!! 

 So, what is a NDTM doing? 

 In a normal (deterministic) algorithm, we often have 
a loop where each time through the loop we are 
testing a different option to see if that "choice" leads 
to a correct solution. If one does, fine, we go on to 
another part of the problem. If one doesn't, we return 
to the same place and make a different choice, and 
test it, etc. 



NDTM's 
 If this is a Yes instance, we are guaranteed that an 
acceptable choice will eventually be found and we 
go on. 

 In a NDTM, what we are doing is making, and testing, 
all of those choices at once by 'spawning' a different 
NDTM for each of them. Those that don't work out, 
simply die (or something). 

 This is kind of like the ultimate in parallel 
programming. 



NDTM's 
 To allay concerns about not being able 
to write on the tape, we can allow each 
spawned NDTM to have its own copy of 
the tape with a read/write head.  

 The restriction is that nothing can be 
reported back except that the accept 
state was reached. 



NDTM's 
Another interpretation of nondeterminism: 

 From the basic definition, we notice that out of 
every state having a nondeterministic choice, at 
least one choice is valid and all the rest sort of die 
off. That is they really have no reason for being 
spawned (for this instance - maybe for another). 
So, we station at each such state, an 'oracle' (an 
all knowing being) who only allows the correct 
NDTM to be spawned. 

An 'Oracle Machine.' 



NDTM's 
 This is not totally unreasonable. We can look 
at a non deterministic decision as a 
deterministic algorithm in which, when an 
"option" is to be tested, it is very lucky, or 
clever, to make the correct choice the first 
time. 

 In this sense, the two machines would work 
identically, and we are just asking "How long 
does a DTM take if it always makes the 
correct decisions?" 



NDTM's 
 As long as we are talking magic, we might as 
well talk about a 'super' oracle stationed at 
the start state (and get rid of the rest of the 
oracles) whose task is to examine the given 
instance and simply tell you what sequence 
of transitions needs to be executed to reach 
the accept state.  

 
 He/she will write them to the left of cell 0 (the 
instance is to the right). 



NDTM's 
Now, you simply write a DTM to run back and 
forth between the left of the tape to get the 
'next action' and then go back to the right half 
to examine the NDTM and instance to verify 
that the provided transition is a valid next 
action. As predicted by the oracle, the DTM will 
see that the NDTM would reach the accept 
state and can report the number of steps 
required. 



NDTM's 
 All of this was originally designed with 
Language Recognition problems in mind. It is 
not a far stretch to realize the Yes instances 
of any of our more real word-like decision 
problems defines a language, and that the 
same approach can be used to "solve" them. 

 Rather than the oracle placing the sequence 
of transitions on the tape, we ask him/her to 
provide a 'witness' to (a 'proof' of) the 
correctness of the instance.  



NDTM's 
 For example, in the SubsetSum problem, we 
ask the oracle to write down the subset of 
objects whose sum is B (the desired sum). 
Then we ask "Can we write a deterministic 
polynomial algorithm to test the given 
witness."  

 
 The answer for SubsetSum is Yes, we can, 
i.e., the witness is verifiable in deterministic 
polynomial time. 



NDTM's - Witnesses 
Just what can we ask and expect of a 

"witness"? 
 

 The witness must be something that  
(1) we can verify to be accurate (for the given 

problem and instance) and 
(2) we must be able to "finish off" the solution. 
 
All in polynomial time. 



NDTM's - Witnesses 
 The witness can be nothing! 

 Then, we are on our own. We have to "solve the 
instance in polynomial time." 

 The witness can be "Yes." 
 Duh. We already knew that. We have to now 
verify the yes instance is a yes instance (same 
as above). 

  
 The witness has to be something other than nothing 
and Yes. 

  



NDTM's - Witnesses 
The information provided must be something we could 
have come up with ourselves, but probably at an 
exponential cost. And, it has to be enough so that we 
can conclude the final answer Yes from it. 

Consider a witness for the graph coloring problem: 

Given: A graph G = (V, E) and an integer k. 
Question: Can the vertices of G be assigned colors so 
that adjacent vertices have different colors and use at 
most k colors? 



NDTM's - Witnesses 
The witness could be nothing, or Yes. 

 But that's not good enough - we don't know of 
a polynomial algorithm for graph coloring. 

It could be "vertex 10 is colored Red."  
 That's not good enough either.  Any single 
vertex can be colored any color we want. 

It could be a color assigned to each vertex.  
 That would work, because we can verify its 
validity in polynomial time, and we can 
conclude the correct answer of Yes. 



NDTM's - Witnesses 
What if it was a color for all vertices but one? 

That also is enough. We can verify the 
correctness of the n-1 given to us, then we can 
verify that the one uncolored vertex can be 
colored with a color not on any neighbor, and 
that the total is not more than k. 

What if all but 2, 3, or 20 vertices are colored 
All are valid witnesses. 

What if half the vertices are colored?  
Usually,  No. There's not enough information. 
Sure, we can check that what is given to us is 
properly colored, but we don't know how to 
"finish it off." 



NDTM's - Witnesses 

 An interesting question: For a given 
problem, what are the limits to what 
can be provided that still allows a 
polynomial verification? 



NDTM's 
A major question remains: Do we have, in 
NDTMs, a model of computation that solves all 
deterministic exponential (DE) problems in 
polynomial time (nondeterministic polynomial 
time)?? 

It definitely solves some problems we think are 
DE in nondeterministic polynomial time. 



NDTM's 
But, so far, all problems that have been proven 
to require deterministic exponential time also 
require nondeterministic exponential time. 

So, the jury is still out. In the meantime, NDTMs 
are still valuable, because they might identify a 
larger class of problems than does a 
deterministic TM - the set of decision problems 
for which Yes instances can be verified in 
polynomial time. 



Problem Classes 
We now begin to discuss several different classes of 
problems. The first two will be:  
 

 NP   'Nondeterministic' Polynomial 
 P     'Deterministic' Polynomial, 

    The 'easiest' problems in NP 
 
Their definitions are rooted in the depths of 
Computability Theory as just described, but it is worth 
repeating some of it in the next few slides. 



Problem Classes 
We assume knowledge of Deterministic and 
Nondeterministic Turing Machines. (DTM's and 
NDTM's) 

The only use in life of a NDTM is to scan a string of 
characters X and proceed by state transitions until an 
'accept' state is entered. 

X must be in the language the NDTM is designed to 
recognize. Otherwise, it blows up!! 



Problem Classes 
So, what good is it?  
 
We can count the number of transitions on the 
shortest path (elapsed time) to the accept 
state!!! 

  
If there is a constant k for which the number of 
transitions is at most |X|k, then the language is 
said to be 'nondeterministic polynomial.' 



Problem Classes 
The subset of YES instances of the set of instances of a decision 
problem, as we have described them above, is a language. 
 
When given an instance, we want to know that it is in the subset of 
Yes instances. (All answers to Yes instances look alike - we don't 
care which one we get or how it was obtained). 
 
This begs the question "What about the No instances?" 

The answer is that we will get to them later. (They will actually 
form another class of problems.) 



Problem Classes 
This actually defines our first Class, NP, the set of decision 
problems whose Yes instances can be solved by a 
Nondeterministic Turing Machine in polynomial time. 

That knowledge is not of much use!! We still don't know 
how to tell (easily) if a problem is in NP. And, that's our goal. 

Fortunately, all we are doing with a NDTM is tracing the 
correct path to the accept state. Since all we are interested 
in doing is counting its length, if someone just gave us the 
correct path and we followed it, we could learn the same 
thing - how long it is. 



Problem Classes 
It is even simpler than that (all this has been proven 
mathematically). Consider the following problem: 
 

 You have a big van that can carry 10,000 lbs. You 
also have a batch of objects with weights w1, w2, …, 
wn lbs. Their total sum is more than 10,000 lbs, so 
you can't haul all of them. 
  
 Can you load the van with exactly 10,000 lbs? 
 (WOW. That's the SubsetSum problem.) 



Problem Classes 
Now, suppose it is possible (i.e., a Yes instance) and 
someone tells you exactly what objects to select. 

We can add the weights of those selected objects and 
verify the correctness of the selection. 

This is the same as following the correct path in a 
NDTM. (Well, not just the same, but it can be proven to 
be equivalent.) 

Therefore, all we have to do is count how long it takes 
to verify that a "correct" answer" is in fact correct. 



Class – NP 

First Significant Class of Problems:  
The Class NP 



Class – NP 

 We have, already, an informal definition 
for the set NP. We will now try to get a 
better idea of what NP includes, what it 
does not include, and give a formal 
definition. 



Class – NP 
Consider two seemingly closely related statements 
(versions) of a single problem. We show they are 
actually very different. Let G = (V, E) be a graph. 

Definition: X ⊆ V(G) is a vertex cover if 
every edge in G has at least one endpoint in 
X. 



Class – NP 
Version 1. Given a graph G and an integer k. 
           Does G contain a vertex cover  
           with at most k vertices? 

 
Version 2. Given a graph G and an integer k.  
        Does the smallest vertex cover of G  

                have exactly k vertices? 



Class – NP 

 Suppose, for either version, we are 
given a graph G and an integer k for 
which the answer is "yes." Someone 
also gives us a set X of vertices and 
claims  
   
  "X satisfies the conditions." 



Class – NP 

 In Version 1, we can fairly easily check 
that the claim is correct – in polynomial 
time. 

 
  That is, in polynomial time, we can 

check that X has k vertices, and that X 
is a vertex cover. 



Class – NP 
 In Version 2, we can also easily check that X has 
exactly k vertices and that X is a vertex cover.  
  
 But, we don't know how to easily check that there is 
not a smaller vertex cover!! 

 
 That seems to require exponential time. 

 
 These are very similar looking "decision" problems 
(Yes/No answers), yet they are VERY different in 
this one important respect. 

   



Class – NP 
 In the first: We can verify a correct answer 
in polynomial time. 

 In the second: We apparently can not verify 
a correct answer in polynomial time.  

   (At least, we don't know how to verify 
one in polynomial time.) 



Class – NP 
 
 

 Could we have asked to be given something 
that would have allowed us to easily verify 
that X was the smallest such set? 

 
 No one knows what to ask for!!  

 
 To check all subsets of k or fewer vertices 
requires exponential time (there can be an 
exponential number of them). 



Class – NP 
Version 1 problems make up the class called NP 
 
Definition: The Class NP is the set of all decision problems for 
which answers to Yes instances can be verified in polynomial 
time.  
       
{Why not the NO instances? We'll answer that later.} 
 
For historical reasons, NP means  

 "Nondeterministic Polynomial."  
(Specifically, it does not mean "not polynomial"). 

  



Class – NP 
 Version 2 of the Vertex Cover problem is not unique. 
There are other versions that exhibit this same 
property. For example, 

 Version 3: Given:    A graph G = (V, E) and an  
          integer k. 
  Question: Do all vertex covers of G  
  have more than k vertices? 

 What would/could a 'witness' for a Yes instance be?  



Class – NP 
 Again, no one knows except to list all 
subsets of at most k vertices. Then we would 
have to check each of the possible 
exponential number of sets. 

 
 Further, this is not isolated to the Vertex 
Cover problem. Every decision problem has 
a  'Version 3,' also known as the 
'complement' problem (we will discuss these 
further at a later point). 

 



Class – NP 

All problems in NP are decidable.  

That means there is an algorithm. 
 
And, the algorithm is no worse than 

O(2n). 



Class – NP 
Version 2 and 3 problems are apparently not in NP. 
 
So, where are they??  

   
We need more structure! {Again, later.}  

   
First we look inward, within NP. 



Class – P 

Second Significant Class of 
Problems: The Class P 



Class – P 
Some decision problems in NP can be solved 
(without knowing the answer in advance) - in 
polynomial time. That is, not only can we verify a 
correct answer in polynomial time, but we can 
actually compute the correct answer in polynomial 
time - from "scratch."  

These are the problems that make up the class P. 

P is a subset of NP. 



Class – P 

 Problems in P can also have a witness – we 
just don't need one. But, this line of thought 
leads to an interesting observation. Consider 
the problem of searching a list L for a key X. 

 
  Given: A list L of n values and a key X. 
  Question: Is X in L? 



Class – P 
 We know this problem is in P. But, we can 
also envision a nondeterministic solution. An 
oracle can, in fact, provide a "witness" for a 
Yes instance by simply writing down the 
index of  where X is located. 
  
 We can verify the correctness with one 
simple comparison and reporting, Yes the 
witness is correct. 



Class – P 
Now, consider the complement (Version 3) of 
this problem: 

Given:  A list L of n values and a key X. 
  Question: Is X not in L? 

Here, for any Yes instance, no 'witness' seems 
to exist, but if the oracle simply writes down 
"Yes" we can verify the correctness in 
polynomial time by comparing X with each of 
the n values and report "Yes, X is not in the 
list." 



Class – P 
Therefore, both problems can be verified in 
polynomial time and, hence, both are in NP. 

This is a characteristic of any problem in P - 
both it and its complement can be verified in 
polynomial time (of course, they can both be 
'solved' in polynomial time, too.) 
 
Therefore, we can again conclude P ⊆  NP. 



Class – P 
There is a popular conjecture that if any problem and 
its complement are both in NP, then both are also in P. 

This has been the case for several problems that for 
many years were not known to be in P, but both the 
problem and its complement were known to be in NP. 

For example, Linear Programming (proven to be in P in 
the 1980's), and Prime Number (proven in 2006 to be in  
P).  

A notable 'holdout' to date is Graph Isomorphism. 



Class – P 
There are a lot of problems in NP that we do not 
know how to solve in polynomial time. Why?  

Because they really don't have polynomial 
algorithms?  

Or, because we are not yet clever enough to have 
found a polynomial algorithm for them? 



Class – P 
At the moment, no one knows.  

Some believe all problems in NP have polynomial algorithms. 
Many do not (believe that). 

The fundamental question in theoretical computer science is:  
Does P = NP? 
 
There is an award of one million dollars for a proof.  

– Either way, True or False. 



Other Classes 
We now look at other classes of problems. 

Hard appearing problems can turn out to be 
easy to solve. And, easy looking problems can 
actually be very hard (Graph Theory is rich with 
such examples). 
 
We must deal with the concept of "as hard as," 
"no harder than," etc. in a more rigorous way. 
 



"No harder than" 
Problem A is said to be 'no harder than' problem B when the 
smallest class containing A is a subset of the smallest class 
containing B. 
 
Recall that fX(n) is the order of the smallest complexity class 
containing problem X.   

  
If, for some constant α,  

   fA(n)  ≤ nα  fB(n),  
 
the time to solve A is no more than some polynomial multiple 
of the time required to solve B, i.e., A is 'no harder than' B. 
 



"No harder than" 
The requirement for determining the relative difficulty 
of two problems A and B requires that we know, at 
least, the order of the fastest algorithm for problem B 
and the order of some algorithm for Problem A. 

We may not know either!! 

In the following we exhibit a technique that can allow 
us to determine this relationship without knowing 
anything about an algorithm for either problem. 



The "Key" to  
Complexity Theory 

 
'Reductions,' 
'Reductions,' 
'Reductions.'  



Reductions 
 For any problem X, let X(IX, AnswerX) 
represents an algorithm for problem X – even 
if none is known to exist. 

  
 IX is an arbitrary instance given to the 
algorithm and AnswerX is the returned 
answer determined by the algorithm. 



Reductions 
Definition: For problems A and B, a (Polynomial) 
Turing Reduction is an algorithm A(IA, AnswerA) for 
solving all instances of problem A and satisfies the 
following:   
(1) Constructs zero or more instances of problem B 
and invokes algorithm B(IB, AnswerB), on each. 
(2) Computes the result, AnswerA, for IA. 
(3) Except for the time required to execute algorithm 
B, the execution time of algorithm A must be 
polynomial with respect to the size of IA. 



Reductions 
Proc A(IA, AnswerA)  

 For i = 1 to alpha 
• Compute IB 
•    

 B(IB, AnswerB) 
•     

 End For 
 Compute AnswerA 

End proc 
 
   



Reductions 

We may assume a 'best' algorithm for 
problem B without actually knowing it.  
    
If A(IA, AnswerA) can be written without 
algorithm B, then problem A is simply a 
polynomial problem. 



Poly Turing Reductions 
The existence of a Turing reduction is often 
stated as: 

  
"Problem A reduces to problem B" or, simply, 

  
 "A ≤PT B"       



PT Reductions 

Theorem. If A ≤PT B and problem B is 
polynomial, then problem A is 
polynomial. 

 
Corollary. If A ≤PT B and problem A is 

exponential, then problem B is 
exponential. 



PT Reductions 
The previous theorem and its corollary do not 
capture the full implication of Turing reductions.  

Regardless of the complexity class problem B is 
in, a Turing reduction implies problem A is in a 
subclass. 
    
Regardless of the class problem A might be in, 
problem B is in a super class. 



PT Reductions 
Theorem. If A ≤PT B , then problem  A is "no 
harder than" problem B. 
Proof: Let tA(n) and tB(n) be the maximum times 
for algorithms A and B per the definition. Thus, 
fA(n) ≤ tA(n). Further, since we assume the best 
algorithm for B,  tB(n) = fB(n). Since A ≤PT B, 
there is a constant k such that tA(n) ≤ nktB(n). 
Therefore, fA(n) ≤ tA(n) ≤ nktB(n) =  nkfB(n). That is, 
A is no harder than B. 



PT Reductions 
Theorem.  

 If A ≤PT B and B ≤PT C then A ≤PT C. 

Definition.  
 If A ≤PT B and B ≤PT A, then A and B 
are polynomially equivalent. 



Polynomial Reductions 

   A ≤PT B  means: 

'Problem A is no harder within a 
polynomial factor than problem B,' and 

'Problem B is as hard within a 
polynomial factor as is problem A.' 



An Aside 
Without condition (3) of the definition, a simple 
Reduction results.  
 
If problem B is decidable,  
then so is problem A.  
Equivalently,  
If problem A is undecidable,  
then problem B is undecidable. 



Special Type of PT Reduction 
Polynomial Transformation (form of ≤m denoted ≤P) 
(Refer to the definition of Turing Reductions) 

(1) Problems A and B must both be decision 
problems. 

(2) A single instance, IB, of problem B is constructed 
from a single instance, IA, of problem A. 

(3) IB is true for problem B if and only if IA is true 
for problem A. 



NP–Complete 

Third Significant Class of Problems:  
The Class NP–Complete 



NP–Complete 
Polynomial Transformations enforce an equivalence 
relationship on all decision problems, particularly, 
those in the Class NP. Class P is one of those classes 
and is the "easiest" class of problems in NP.  

Is there a class in NP that is the hardest class in NP? 
 
A problem B in NP such that A ≤P B for every A in 
NP. 



NP–Complete 
 

In 1971, Stephen Cook proved there 
was. Specifically, a problem called  

  Satisfiability     (or, SAT). 
 
 



Satisfiability 

U = {u1, u2,…, un}, Boolean variables. 
 
C = {c1, c2,…, cm}, "OR clauses" 

 For example: 

  ci = (u4 ∨ u35 ∨ ~u18 ∨ u3… ∨ ~u6)  



Satisfiability 

  
Can we assign Boolean values to the 
variables in U so that every clause is 
TRUE? 
 
There is no known polynomial time 
algorithm!! 



NP–Complete 

Cooks Theorem: 
 1) SAT is in NP 
 2) For every problem A in NP, 
   A ≤P SAT 

 
Thus, SAT is as hard as every problem in 

NP. 



NP–Complete 
 Since SAT is itself in NP, that means SAT is a 
hardest problem in NP (there can be more 
than one.). 

 
 A hardest problem in a class is called the 
"completion" of that class.  

 
 Therefore, SAT is NP–Complete. 



NP–Complete 

Today, there are 1,000’s of problems that 
have been proven to be NP–Complete. (See 
Garey and Johnson, Computers and 
Intractability: A Guide to the Theory of NP–
Completeness, for a list of over 300 as of the 
early 1980's). 



P = NP? 

If P = NP then all problems in NP are 
polynomial problems. 

If P ≠ NP then all NP–C problems are at 
least super-polynomial and perhaps 
exponential. That is, NP-C problems 
could require sub-exponential super-
polynomial time.  



P = NP? 
Why should P equal NP? 
•  There seems to be a huge "gap" between the 

known problems in P and Exponential. That is, 
almost all known polynomial problems are no 
worse than n3 or n4.  

•  Where are the O(n50) problems?? O(n100)? Maybe 
they are the ones in NP–Complete?  

•  It's awfully hard to envision a problem that would 
require n100, but surely they exist? 

•  Some of the problems in NP–C just look like we 
should be able to find a polynomial solution 
(looks can be deceiving, though).  



P ≠ NP? 
Why should P not equal NP? 
•  P = NP would mean, for any problem in NP, that it is 

just as easy to solve an instance form "scratch," as 
it is to verify the answer if someone gives it to you. 
That seems a bit hard to believe. 

•  There simply are a lot of awfully hard looking 
problems in NP–Complete (and Co–NP-Complete) 
and some just don't seem to be solvable in 
polynomial time. 

•  Many smart people have tried for a long time to find 
polynomial algorithms for some of the problems in 
NP-Complete - with no luck. 



4/7/15 COT 6410 © UCF 427 

NP-Complete; NP-Hard 
A decision problem, C, is NP-complete if: 

C is in NP and  
C is NP-hard. That is, every problem in NP is polynomially 
reducible to C. 

D polynomially reduces to C  means that there is a deterministic 
polynomial-time many-one algorithm, f, that transforms each 
instance x of D into an instance f(x) of C, such that the answer to 
f(x) is YES if and only if the answer to x is YES.  
To prove that an NP problem A is NP-complete, it is sufficient to 
show that an already known NP-complete problem polynomially 
reduces to A. By transitivity, this shows that A is NP-hard. 
A consequence of this definition is that if we had a polynomial 
time algorithm for any NP-complete problem C, we could solve all 
problems in NP in polynomial time. That is, P = NP. 
Note that NP-hard does not necessarily mean NP-complete, as a 
given NP-hard problem could be outside NP. 



Satisfiability 

U = {u1, u2,…, un}, Boolean variables. 
 
C = {c1, c2,…, cm}, "OR clauses" 

 For example: 
  ci = (u4 ∨ u35 ∨ ~u18 ∨ u3… ∨ ~u6)  



Satisfiability 

  
Can we assign Boolean values to the 
variables in U so that every clause is 
TRUE? 
 
There is no known polynomial 
algorithm!! 
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SAT 
•  SAT is the problem to decide of an arbitrary 

Boolean formula (wff in the propositional 
calculus) whether or not this formula is 
satisfiable (has a set of variable assignments 
that evaluate the expression to true). 

•  SAT clearly can be solved in time k2n, where 
k is the length of the formula and n is the 
number of variables in the formula. 

•  What we can show is that SAT is NP-
complete, providing us our first concrete 
example of an NP-complete decision 
problem. 
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Simulating ND TM 
•  Given a TM, M, and an input w, we need to create a 

formula, ϕM,w, containing a polynomial number of 
terms that is satisfiable just in case M accepts w in 
polynomial time. 

•  The formula must encode within its terms a trace of 
configurations that includes 
–  A term for the starting configuration of the TM 
–  Terms for all accepting configurations of the TM 
–  Terms that ensure the consistency of each 

configuration 
–  Terms that ensure that each configuration after 

the first follows from the prior configuration by a 
single move  
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Cook’s Theorem 

•  ϕM,w = φcell ∧ φstart ∧ φmove ∧ φaccept 
•  See the following for a detailed 

description  and discussion of the four 
terms that make up this formula. 

•  http://www.cs.tau.ac.il/~safra/Complexity/Cook.ppt 



NP–Complete 
Within a year, Richard Karp added 22 problems to this 
special class. 

  
These included such problems as:  

  3-SAT 
  3DM 
  Vertex Cover,  
  Independent Set,  
  Knapsack,  
  Multiprocessor Scheduling, and  
  Partition. 
   



SubsetSum 
Set of positive integers S = {s1, s2, …, sn}  
and an integer B that is a goal. 
 
Question: Does S have a subset whose values 
sum to B? 
 
No one knows of a polynomial algorithm. 
 
{No one has proven there isn’t one, either!!} 



SubsetSum 
   The following polynomial transformations 

have been shown to exist.(Later, we will see 
what these problems actually are.) 

 
 Theorem. SAT ≤P 3SAT 

  Theorem. 3SAT ≤P SubsetSum 
 

  Theorem. SubsetSum ≤P Partition 



Example SubsetSum 
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Assuming a 3SAT expression (a + ~b + c) (~a + b + ~c), the 
following shows the reduction from 3SAT to Subset-Sum.  

 a  b  c  a + ~b + c  ~a + b + ~c   
a  1     1    
~a  1       1 
b   1      1 
~b   1    1 
c    1   1 
~c    1     1 
C1      1   
C1’      1   
C2        1   
C2’        1   
Goal  1  1  1   3   3   



Partition 
•  Let i1, i2, .., in be a multi-set of positive 

natural numbers. Partition asks if this 
multi-set can be partitioned into two sub 
multi-sets whose union is the original 
multi-set and whose sums are equal.  

•  Partition is related to the optimization 
problem of dividing the multi-set into two 
partitions whose sums are as close to 
each other as possible. 



Partition 
Partition is polynomial equivalent to 
SubsetSum 

Let i1, i2, .., in , G be an instance of SubsetSum. This 
instance has answer “yes” iff  
i1, i2, .., in , 2*Sum(i1, i2, .., in ) – G,Sum(i1, i2, .., in ) + G 
has answer “yes” in Partition. Here we assume that  
G ≤ Sum(i1, i2, .., in ), for, if not, the answer is “no.” 
Let i1, i2, .., in be an instance of Partition.  
This instance has answer “yes” iff  
i1, i2, .., in , Sum(i1, i2, .., in )/2  
has answer “yes” in SubsetSum 
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Knapsack 0-1 Problem 
�  The goal is to 

maximize the value of 
a knapsack that can 
hold at most W units 
(i.e. lbs or kg) worth of 
goods from a list of 
items I0, I1, … In-1.  
◦  Each item has 2 

attributes: 
1)  Value – let this be vi for 

item Ii 
2)  Weight – let this be wi for 

item Ii 

Thanks to Arup Guha 



Knapsack Optimize vs Decide 

•  As stated the Knapsack problem is an 
optimization problem. 

•  We can restate as decision problem to 
determine if there exists a set of items with 
weight < W that reaches some fixed goal 
value, G. 
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Knapsack and SubsetSum 
•  Let vi = wi for each item Ii. 
•  By doing so, the value is maximized when the 

Knapsack is filled as close to capacity. 
•  The related decision problem is to determine is 

we can attain capacity (W). 
•  Clearly then, given an instance of the 

SubsetSum problem, we can create an instance 
of the Knapsack decision problem problem, such 
that we reach the goal sum, G, iff we can attain a 
Knapsack value of G.   
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Knapsack Decision Problem 

•  The reduction from SubsetSum shows that 
the Knapsack decision problem is at least 
as hard as SubsetSum, so it is NP-
Complete if it is in NP. 

•  Think about whether or not it is in NP. 
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Related Bin Packing 

•  Have a bin capacity of B. 
•  Have item set S = {s1, s2, …, sn}  
•  Use all items in S, minimizing the number 

of bins, while adhering to the constraint 
that any such subset must sum to B or 
less. 
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Knapsack 0-1 Problem 
�  The difference 

between this problem 
and the fractional 
knapsack one is that 
you CANNOT take a 
fraction of an item. 

 
◦  You can either take it 

or not. 
◦  Hence the name 

Knapsack 0-1 
problem. 



Knapsack 0-1 Problem 

•  Brute Force 
– The naïve way to solve this problem is to 

cycle through all 2n subsets of the n items and 
pick the subset with a legal weight that 
maximizes the value of the knapsack. 

–   We can come up with a dynamic 
programming algorithm that USUALLY does 
better than this brute force technique. 



Knapsack 0-1 Problem 
� We are going to solve the problem in terms 

of sub-problems. 
� Our first attempt might be to characterize a 

sub-problem as follows: 
◦  Let Sk be the optimal subset of elements from  

{I0, I1, …, Ik}.   
�  What we find is that the optimal subset from the 

elements {I0, I1, …, Ik+1} may not correspond to the 
optimal subset of elements from {I0, I1, …, Ik} in any 
regular pattern. 

◦  Basically, the solution to the optimization 
problem for Sk+1 might NOT contain the optimal 
solution from problem Sk. 



Knapsack 0-1 Problem 
�  Let’s illustrate that point with an example: 

  Item    Weight   Value 
  I0     3    10 
  I1     8     4 
  I2     9     9 
  I3     8    11 

 
�  The maximum weight the knapsack can hold is 20. 

�  The best set of items from {I0, I1, I2} is {I0, I1, I2}   
�  BUT the best set of items from {I0, I1, I2, I3}  is {I0, 

I2, I3}.  
◦  In this example, note that this optimal solution, {I0, I2, I3}, 

does NOT build upon the previous optimal solution, {I0, I1, 
I2}.  
�  (Instead it builds upon the solution, {I0, I2}, which is really the 

optimal subset of   {I0, I1, I2}  with weight 12 or less.) 
 



Knapsack 0-1 problem 
�  So now we must re-work the way we build upon previous 

sub-problems… 
◦  Let B[k, w] represent the maximum total value of a subset Sk 

with weight w.  
◦  Our goal is to find B[n, W], where n is the total number of items 

and W is the maximal weight the knapsack can carry. 
 

�  So our recursive formula for subproblems: 
  B[k, w]   = B[k - 1,w], if wk > w 
      = max { B[k - 1,w], B[k - 1,w - wk] + vk}, otherwise 

 

�  In English, this means that the best subset of Sk that has 
total weight w is: 
1)  The best subset of Sk-1 that has total weight w, or 
2)  The best subset of Sk-1 that has total weight w-wk plus the item k 



Knapsack 0-1 Problem –  
Recursive Formula 

�  The best subset of Sk that has the total weight 
w, either contains item k or not. 

�  First case:  wk > w 
◦  Item k can’t be part of the solution!  If it was the 

total weight would be > w, which is unacceptable. 

�  Second case:  wk ≤ w  
◦  Then the item k can be in the solution, and we 

choose the case with greater value. 



Knapsack 0-1 Algorithm 
for w = 0 to W {  // Initialize 1st row to 0’s 
 B[0,w] = 0 

} 
for i = 1 to n {  // Initialize 1st column to 0’s 
 B[i,0] = 0 

} 
for i = 1 to n { 
 for w = 0 to W { 
  if wi <= w {  //item i can be in the solution 
   if vi + B[i-1,w-wi] > B[i-1,w] 
    B[i,w] = vi + B[i-1,w- wi] 
   else 
    B[i,w] = B[i-1,w] 
  } 
  else B[i,w] = B[i-1,w] // wi > w 
 } 

} 



Knapsack 0-1 Problem 
�  Let’s run our algorithm on the following 

data: 
◦  n = 4 (# of elements) 
◦  W = 5 (max weight) 
◦  Elements (weight, value): 

 (2,3), (3,4), (4,5), (5,6) 



Knapsack 0-1 Example 
i / w 0 1 2 3 4 5 

0 0 0 0 0 0 0 
1 0 
2 0 
3 0 
4 0 

// Initialize the base cases 
for w = 0 to W 

  B[0,w] = 0 
 
for i = 1 to n 

  B[i,0] = 0 



Knapsack 0-1 Example 
Items: 
1: (2,3) 
2: (3,4) 
3: (4,5) 
4: (5,6) 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 
2 0 
3 0 
4 0 

if  wi <= w   //item i can be in the solution 
      if vi + B[i-1,w-wi] > B[i-1,w] 
    B[i,w] = vi + B[i-1,w- wi] 
      else 
    B[i,w] = B[i-1,w] 

else B[i,w] = B[i-1,w] // wi > w 

i = 1 
vi = 3 
wi = 2 
w = 1 
w-wi = -1 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 
2 0 
3 0 
4 0 



Knapsack 0-1 Example 
Items: 
1: (2,3) 
2: (3,4) 
3: (4,5) 
4: (5,6) 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 
2 0 
3 0 
4 0 

if  wi <= w   //item i can be in the solution 
      if vi + B[i-1,w-wi] > B[i-1,w] 
    B[i,w] = vi + B[i-1,w- wi] 
      else 
    B[i,w] = B[i-1,w] 

else B[i,w] = B[i-1,w] // wi > w 

i = 1 
vi = 3 
wi = 2 
w = 2 
w-wi = 0 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 
2 0 
3 0 
4 0 



Knapsack 0-1 Example 
Items: 
1: (2,3) 
2: (3,4) 
3: (4,5) 
4: (5,6) 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 
2 0 
3 0 
4 0 

if  wi <= w   //item i can be in the solution 
      if vi + B[i-1,w-wi] > B[i-1,w] 
    B[i,w] = vi + B[i-1,w- wi] 
      else 
    B[i,w] = B[i-1,w] 

else B[i,w] = B[i-1,w] // wi > w 

i = 1 
vi = 3 
wi = 2 
w = 3 
w-wi = 1 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 3 
2 0 
3 0 
4 0 



Knapsack 0-1 Example 
Items: 
1: (2,3) 
2: (3,4) 
3: (4,5) 
4: (5,6) 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 3 
2 0 
3 0 
4 0 

if  wi <= w   //item i can be in the solution 
      if vi + B[i-1,w-wi] > B[i-1,w] 
    B[i,w] = vi + B[i-1,w- wi] 
      else 
    B[i,w] = B[i-1,w] 

else B[i,w] = B[i-1,w] // wi > w 

i = 1 
vi = 3 
wi = 2 
w = 4 
w-wi = 2 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 3 3 
2 0 
3 0 
4 0 



Knapsack 0-1 Example 
Items: 
1: (2,3) 
2: (3,4) 
3: (4,5) 
4: (5,6) 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 3 3 
2 0 
3 0 
4 0 

if  wi <= w   //item i can be in the solution 
      if vi + B[i-1,w-wi] > B[i-1,w] 
    B[i,w] = vi + B[i-1,w- wi] 
      else 
    B[i,w] = B[i-1,w] 

else B[i,w] = B[i-1,w] // wi > w 

i = 1 
vi = 3 
wi = 2 
w = 5 
w-wi = 3 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 3 3 3 
2 0 
3 0 
4 0 



Knapsack 0-1 Example 
Items: 
1: (2,3) 
2: (3,4) 
3: (4,5) 
4: (5,6) 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 3 3 3 
2 0 
3 0 
4 0 

if  wi <= w   //item i can be in the solution 
      if vi + B[i-1,w-wi] > B[i-1,w] 
    B[i,w] = vi + B[i-1,w- wi] 
      else 
    B[i,w] = B[i-1,w] 

else B[i,w] = B[i-1,w] // wi > w 

i = 2 
vi = 4 
wi = 3 
w = 1 
w-wi = -2 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 3 3 3 
2 0 0 
3 0 
4 0 



Knapsack 0-1 Example 
Items: 
1: (2,3) 
2: (3,4) 
3: (4,5) 
4: (5,6) 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 3 3 3 
2 0 0 
3 0 
4 0 

if  wi <= w   //item i can be in the solution 
      if vi + B[i-1,w-wi] > B[i-1,w] 
    B[i,w] = vi + B[i-1,w- wi] 
      else 
    B[i,w] = B[i-1,w] 

else B[i,w] = B[i-1,w] // wi > w 

i = 2 
vi = 4 
wi = 3 
w = 2 
w-wi = -1 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 3 3 3 
2 0 0 3 
3 0 
4 0 



Knapsack 0-1 Example 
Items: 
1: (2,3) 
2: (3,4) 
3: (4,5) 
4: (5,6) 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 3 3 3 
2 0 0 3 
3 0 
4 0 

if  wi <= w   //item i can be in the solution 
      if vi + B[i-1,w-wi] > B[i-1,w] 
    B[i,w] = vi + B[i-1,w- wi] 
      else 
    B[i,w] = B[i-1,w] 

else B[i,w] = B[i-1,w] // wi > w 

i = 2 
vi = 4 
wi = 3 
w = 3 
w-wi = 0 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 3 3 3 
2 0 0 3 4 
3 0 
4 0 



Knapsack 0-1 Example 
Items: 
1: (2,3) 
2: (3,4) 
3: (4,5) 
4: (5,6) 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 3 3 3 
2 0 0 3 4 
3 0 
4 0 

if  wi <= w   //item i can be in the solution 
      if vi + B[i-1,w-wi] > B[i-1,w] 
    B[i,w] = vi + B[i-1,w- wi] 
      else 
    B[i,w] = B[i-1,w] 

else B[i,w] = B[i-1,w] // wi > w 

i = 2 
vi = 4 
wi = 3 
w = 4 
w-wi = 1 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 3 3 3 
2 0 0 3 4 4 
3 0 
4 0 



Knapsack 0-1 Example 
Items: 
1: (2,3) 
2: (3,4) 
3: (4,5) 
4: (5,6) 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 3 3 3 
2 0 0 3 4 4 
3 0 
4 0 

if  wi <= w   //item i can be in the solution 
      if vi + B[i-1,w-wi] > B[i-1,w] 
    B[i,w] = vi + B[i-1,w- wi] 
      else 
    B[i,w] = B[i-1,w] 

else B[i,w] = B[i-1,w] // wi > w 

i = 2 
vi = 4 
wi = 3 
w = 5 
w-wi = 2 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 3 3 3 
2 0 0 3 4 4 7 
3 0 
4 0 



Knapsack 0-1 Example 
Items: 
1: (2,3) 
2: (3,4) 
3: (4,5) 
4: (5,6) 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 3 3 3 
2 0 0 3 4 4 7 
3 0 
4 0 

if  wi <= w   //item i can be in the solution 
      if vi + B[i-1,w-wi] > B[i-1,w] 
    B[i,w] = vi + B[i-1,w- wi] 
      else 
    B[i,w] = B[i-1,w] 

else B[i,w] = B[i-1,w] // wi > w 

i = 3 
vi = 5 
wi = 4 
w = 1..3 
w-wi = -3..-1 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 3 3 3 
2 0 0 3 4 4 7 
3 0 0 3 4 
4 0 



Knapsack 0-1 Example 
Items: 
1: (2,3) 
2: (3,4) 
3: (4,5) 
4: (5,6) 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 3 3 3 
2 0 0 3 4 4 7 
3 0 0 3 4 
4 0 

if  wi <= w   //item i can be in the solution 
      if vi + B[i-1,w-wi] > B[i-1,w] 
    B[i,w] = vi + B[i-1,w- wi] 
      else 
    B[i,w] = B[i-1,w] 

else B[i,w] = B[i-1,w] // wi > w 

i = 3 
vi = 5 
wi = 4 
w = 4 
w-wi = 0 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 3 3 3 
2 0 0 3 4 4 7 
3 0 0 3 4 5 
4 0 



Knapsack 0-1 Example 
Items: 
1: (2,3) 
2: (3,4) 
3: (4,5) 
4: (5,6) 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 3 3 3 
2 0 0 3 4 4 7 
3 0 0 3 4 5 
4 0 

if  wi <= w   //item i can be in the solution 
      if vi + B[i-1,w-wi] > B[i-1,w] 
    B[i,w] = vi + B[i-1,w- wi] 
      else 
    B[i,w] = B[i-1,w] 

else B[i,w] = B[i-1,w] // wi > w 

i = 3 
vi = 5 
wi = 4 
w = 5 
w-wi = 1 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 3 3 3 
2 0 0 3 4 4 7 
3 0 0 3 4 5 7 
4 0 



Knapsack 0-1 Example 
Items: 
1: (2,3) 
2: (3,4) 
3: (4,5) 
4: (5,6) 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 3 3 3 
2 0 0 3 4 4 7 
3 0 0 3 4 5 7 
4 0 

i = 4 
vi = 6 
wi = 5 
w = 1..4 
w-wi = -4..-1 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 3 3 3 
2 0 0 3 4 4 7 
3 0 0 3 4 5 7 
4 0 0 3 4 5 

if  wi <= w   //item i can be in the solution 
      if vi + B[i-1,w-wi] > B[i-1,w] 
    B[i,w] = vi + B[i-1,w- wi] 
      else 
    B[i,w] = B[i-1,w] 

else B[i,w] = B[i-1,w] // wi > w 



Knapsack 0-1 Example 
Items: 
1: (2,3) 
2: (3,4) 
3: (4,5) 
4: (5,6) 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 3 3 3 
2 0 0 3 4 4 7 
3 0 0 3 4 5 7 
4 0 0 3 4 5 

if  wi <= w   //item i can be in the solution 
      if vi + B[i-1,w-wi] > B[i-1,w] 
    B[i,w] = vi + B[i-1,w- wi] 
      else 
    B[i,w] = B[i-1,w] 

else B[i,w] = B[i-1,w] // wi > w 

i = 4 
vi = 6 
wi = 5 
w = 5 
w-wi = 0 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 3 3 3 
2 0 0 3 4 4 7 
3 0 0 3 4 5 7 
4 0 0 3 4 5 7 



Knapsack 0-1 Example 
Items: 
1: (2,3) 
2: (3,4) 
3: (4,5) 
4: (5,6) 

i / w 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 0 0 3 3 3 3 
2 0 0 3 4 4 7 
3 0 0 3 4 5 7 
4 0 0 3 4 5 7 

We’re DONE!!   
The max possible value that can be carried in this knapsack is $7 



Knapsack 0-1 Problem – Run 
Time for w = 0 to W 

 B[0,w] = 0 
 
for i = 1 to n 

 B[i,0] = 0 
 
for i = 1 to n 

 for w = 0 to W 
  < the rest of the code > 

 
What is the running time of this algorithm? 

  O(n*W) – of course, W can be mighty big 
  What is an analogy in world of sorting? 

 
Remember that the brute-force algorithm takes:  O(2n) 

O(W) 

O(W) 
Repeat n times 

O(n) 



Polynomial Transformations 

 Polynomial transformations are also 
known as Karp Reductions 

 When a reduction is a polynomial 
transformation, we subscript the 
symbol with a "p" as follows: 

   A ≤P B 



Polynomial Transformations 

 Following Garey and Johnson, we 
recognize three forms of polynomial 
transformations. 

  (a) restriction, 
  (b) local replacement, and 
  (c) component design. 



Polynomial Transformations 
 Restriction allows nothing much more 
complex than renaming the objects in IA so 
that they are, in a straightforward manner, 
objects in IB.  
  
 For example, objects in IA could be a 
collection of cities with distances between 
certain pairs of cities. In IB, these might 
correspond to vertices in a graph and 
weighted edges. 



Polynomial Transformations 
 The term 'restriction' alludes to the fact that a proof 
of correctness often is simply describing the subset 
of instances of problem B that are essentially 
identical (isomorphic) to the instances of problem A, 
that is, the instances of B are restricted to those that 
are instances of A. To apply restriction, the relevant 
instances in Problem B must be identifiable in 
polynomial time.  

 
 For example, if P ≠ NP and B is defined over the set 
of all graphs, we can not restrict to the instances 
that possess a Hamiltonian Circuit. 



Polynomial Transformations 
 Local Replacement is more complex because 
there is usually not an obvious map between 
instance IA and instance IB. But, by modifying 
objects or small groups of objects a 
transformation often results. Sometimes the 
alterations are such that some feature or 
property of problem A that is not a part of all 
instances of problem B can be enforced in 
problem B. As in (a), the instances of 
problem B are usually of the same type as of 
problem A.  



Polynomial Transformations 

 In a sense, Local Replacement might be 
viewed as a form of Restriction. In 
Local Replacement, we describe how to 
construct the instances of B that are 
isomorphic to the instances of A, and 
in Restriction we describe how to 
eliminate instances of B that are not 
isomorphic to instances of A. 



Polynomial Transformations 

 Component Design is when 
instances of problem B are 
essentially constructed "from 
scratch," and there may be little 
resemblance between instances of 
A and those of B. 3SAT to 
SubsetSum falls into this category.  



3SAT to Vertex Cover 
•  Vertex cover seeks a set of vertices that cover every edge in some graph 
•  Let I3-SAT be an arbitrary instance of 3-SAT. For integers n and m,  

U = {u1, u2, …, un} and Ci = {zi1, zi2, zi3} for 1 ≤ i ≤ m,  
where each zij is either a uk or uk' for some k. 

 
•  Construct an instance of VC as follows. 
•  For each i, 1 ≤ i ≤ n, construct two vertices, ui and ui' with an edge between 

them. 
•  For each clause Ci = {zi1, zi2, zi3}, 1 ≤ i ≤ m, construct three vertices zi1, zi2, and zi3 

and form a "triangle on them. Each zij is one of the Boolean variables uk or its 
complement uk'. Draw an edge between zij and the Boolean variable (whichever 
it is). Each zij has degree 3. Finally, set k = n+2m.  

•  Theorem. The given instance of 3-SAT is satisfiable if and only if the 
constructed instance of VC has a vertex cover with at most k vertices. 
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VERTEX COVERING (VC) 
DECISION PROBLEM IS NP-HARD 
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VC Variable Gadget 
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X ~X 



VC Clause Gadget 
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a ~c 

b 

a + b + ~c 



VC Gadgets Combined 
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K-COLOR (KC) DECISION 
PROBLEM IS NP-HARD 
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3C Super Gadget 
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T F 

B 



KC Super + Variables Gadget 

4/7/15 © UCF EECS 484 



KC Clause Gadget 
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KC Gadgets Combined 
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K = 3 



Register allocation 
•  Liveness: A variable is live if its current assignment may be used at 

some future point in a program’s flow 
•  Optimizers often try to keep live variables in registers 
•  If two variables are simultaneously live, they need to be kept in 

separate registers 
•  Consider the K-coloring problem (can the nodes of a graph be colored 

with at most K colors under the constraint that adjacent nodes must 
have different colors? 

•  Register Allocation reduces to K-coloring by mapping each variable to 
a node and inserting an edge between variables that are 
simultaneously live 

•  K-coloring reduces to Register Allocation by interpreting nodes as 
variables and edges as indicating concurrent liveness 

•  This is a simple because it’s an isomorphism 
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PROCESSOR SCHEDULING 
IS NP-HARD 
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Processor scheduling 
•  A Process Scheduling Problem can be described by  
–  m processors P1, P2, …, Pm, 
–  processor timing functions S1, S2, …, Sm, each describing how the 

corresponding processor responds to an execution profile, 
–  additional resources R1, R2, …, Rk, e.g., memory 
–  transmission cost matrix Cij (1 ≤ i , j ≤ m), based on proc. data sharing, 
–  tasks to be executed T1, T2, …, Tn, 
–  task execution profiles A1, A2, …, An, 
–  a partial order defined on the tasks such that Ti < Tj means that Ti must 

complete before Tj can start execution, 
–  communication matrix Dij (1 ≤ i , j ≤ n); Dij can be non-zero only if Ti < 

Tj, 
–  weights W1, W2, …, Wn -- cost of deferring execution of task. 
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Complexity overview 
•  The intent of a scheduling algorithm is to minimize the sum of 

the weighted completion times of all tasks, while obeying the 
constraints of the task system. Weights can be made large to 
impose deadlines. 

•  The general scheduling problem is quite complex, but even 
simpler instances, where the processors are uniform, there are 
no additional resources, there is no data transmission, the 
execution profile is just processor time and the weights are 
uniform, are very hard. 

•  In fact, if we just specify the time to complete each task and we 
have no partial ordering, then finding an optimal schedule on 
two processors is an NP-complete problem. It is essentially the 
subset-sum problem. I will discuss this a bit more at a later 
time. 
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2 Processor scheduling 
 The problem of optimally scheduling n tasks T1, T2, …, Tn onto 2 
processors with an empty partial order < is the same as that of 
dividing a set of positive whole numbers into two subsets, such that 
the numbers are as close to evenly divided.  So, for example, given the 
numbers 
 3, 2, 4, 1 
 we could try a “greedy” approach as follows: 
 put 3 in set 1 
 put 2 in set 2 
 put 4 in set 2 (total is now 6) 
 put 1 in set 1 (total is now 4)  
 This is not the best solution.  A better option is to put 3 and 2 in one 
set and 4 and 1 in the other.  Such a solution would have been attained 
if we did a greedy solution on a sorted version of the original 
numbers.  In general, however, sorting doesn’t work.  
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2 Processor nastiness 
 Try the unsorted list 
 7, 7, 6, 6, 5, 4, 4, 5, 4 
 Greedy (Always in one that is least used) 
 7, 6, 5, 5 = 23 
 7, 6, 4, 4, 4 = 25  
 Optimal 
 7, 6, 6, 5 = 24 
 7, 4, 4, 4, 5 = 24 
 Sort it 
 7, 7, 6, 6, 5, 5, 4, 4, 4  
 7, 6, 5, 4, 4 = 26 
 7, 6, 5, 4 = 22 

  Even worse than greedy unsorted  
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2 Processor with partial order 
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Anomalies everywhere 
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More anomalies 
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Heuristics 
While it is not known whether or not P = NP?, it 
is clear that we need to “solve” problems that 
are NP-complete since many practical 
scheduling and networking problems are in 
this class.  For this reason we often choose to 
find good “heuristics” which are fast and 
provide acceptable, though not perfect, 
answers.  The First Fit and Best Fit algorithms 
we previously discussed are examples of such 
acceptable, imperfect solutions. 
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Critical path or level strategy 
 A UET is a Unit Execution Tree.  Our Tree is funny.  It has a 
single leaf by standard graph definitions. 

1.  Assign L(T) = 1, for the leaf task T 
2.  Let labels 1, …, k-1 be assigned.  If T is a task with lowest 

numbered immediate successor then define L(T) = k (non-
deterministic) 
 This is an order n labeling algorithm that can easily be 
implemented using a breadth first search. 

Note: This can be used for a forest as well as a tree.  Just add a 
new leaf.  Connect all the old leafs to be immediate successors of 
the new one.  Use the above to get priorities, starting at 0, rather 
than 1.  Then delete the new node completely. 
Note: This whole thing can also be used for anti-trees.  Make a 
schedule, read it backwards.  You cannot just reverse priorities.  
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Level strategy and UET 
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Theorem:  Level Strategy is optimal for unit execution, m arbitrary, forest 
precedence  



Level – DAG with unit time  
1.  Assign L(T) = 1, for an arbitrary leaf task T 
2.  Let labels 1, …, k-1 be assigned.  For each task T such that 

 
{ L(T’) is defined for all T’ in Successor(T) } 
 
Let N(T) be decreasing sequence of set members in 
{S(T’) | T’ is in S(T)} 
 
Choose T* with least N(T*). 
Define L(T*) = K. 
 This is an order n2 labeling algorithm. Scheduling with it involves n union / 
find style operations.  Such operations have been shown to be 
implementable in nearly constant time using an “amortization” algorithm. 

 
Theorem: Level Strategy is optimal for unit execution, m=2, dag precedence.  
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Challenge Problem 
Consider the simple scheduling problem where we have a set of independent tasks 
running on a fixed number of processors, and we wish to minimize finishing time. 
How would a list (first fit, no preemption) strategy schedule tasks with the following IDs 
and execution times onto four processors?  Answer using Gantt chart. 
(T1,4) (T2,1) (T3,3) (T4,6) (T5,2) (T6,1) (T7,4) (T8,5) (T9,7) (T10,3) (T11,4) 
 
 

      
 Now show what would happen if the times were sorted non-decreasing. 

 
    
  
 Now show what would happen if the times were sorted non-increasing. 
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Additional Challenge 
Looking back at page 498, consider adding two additional tasks 
numbered 15 and 16 that are siblings of 13 and 14. These four 
tasks must be completed before 12 is started.  
a) Write the Gantt chart down that shows the new schedule 
associated with this enhanced tree 
b) Write down the Gantt chart that is associated with the 
corresponding anti-tree, in which all arc are turned in the opposite 
direction. Use the technique of reversing the schedule from (a) 
c) Write down the Gantt chart associated with the anti-tree of b), 
where we now use the priorities obtained by treating lower 
numbered tasks as higher priority ones 
d) Comment on the results seen in (2) versus (3), providing insight 
as to why they are different and why one is better than the other. 
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HAMILTONIAN CIRCUIT (HC) 
DECISION PROBLEM IS NP-HARD 
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HC Variable Gadget 
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HC Gadgets Combined 
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Hamiltonian Path 

•  Note we can split an arbitrary node, v, into 
two (v’,v’’ – one, v’, has in-edges of v, 
other, v’’, has out-edges. Path (not cycle) 
must start at v’’ and end at v’ and goal is 
still K. 
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Travelling Salesman 

•  Start with HC = (V,E), K=|V| 
•  Set edges from HC instance to 1 
•  Add edges between pairs that lack such 

edges and make those weights 2 (often 
people make these K+1); this means that 
the reverse of unidirectional links also get 
weight 2 

•  Goal weight is K for cycle 
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Integer Linear Programming 
•  Show for 0-1 integer linear programming by constraining 

solution space. Start with an instance of SAT (or 3SAT), 
assuming variables v1,…, vn and clauses c1,…, cm 

•  For each variable vi, have constraint that 0 ≤ vi ≤ 1 
•  For each clause we provide a constraint that it must be 

satisfied (evaluate to at least 1). For example, if clause cj 
is v2 ∨ ~v3 ∨ v5 ∨ v6 then add the constraint  
v2 + (1-v3) + v5 + v6 ≥ 1 

•  A solution to this set of integer linear constraints implies 
a solution to the instance of SAT and vice versa 

•  Can also start with SubsetSum – think about it. 
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Tiling 

Undecidable and NP-Complete 
Variants 



Basic Idea of Tiling 
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A single tile has colors on all four sides. 
Tiles are often called dominoes as  
assembling them follows the rules of 
placing dominoes. That is, the color  
(or number) of a side must match that 
of its adjacent tile, e.g., tile, t2, to right  
of a tile, t1, must have same color on 
Its left as is on the right side of t1. 
This constraint applies to top and as  
well as sides. Boundary tiles do not 
have constraints on their sides that touch 
the boundaries. 



Instance of Tiling Problem 
•  A finite set of tile types (a type is determined by 

the colors of its edges) 
•  Some 2d area (finite or infinite) on which the tiles 

are to be laid out 
•  A optional starting set of tiles in fixed positions 
•  The goal of tiling the plane following the 

adjacency constraints and whatever constraints 
are indicated by the starting configuration. 
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A Valid 3 by 3 Tiling of Tile 
Types from Previous Slide 
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Some Variations 
•  Infinite 2d plane (impossible in general) 

–  Our two tile types can easily tile the 2d plane 

•  Finite 2d plane (hard in general) 
–  Our two tile types can easily tile any finite 2d plane 
–  This is called the Bounded Tiling Problem. 

•  One dimensional space (hmm?) 
•  Infinite 3d space (really impossible in general) 
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Tiling the Plane 
•  We will start with a Post Machine, M = (Q, Σ, δ, q0), with tape 

alphabet Σ = {B,1} where B is blank and δ maps pairs from Q×Σ to 
Q×(Σ ∪ {R,L}). M starts in state q0 
–  (Turing Machine with each action being L, R or Print) 

•  We will consider the case of M starting with a blank tape 
•  We will constrain our machine to never go to the left of its starting 

position (semi unbounded tape) 
•  We will mimic the computation steps of M 
•  Termination occurs if in state q reading b and δ(q,b) is not defined 
•  We will use the fact that halting when starting at the left end of a 

semi unbounded tape in its initial state with a blank tape is 
undecidable 
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The Tiling Decision Problem 

•  Given a finite set of tile types and a 
starting tile in lower left corner of 2d plane, 
can we tile all places in the plane 

•  A place is defined by its coordinates (x,y), 
x≥0, y≥0 

•  The fixed starting tile is at (0,0) 
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Colors 

•  Given M, define our tile colors as  
•  {X, Y, *, B, 1, YB, Y1} ∪ Q×{B,1} ∪ 

Q×{YB,Y1} ∪ Q×{R,L} 
•  Simplest tile (represents Blank on X axis) 
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B 
B B 

X 



Tiles for Copying Tape Cell 
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B 
* * 

B 

YB 
* Y 

YB 

Copy cells not on 
left boundary and  
not scanned 

1 
* * 

1 

Y1 
* Y 

Y1 

Copy cells on 
left boundary 
but not scanned 



Right Move δ(q,a) = (p,R)  
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Ya 
p,R Y 

q,Ya 

a 
p,R * 

q,a 
p,b 

* p,R 
b 

where b∈Σ 



Left Move δ(q,a) = (p,L)  
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p,Yb 
p,L Y 

Yb 

p,b 
p,L * 

b 
a 

* p,L 
q,a 

where b∈Σ 



Print δ(q,a) = (p,c)  
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p,Yc 
* Y 

Yc 

p,c 
* * 

q,a 



Corner Tile and Bottom Row 
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q0,YB 
B Y 

X 

Zero-ed Row is forced to be 

q0,YB 
B Y 

X 

B 
B B 

X 

B 
B B 

X ………... 



First Action Print 
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p,Ya 
* Y 

q0,YB 

As we cannot move left of leftmost character first action is 
either right or print. Assume for now that δ(q0,B) = (p,a) 

q0,YB 
B Y 

X 

B 
B B 

X 

B 
B B 

X ………... 

B 
* * 

B 

B 
* * 

B ………... 



First Action Right Move 
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YB 
p,R Y 

q0,YB 

As we cannot move left of leftmost character first action is 
either right or print. Assume for now that δ(q0,B) = (p,R) 

q0,YB 
B Y 

X 

B 
B B 

X 

B 
B B 

X ………... 

p,B 
* p,R 

B 

B 
* * 

B ………... 



The Rest of the Story Part 1 

•  Inductively we can show that, if the i-th 
row represents an infinite transcription of 
the Turing configuration after step i then 
the (i+1)-st represents such a transcription 
after step i+1. Since we have shown the 
base case, we have a successful 
simulation. 
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The Rest of the Story Part 2 

•  Consider the case where M eventually 
halts when started on a blank tape in state 
q0. In this case we will reach a point where 
no actions fill the slots above the one 
representing the current state. That means 
that we cannot tile the plane. 

•  If M never halts, then we can tile the plane 
(in the limit). 
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The Rest of the Story Part 3 

•  The consequences of Parts 1 and 2 are 
that Tiling the plane is as hard as the 
complement of the Halting problem which 
is co-RE Complete. 

•  This is not surprising as this provblem 
involve a universal quantification over all 
coordinates (x,y) in the plane. 
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Constraints on M 
•  The starting blank tape is not a real constraint as we can create M 

so its first actions are to right arguments on its tape. 
•  The semi unbounded tape is not new. If you look back at Standard 

Turing Computing (STC), we assumed there that we never moved 
left of the blank preceding our first argument. 

•  If you prefer to consider all computation based on the STC model 
then we add to M the simple prologue 
(R1)x1R(R1)x2R…(R1)xkR so the actual computation starts with a 
vector of x1 … xk on the tape and with the scanned square to the 
blank to right of this vector. The rest of the tape is blank. 

•  Think about how, in the preceding pages, you could actually start 
the tiling in this configuration. 
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Bounded Tiling Problem #1 
•  Consider a slight change to our machine M. First, it is 

non-deterministic, so our transition function maps to sets. 
•  Second, we add two auxiliary states  

{qa, qr}, where qa is our only accept state and qr is our 
only reject state. 

•  We make it so the reject state has no successor states, 
but the accept state always transitions back to itself 
rewriting the scanned square unchanged. 

•  We also assume our machine accepts or rejects in at 
most nk steps, where n is the length of its starting input 
which is written immediately to the right of the initial 
scanned square. 
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Bounded Tiling Problem #2 
•  We limit our rows and column to be of size  

nk+1. We change our initial condition of the tape 
to start with the input to M. Thus, it looks like 

•  Note that there are nk – n of these blank representations 
at the end. But we really only need the first. 
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q0,YB 
B Y 

X 

x0 
B B 

X 

B 
B B 

X … 

xn 
B B 

X … 



Bounded Tiling Problem #3 
•  The finitely bounded Tiling Problem we just described mimics the 

operation of any given polynomially-bound non-deterministic Turing 
machine.  

•  This machine can tile the finite plane of size  
(nk+1) * (nk+1) just in case the initial string is accepted in nk or fewer 
steps on some path.  

•  If the string is not accepted then we will hit a reject state on all paths 
and never complete tiling. 

•  This shows that the bounded tiling problem is NP-Hard 
•  Is it in NP? Yes. How? Well, we can be shown a tiling (posed 

solution takes space polynomial in n) and check it for completeness 
and consistency (this takes linear time in terms of proposed 
solution). Thus, we can verify the solution in time polynomial in n. 
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A Final Comment on Tiling 
•  If you look back at the unbounded version, you can see 

that we could have simulated a non-deterministic Turing 
machine there, but it would have had the problem that 
the plane would be tiled if any of the non-deterministic 
choices diverged and that is not what we desired. 

•  However, we need to use a non-deterministic machine 
for the finite case as we made this so it tiled iff some 
path led to acceptance. If all lead to rejection, we get 
stalled out on all paths as the reject state can go 
nowhere. 
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Comments on Variations 
•  One dimensional space (think about it) 

•  Infinite 3d space (really impossible in general) 
–  This become a for all, there exists problem 
–  In fact, one can mimic acceptance on all inputs here, 

meaning M is an algorithm iff we can tile the 3d space 
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PCP Revisited 

Bounded Post Correspondence 



Bounded Variation 
•  Limit correspondence to a length that is 

polynomial in n, where n is length of initial input 
string. 

•  Outline of proof we can get for almost free 
–  Convert halting problem for a Non-deterministic Turing machine 

to word problem for a Semi-Thue System – See pages 242-244. 
•  Note: we originally did for deterministic machine but the construction works 

for non-determinism and maps nicely to Semi-Thue which are non-
deterministic by definition. 

–  Recast as an instance of PCP 
–  Limit the length of word to (n+2)k, where original TM accepts or 

rejects in nk steps. 
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Another Approach  
•  There is a tighter bound on Bounded PCP. 

•  Given sequences (x1, x2, …, xn) and (y1, y2, …, yn), 
and a positive integer K≤n, is there a solution to this 
instance involving indices i1, …,ik, k≤K (not necessary 
distinct), of integers between 1 and n, such that the 
corresponding x and y strings are identical. 

•  Follows from Constable, Hunt and Sahni (1974). “On the 
Computational Complexity of Program Scheme 
Equivalence,” Siam Journal of Computing 9(2), 396-416. 
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Co-NP 

Fourth Significant Class of 
Problems 



Co–NP 
 For any decision problem A in NP, there is a ‘complement’ 
problem Co–A defined on the same instances as A, but with a 
question whose answer is the negation of the answer in A. That 
is, an instance is a "yes" instance for A if and only if it is a "no" 
instance in Co–A.  

 Notice that the complement of a complement problem is the 
original problem. 



Co–NP 
 Co–NP is the set of all decision problems whose complements 
are members of NP. 

 For example: consider Graph Color  
GC 

 Given: A graph G and an integer k. 
 Question: Can G be properly colored with k colors? 



Co–NP 
The complement problem of GC 
 
 Co–GC 
  Given: A graph G and an integer k. 
  Question: Do all proper colorings of G  

      require more than k colors? 



Co–NP 
 Notice that Co–GC is a problem that does not 
appear to be in the set NP. That is, we know of no 
way to check in polynomial time the answer to a 
"Yes" instance of Co–GC. 

 
 What is the "answer" to  a Yes instance that can be 
verified in polynomial time? 



Co–NP 
 Not all problems in NP behave this way. For example, if X is a 
problem in class P, then both "yes" and "no" instances can be 
solved in polynomial time.  
  

    That is, both "yes" and "no" instances can be verified in 
polynomial time and hence, X and Co–X are both in NP, in fact, 
both are in P.  
  This implies P = Co–P and, further, 

    P = Co–P ⊆ NP ∩ Co–NP. 



Co–NP 
 This gives rise to a second fundamental question:  

   NP = Co–NP? 

 If P = NP, then NP = Co–NP.  
  This is not "if and only if."  

 
 It is possible that NP = Co–NP and, yet, P ≠ NP. 



Co–NP 
 If  A ≤P B and both are in NP, then the same polynomial 
transformation will reduce Co-A to Co–B. That is,  
Co–A ≤P Co–B. Therefore, Co–SAT is 'complete' in  
Co–NP.  
  
 In fact, corresponding to NP–Complete is the complement 
set Co–NP–Complete, the set of hardest problems in  
Co–NP.  



Turing Reductions 
 Now, return to Turing Reductions. 

 
 Recall that Turing reductions include 
polynomial transformations as a special 
case. So, we should expect they will be more 
powerful. 



Turing Reductions 
 (1)  Problems A and B can, but need not, be 
       decision problems.  
    
 (2) No restriction placed upon the number  
       of instances of B that are constructed. 
    
 (3) Nor, how the result, AnswerA, is computed. 
 
In effect, we use an Oracle for B. 



Turing Reductions 

 Technically, Turing Reductions include 
Polynomial Transformations, but it is useful 
to distinguish them. 

    Polynomial transformations are often the 
easiest to apply. 



NP–Hard 

  
Fifth Significant Class of Problems 



NP–Hard 
 To date, we have concerned ourselves with 
decision problems. We are now in a position to 
include additional problems. In particular, 
optimization problems.  

 
   We require one additional tool – the second type of 

transformation discussed above – Turing 
reductions. 



NP–Hard 
Definition: Problem B is NP–Hard if there is a 
polynomial time Turing reduction A ≤PT  B for some 
problem A in NP–Complete. 
This implies NP–Hard problems are at least as hard 
as NP–Complete problems. Therefore, they can  not 
be solved in polynomial time unless P = NP (and 
maybe not then).  
This use of an oracle, allows us to reduce co-NP-
Complete problems to NP-Complete ones and vice 
versa. 



QSAT 
•  QSAT is the problem to determine if an 

arbitrary fully quantified Boolean expression 
is true. Note: SAT only uses existential. 

•  QSAT is NP-Hard, but may not be in NP. 
•  QSAT can be solved in polynomial space 

(PSPACE). 



NP–Hard 
Polynomial transformations are Turing reductions. 

  
Thus, NP–Complete is a subset of NP–Hard.  
Co–NP–Complete also is a subset of NP–Hard.  
NP–Hard contains many other interesting problems. 



NP–Equivalent 
Problem B in NP–Hard is NP–Equivalent when B reduces to any 
problem X in NP, That is, B ≤PT  X. 
 
Since B is in NP–Hard, we already know there is a problem A in 
NP–Complete that reduces to B. That is, A ≤PT  B.  
 
Since X is in NP, X ≤PT  A. Therefore, X ≤PT  A ≤PT  B ≤PT X. 

  
Thus, X, A, and B are all polynomially equivalent, and we can say 
 
Theorem. Problems in NP–Equivalent are polynomial if and only if 
P = NP. 
 
 
 



NP–Equivalent 
Problem X need not be, but often is, NP–
Complete.  

In fact, X can be any problem in NP or Co–NP. 
 
More to the point, an NP-equivalent problem 
does not even need to be a decision problem – 
it can be an optimization problem or some 
other problem seeking a numerical rather than 
binary (yes/no answer). 



NP-Hard 
•  NP-Hard has two competing definitions 
•  Some think of NP-Hard as involving many-one 

reductions and thus being decision problems 
•  Others think of NP-Hard as involving Turing 

reductions and thus being functional problems 
•  We will choose the latter which includes the former. 

Note, there is no conflict with NP-Complete since an 
NP-Complete problem is in NP and is therefore a 
decision problem 
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Complexity beyond NP 
•  PSPACE is set pf problems solvable in polynomial space with 

unlimited time 
•  EXPTIME is the set of problems solvable in 2p(n) where is p is some 

polynomial. 
•  NEXPTIME is the set of problems solvable in 2p(n) on a non-

deterministic TM. 
•  EXPSPACE is set of problems solvable in 2p(n) space and unlimited 

time 
•  P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE ⊆  

2-EXPTIME ⊆ 3-EXPTIME ⊆ … ⊆ ELEMENTARY ⊆ PR ⊆ R 
•  P ≠ EXPTIME  
•  NP ≠ NEXPTIME 
•  PSPACE ≠ EXPSPACE  
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Alternating TM (ATM) 
•  ATM adds to NDTM notation the notion where, 

for each state q, q has one of the following 
properties: (accept, reject, ∨, ∧) 
–  ∨ means mean accept the string if any final state 

reached after q is accepting 
–  ∧ means mean accept the string if all final states 

reached after q are accepting 
•  AP = PSPACE where is AP is class of problems 

solvable in polynomial time on an ATM  
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QSAT, Petri Net, Presburger 
•  QSAT is solvable by an alternating TM in 

polynomial time and polynomial space 
•  QSAT is PSPACE-Complete 
•  Petri net reachability is EXPSPACE-hard and 

requires 2-EXPTIME 
•  Presburger arithmetic is at least in 2-EXPTIME, 

at most in  3-EXPTIME, and can be solved by an 
ATM with n alternating quantifiers in doubly 
exponential time 

4/7/15 © UCF EECS 556 



FP and FNP 

•  FP is functional equivalent to P 
R(x,y) in FP if can provide value y for 
input x via a deterministic polynomial 
time algorithm 

•  FNP is functional equivalent to NP; 
R(x,y) in FNP if can verify any pair (x,y) 
via a deterministic polynomial time 
algorithm 
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TFNP 
•  TFNP is the subset of FNP where a solution 

always exists, i.e., there is a y for each x 
such that R(x,y). 
– Task of a TFNP algorithm is to find a y, 

given x, such that R(x,y) 
– Unlike FNP, the search for a y is always 

successful 
•  FNP properly contains TFNP contains FP (we 

don't know if proper) 
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Prime Factoring 

•  Prime factoring is defined as, given n 
and k, does n have a prime factor <k? 

•  Factoring is in NP and co-NP 
•  Given candidate factor can check its 

primality in poly time and then see if it 
divides n 

•  Given candidate set of factors can check 
their primalities, and see if product equals 
n; if so, and no candidate < k, then answer 
is no 
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Prime Factoring and TFNP 
•  Prime Factoring as a functional problem is in 

TFNP, but is it in FP? 
•  If TFNP in FP then TFNP = FP since FP 

contained in TFNP 
•  If that is so, then carrying out Prime 

Factoring is in FP and its decision problem is 
in P 
–  If this is so, we must fear for encryption, most of 

which depends on difficulty of finding factors of a 
large number 
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More TFNP 
•  There is no known recursive enumeration of 

TFNP but there is of FNP 
– This is similar to total versus partially 

recursive functions (analogies are 
everywhere) 

•  It appears that TFNP does not have any 
complete problems!!! 
– But there are subclasses of TFNP that do 

have complete problems!! 
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Another Possible Analogy 

•  Is P = (NP intersect Co-NP)?  
•  Recall that REC = (RE intersect co-RE) 
•  The analogous result may not hold here 
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Turing vs m-1 Reductions 

•  In effect, our normal polynomial 
reduction (≤p) is a many-one 
polynomial time reduction as it just 
asks and then accepts its oracle’s 
answer 

•  In contrast, NP-Easy and NP-Equivalent 
employ a Turing machine polynomial 
time reduction (≤pt) that uses rather 
than mimics answers from its oracle 
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NP-Easy and Equivalent 
•  NP-Easy -- these are problems that are 

polynomial when using an NP oracle (≤pt) 
•  NP-Equivalent is the class of NP-Easy and 

NP-Hard problems (assuming Turing rather 
than many-one reductions) 
–  In essence this is functional equivalent of 

NP-Complete but also of Co-NP-Complete 
since can negate answers 
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More Examples of NP 
Complete Problems 



TipOver 
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Rules of Game 
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Numbers are height of crate stack; 
If could get 4 high out of way we can attain goal 



Problematic OR Gadget 
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Can go out where did not enter 



Directional gadget 
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Single stack is two high;  
tipped over stack is one high, two long;  
red square is location of person travelling the towers 



One directional Or gadget 
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AND Gadget 
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How AND Works 



Variable Select Gadget 
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Tip A left to set x true; right to set x false 
Can build bridge to go back but never to change choice 



((x∨~x∨y)∧(~y∨z∨w)∧~w) 
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x ~x 

∨ 

∨ 

∨ ∨ 

y z w ~y ~z ~w 

Bridges back 
for true paths 

∧ ∧ 



Win Strategy is NP-Complete 
•  TipOver win strategy is NP-Complete 
•  Minesweeper consistency is NP-Complete 
•  Phutball single move win is NP-Complete 

– Do not know complexity of winning 
strategy 

•  Checkers is really interesting 
– Single move to King is in P 
– Winning strategy is PSpace-Complete   
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Finding Triangle Strips 

Adapted from presentation by  
Ajit Hakke Patil 

Spring 2010 



Graphics Subsystem 
•  The graphics subsystem (GS) receives 

graphics commands from the application 
running on CPU over a bus, builds the image 
specified by the commands, and outputs the 
resulting image to display hardware 

•  Graphics Libraries: 
– OpenGL, DirectX. 



Surface Visualization 

•  As Triangle Mesh 
•  Generated by triangulating the 

geometry  



Triangle List vs Triangle Strip 

 
•  Triangle List: Arbitrary ordering of triangles. 
•  Triangle Strip: A triangle strip is a sequential ordering of 

triangles. i.e consecutive triangles share an edge 
•  In case of triangle lists we draw each triangle separately. 
•  So for drawing N triangles you need to call/send 3N vertex 

drawing commands/data. 
•  However, using a Triangle Strip reduces this requirement from 

3N to N + 2, provided a single strip is sufficient. 



Triangle List vs Triangle Strip 
•  four separate triangles: 

ABC, CBD, CDE, and 
EDF  

•  But if we know that it is a 
triangle strip or if we 
rearrange the triangles 
such that it becomes a 
triangle strip, then we can 
store it as a sequence of 
vertices ABCDEF  

•  This sequence would be 
decoded as a set of 
triangles ABC, BCD, CDE 
and DEF  

•  Storage requirement:  
–  3N => N + 2 



Tri-strips example 

•  Single tri-strip that describes triangles is: 
1,2,3,4,1,5,6,7,8,9,6,10,1,2 
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K-Stripability 

•  Given some positive integer k (less than 
the number of triangles). 

•  Can we create k tri-strips for some given 
triangulation – no repeated triangles. 
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Triangle List vs Triangle Strip 

// Draw Triangle Strip 
glBegin(GL_TRIANGLE_STRIP);  
 For each Vertex 
{ 
    glVertex3f(x,y,z); //vertex 
} 
glEnd();  

// Draw Triangle List 
glBegin(GL_TRIANGLES); 
For each Triangle 
{ 
      glVertex3f(x1,y1,z1);// vertex 1 

glVertex3f(x2,y2,z2);// vertex 2  
 glVertex3f(x3,y3,z3);// vertex 3 

} 
glEnd(); 



Problem Definition 
•  Given a triangulation T = {t1, t2, t3 ,.. tn}. Find the triangle strip 

(sequential ordering) for it? 
•  Converting this to a decision problem. 
•  Formal Definition: 
•  Given a triangulation T = {t1, t2, t3 ,.. tN}. Does there exists a 

triangle strip? 

 



NP Proof 

•  Provided a witness of a ‘Yes’ instance of the problem. we can 
verify it in polynomial time by checking if the sequential triangles 
are connected. 

•  Cost of checking if the consecutive triangles are connected 
–  For i to N -1  

•  Check of ith and i+1th triangle are adjacent (have a 
common edge) 

•  Three edge comparisions or six vertex comparisions 
–  ~ 6N 

•  Hence it is in NP. 



Dual Graph 
•  The dual graph of a 

triangulation is obtained by 
defining a vertex for each 
triangle and drawing an edge 
between two vertices if their 
corresponding triangles 
share an edge 

•  This gives the triangulations 
edge-adjacency  in terms of 
a graph 

•  Cost of building a Dual 
Graph 

–  O(N2) 

•  e.g G’ is a dual graph of G. 



NP-Completeness 
•  To prove it’s NP-Complete we reduce a known NP-Complete 

problem to this one;  the Hamiltonian Path Problem. 
•  Hamiltonian Path Problem: 

–  Given: A Graph G = (V, E). Does G contains a path that 
visits every vertex exactly once? 

 

  



NP-Completeness proof by 
restriction 

•  Accept an Instance of Hamiltonian Path, G = (V, E), we restrict 
this graph to have max. degree = 3.The problem is still NP-
Complete. 

•  Construct an Instance of HasTriangleStrip 
–  G’ = G 

•  V’ = V 
•  E’ = E 

–  Let this be the dual graph G’ = (V’, E’) of the triangulation T = 
{t1, t2, t3 ,.. tN}. 

•  V’ ~ Vertex vi represents triangle ti, i = 1 to N 
•  E’ ~ An edge represents that two triangles are edge-

adjacent  (share an edge) 
•  Return HasTriangleStrip(T) 



NP-Completeness 
•  G will have a Hamiltonian 

Path iff G’ has one (they are 
the same). 

•  G’ has a Hamiltonian Path 
iff T has a triangle strip of 
length N – 1. 

•  T will have a triangle strip of 
length N – 1 iff G (G’) has a 
Hamiltonian Path. 

•  ‘Yes’ instance maps to ‘Yes’ 
instance. ‘No’ maps to ‘No.’ 



HP <P HasTriangleStrip 
•  The ‘Yes/No’ instance maps to ‘Yes/No’ instance respectively 

and the transformation runs in polynomial time. 
•  Polynomial Transformation 
•  Hence finding Triangle Strip in a given triangulation is a NP-

Complete Problem 
 
 



Undecidability of Finite 
Convergence for Operators on 

Formal Languages 
Relation to Real-Time  

(Constant Time) Execution 
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Simple Operators 

•  Concatenation 
– A • B = { xy | x ∈ A & y ∈ B } 

•  Insertion 
– A w B = { xyz |  y ∈ A, xz ∈ B, x, y, z ∈ Σ*} 
– Clearly, since x can be λ, A • B ⊆ A w B 
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K-insertion  

•  A w [ k ] B = { x1y1x2y2 … xkykxk+1 |   
    y1y2 … yk ∈ A,  
    x1x2 … xkxk+1 ∈ B,  
    xi, yj ∈ Σ*} 

•  Clearly, A • B ⊆ A w [ k ] B , for all k>0 
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Iterated Insertion 

•  A (1) w[ n ]  B = A w[ n ]  B 

•  A (k+1) w[ n ] B = A w[ n ]  (A (k) w[ n ] B) 
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Shuffle 
•  Shuffle (product and bounded product) 

–  A ¯ B = ∪ j ≥ 1 A w[ j ] B  
–  A ¯[ k ] B = ∪ 1≤j≤k  A w[ j ] B = A w[ k ] B  

•  One is tempted to define shuffle product as  
A ¯ B = A w[ k ] B where  

 k = µ y [ A w[ j ] B = A w[ j+1] B ] 
but such a k may not exist – in fact, we will show 
the undecidability of determining whether or not 
k exists 
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More Shuffles 

•  Iterated shuffle 
– A ¯0 B = A 
– A ¯k +1 B = (A ¯[ k ] B) ¯ B  

•  Shuffle closure 
– A ¯* B = ∪ k ≥ 0 (A ¯[ k ] B) 
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Crossover 

•  Unconstrained crossover is defined by  
A ⊗u B = { wz, yx | wx∈A and yz∈B} 

•  Constrained crossover is defined by 
 A ⊗c B = { wz, yx | wx∈A and yz∈B,  

   |w| = |y|, |x| = |z| } 
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Who Cares? 
•  People with no real life (me?) 
•  Insertion and a related deletion operation are 

used in biomolecular computing and 
dynamical systems 

•  Shuffle is used in analyzing concurrency as 
the arbitrary interleaving of parallel events 

•  Crossover is used in genetic algorithms 
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Some Known Results 

•  Regular languages, A and B 
– A • B is regular 
– A w [ k ] B is regular, for all k>0 
– A ¯ B is regular 
– A ¯* B is not necessarily regular  

•  Deciding whether or not A ¯* B is regular is an 
open problem 
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More Known Stuff 
•  CFLs, A and B 

–  A • B is a CFL 
–  A w B is a CFL 
–  A w [ k ] B is not necessarily a CFL, for k>1 

•  Consider A=anbn; B = cmdm and k=2 
•  Trick is to consider (A w [ 2 ] B) ∩ a*c*b*d* 

–  A ¯ B is not necessarily a CFL 
–  A ¯* B is not necessarily a CFL  

•  Deciding whether or not A ¯* B is a CFL is an open problem 
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Immediate Convergence 

•  L = L2 ? 

•  L = L wL ?  
•  L = L ¯ L ?  
•  L = L ¯* L ? 
•  L = L ⊗c L ? 
•  L = L ⊗u L ? 
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Finite Convergence 
•  ∃k>0 Lk = Lk+1  
•  ∃k≥0 L (k) w L = L (k+1) w L  
•  ∃k≥0 L w[ k ] L = L w[ k+1 ] L 
•  ∃k≥0 L ¯k  L = L ¯k +1 L 
•  ∃k≥0 L (k) ⊗c L = L (k+1) ⊗c L  
•  ∃k≥0 L (k) ⊗u L = L (k+1) ⊗u L  

•  ∃k≥0 A (k) w B = A (k+1) w B 
•  ∃k≥0 A w[ k ] B = A w[ k+1 ] B  
•  ∃k≥0 A ¯k  B = A ¯k +1 B 
•  ∃k≥0 A (k) ⊗c B = A (k+1) ⊗c B  
•  ∃k≥0 A (k) ⊗u B = A (k+1) ⊗u L  
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Finite Power of CFG 
•  Let G be a context free grammar. 
•  Consider L(G)n 

•  Question1: Is L(G) = L(G)2? 
•  Question2: Is L(G)n = L(G)n+1, for some finite 

n>0? 
•  These questions are both undecidable. 
•  Think about why question1 is as hard as 

whether or not L(G) is Σ*.  
•  Question2 requires much more thought. 

4/7/15 © UCF EECS 



603 

1981 Results 
•  Theorem 1: 

The problem to determine if L = Σ* is Turing 
reducible to the problem to decide if  
L • L ⊆ L, so long as L is selected from a class 
of languages C over the alphabet Σ for which we 
can decide if Σ ∪ {λ} ⊆ L.  

•  Corollary 1:  
The problem “is L • L = L, for L context free or 
context sensitive?” is undecidable  
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Proof #1 
•  Question: Does L • L get us anything new? 

–  i.e., Is L • L = L? 
•  Membership in a CSL is decidable. 
•  Claim is that L = Σ* iff   

(1) Σ ∪ {λ} ⊆ L ; and 
(2) L • L = L  

•  Clearly, if L = Σ* then (1) and (2) trivially hold. 
•  Conversely, we have Σ* ⊆ L*= ∪ n≥0 Ln ⊆ L 

–  first inclusion follows from (1); second from (2)   
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Subsuming • 

•  Let ⊕ be any operation that subsumes 
concatenation, that is A • B ⊆ A ⊕ B.  

•  Simple insertion is such an operation, 
since A • B ⊆ A w B.  

•  Unconstrained crossover also subsumes 
•,  
A ⊗c B = { wz, yx | wx∈A and yz∈B} 
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L = L ⊕ L ? 

•  Theorem 2:  
The problem to determine if L = Σ* is 
Turing reducible to the problem to decide if 
L ⊕ L ⊆ L, so long as  
L • L ⊆ L ⊕ L and L is selected from a 
class of languages C over Σ for which we 
can decide if  
Σ ∪ {λ} ⊆ L.  
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Proof #2 
•  Question: Does L ⊕ L get us anything new? 

–  i.e., Is L ⊕ L = L? 
•  Membership in a CSL is decidable. 
•  Claim is that L = Σ* iff   

(1) Σ ∪ {λ} ⊆ L ; and 
(2) L ⊕ L = L  

•  Clearly, if L = Σ* then (1) and (2) trivially hold. 
•  Conversely, we have Σ* ⊆ L*= ∪ n≥0 Ln ⊆ L 

–  first inclusion follows from (1); second from (1), (2) 
and the fact that L • L ⊆ L ⊕ L  
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