
COT 6410 Spring 2015 Midterm#1 Name:     KEY   

12 1. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, 
(NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by 
showing some minimal quantification of some known recursive predicate.  

a.) { f |  f is a Fibonacci function, i.e. f(0)=f(1)=1 and f(x+2)=f(x)+f(x+1) }  NRNC   

Justification: ∀x∃t [STP(f,0,t) && VALUE(f,0,t)=1 && STP(f,1,t) && VALUE(f,1,t)=1  
&& STP(f,x,t) && STP(f,x+1,t) && STP(f,x+2,t) 
&& (VALUE(f,x+2,t) = VALUE(f,x+1,t) + VALUE(f,x,t))]    

b.) { f | if f(x) converges, it does so in more than (2x) units of time }   coRE   

Justification: ∀x ~ STP(f,x,2x)         

  

 
c.) { <f,x> | if f(x) converges, it does so in more than (2x) units of time }  REC   

 Justification: ~ STP(f,x,2x) 
 

 
d.) { f  | f(x) = f(x+1) for at least one value of x }       RE   

 Justification: ∃<x,t> [STP(f,x,t) && STP(f,x+1,t) && (VALUE(f,x,t) = VALUE(f,x+1,t))] 
         

 
 
2 2. Looking back at Question 1, which of these are candidates for using Rice’s Theorem to show their 

unsolvability? Check all for which Rice Theorem might apply. 
 
   a)  √  b)   c)   d)  √   
 
 
6 3. Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC) 

recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through d) by 
listing all possible categories. No justification is required. 

a.) D = C −  A (set difference)  REC, RE, NR      
 

b.) A ⊆  D  (set containment)  REC, RE, NR      
 

c.) D = A ×  B (cross product)    RE, REC (only when A = ∅)    

 

d.) D = A −  B (set difference)  REC, NR       
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 4. Define NON_TRIVIAL_RANGE = ( f | |range(f)| > 1 }.  

2 a.) Show some minimal quantification of some known recursive predicate that provides an upper bound 
for the complexity of this set. (Hint: Look at c.) and d.) to get a clue as to what this must be.) 

∃<x,y,t> [STP(f,x,t) && STP(f,y,t) && (VALUE(f,x,t) ≠  VALUE(f,y,t))] 
5 b.) Use Rice’s Theorem to prove that NON_TRIVIAL_RANGE is undecidable. 

First show NON_TRIVIAL_RANGE is non-trivial: 

I(x) = x ∈   NON_TRIVIAL_RANGE      C0(x) = 0 ∉  NON_TRIVIAL_RANGE 
and thus, the set and its complement are non-empty as required. 

Let f, g be two arbitrary indices (functions) such that range (ϕ f ) = range (ϕg). 

f ∈   NON_TRIVIAL_RANGE  iff  | range (ϕ f )| > 1  Definition of NON_TRIVIAL_RANGE   

    iff | range (ϕg )| > 1 range (ϕ f ) = range (ϕg) 

iff g ∈   NON_TRIVIAL_RANGE     Definition of NON_TRIVIAL_RANGE   

This weak form of Rice’s Theorem shows NON_TRIVIAL_RANGE to be undecidable. 

4 c.) Show that K0 ≤m NON_TRIVIAL_RANGE, where K0 = { <x,y> | ϕx(y)↓  }. 
Let <x,y> be an arbitrary pair of natural numbers.  
Define fx,y(z) = ϕx (y) - ϕx (y) + z 

<x,y> ∈  K0  implies ∀z fx,y(z) = z implies fx,y ∈   NON_TRIVIAL_RANGE  

<x,y> ∉  K0  implies  ∀z fx,y(z)↑   implies fx,y ∉   NON_TRIVIAL_RANGE   

Thus, <x,y> ∈  K0  ⇔  fx,y ∈   NON_TRIVIAL_RANGE  

And so, K0  ≤m NON_TRIVIAL_RANGE 
 

4 d.) Show that NON_TRIVIAL_RANGE ≤m K0. 
Let f be an arbitrary index (function)  
Define gf(z) = ∃<x,y,t> [STP(f,x,t) && STP(f,y,t) && (VALUE(f,x,t) ≠  VALUE(f,y,t))]  

f ∈  NON_TRIVIAL_RANGE implies ∀z gf(z) = 1 implies <gf,0> ∈  K0   

f ∉  NON_TRIVIAL_RANGE implies ∀z gf(z)↑  implies <gf,0> ∉  K0   

Thus, f ∈  NON_TRIVIAL_RANGE ⇔  <gf,0> ∈  K0   

And so, NON_TRIVIAL_RANGE ≤m K0 
 

2 e.) From a.) through d.) what can you conclude about the complexity of NON_TRIVIAL_RANGE 
(Recursive, RE, RE-COMPLETE, CO-RE, CO-RE-COMPLETE, NON-RE/NON-CO-RE)? 

 
RE-COMPLETE 
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 5. Rice’s Theorem deals with properties P of partial recursive functions and their corresponding sets of 

indices SP. The following image describing a function fx,y,r that is central to understanding Rice’s 
Theorem.  

 

 

 

 

 
Given the hypotheses P is non-trivial and is an I/O behavior and that we assume, without loss of 
generality that all functions with empty domains/ranges do not have property P, explain the meaning 
of this diagram by doing the following: 

2 a.) Indicate what r is, how it is chosen and how we can guarantee its existence.  
 

r is some arbitrary member of the set SP. As P is non-trivial SP must be non-empty and so such an 
r must exist. 

 
2 b.) Using recursive function notations, write down precisely what fx,y,r computes for the Strong Form of 

Rice’s Theorem.  

fx,y,r (z) = ϕx (y) - ϕx (y)  + ϕ r (z) 
5 c.) Specify how the function fx,y,r behaves with respect to x,y and r, and how this relates to the original 

problem, P, and set, SP.  

If ϕx (y)↑  then ∀z fx,y,r (z)↑  and so fx,y,r is in the complement of the set SP 

If ϕx (y)↓  then ∀z fx,y,r (z) = ϕ r (z)  and so fx,y,r is in the set SP 

Combining these, we have that <x,y> is in K0 iff fx,y,r is SP 

This means that a solution to membership in SP implies a solution to membership in K0.  

As K0 is the set associated with the Halting Problem, its membership is undecidable and thus so is 
membership in SP. Hence the problem P is at least as hard as the Halt Problem and hence must 
also be undecidable. 
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6 6. Let S be an arbitrary non-recursive semi-decidable set. This means that S is the domain of some 

partial recursive function fs, whose domain is infinite. Using fS, show that S has an infinite recursive 
subset, call it R. To be complete you will need to create a characteristic function for R, χR, and 
argue that the set R you defined is infinite. Hint: Inductively define a monotonically increasing 
algorithm that enumerates R. I’ll even do this part for you. 
 
fR(0) = < µ<x,t> [ STP(fS, x, t) ] >1     // Extract first component of <x, t> 
fR(y+1) = < µ<x,t> [ STP(fS, x, t) ]  && (x > fR(y)) ] >1  // You fill this part in 
You now need to argue that fR is total and monotonically increasing. From that you must argue that 
the set R enumerated by fR is an infinite subset of S and then you must define the characteristic 
function χR for R. I started the hardest part. 
 
First, since the domain of fs is infinite, it is non-empty. Thus, fR(0) = < µ<x,t> [ STP(fS, x, t) ] >1 
will converge and return some value in the domain of fs.  Thus, fR(0) converges and returns an 
element in S. 
Assume that fR (y) converges and returns a value in S greater than any value previously 
enumerated by fR. 
As the domain of fs, is infinite, there is value in its domain that is larger than fR(y). Thus, our 
search at y+1 will always find an <x,t> such that STP(fS, x, t) ]  && (VALUE(fS, x, t) > fR(y)) and 
that vale will be greater than fR(y) and also in S. This inductively shows that fR(y)is monotonically 
increasing and enumerates a set R that is a subset of S. 
 
χR(x) = ∃y ≤  x [ fR(y) == x ] decides membership in R. 

3 7. We proved that TOTAL = { f |  ∀x ϕ f(x)↓  } is not recursively enumerable. The proof is 
straightforward in that we assume the property to be so and that implies there is an algorithm A that 
enumerates the indices of all algorithms. Using the universal machine, ϕ , where ϕ(f,x) = ϕ f(x), we 
have that ϕ(A(f),x) = ϕAf(x), that is, the value of the f-th algorithm at the input x. We then can 
define a new algorithm D(x) = ϕ(A(x),x) + 1. Now you must finish the arguments that show that D 
contradicts its own existence and hence of the existence of the enumerating algorithm A. 

As D is an algorithm its index must be enumerated by A. Assume then that D is the d-th algorithm 
enumerated by A and thus D(x) = ϕ(A(d),x). Now, consider D(d), which must be defined since D 
is an algorithm. 

D(d)  =  ϕ(A(d),d) + 1   by definition of D 

   =  D(d) + 1   since D is the d-th algorithm 
 
But then D(d) = D(d) + 1, which cannot be so if D converges on d, which it must. 
 
The consequence is that D cannot exist, but then A cannot exist and hence TOTAL is not 
recursively enumerable, as assuming that to be so was the only non-constructive part of this 
reasoning. 


