12 1. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, (NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate.
a.) $\{f \mid f$ is a Fibonacci function, i.e. $f(0)=f(1)=1$ and $f(x+2)=f(x)+f(x+1)\}$ \qquad
Justification: $\forall x \exists t[S T P(f, 0, t) \& \& \operatorname{VALUE}(f, 0, t)=1 \& \& S T P(f, 1, t) \& \& \operatorname{VALUE}(f, 1, t)=1$ $\& \& S T P(f, x, t) \& \& S T P(f, x+1, t) \& \& S T P(f, x+2, t)$ $\& \&(\operatorname{VALUE}(f, x+2, t)=\operatorname{VALUE}(f, x+1, t)+\operatorname{VALUE}(f, x, t))]$
b.) $\left\{f \mid\right.$ if $f(x)$ converges, it does so in more than $\left(2^{x}\right)$ units of time \} \qquad
Justification: $\forall x \sim \operatorname{STP}\left(f, x, 2^{x}\right)$
c.) $\left\{<\mathbf{f}, \mathbf{x}>\mid\right.$ if $f(x)$ converges, it does so in more than $\left(2^{x}\right)$ units of time $\}$ \qquad Justification: $\sim \operatorname{STP}\left(f, x, 2^{x}\right)$
d.) $\{f \mid f(x)=f(x+1)$ for at least one value of $x\}$ RE Justification: $\exists<x, t>[S T P(f, x, t) \& \& S T P(f, x+1, t) \& \&(V A L U E(f, x, t)=\operatorname{VALUE}(f, x+1, t))]$

2 2. Looking back at Question 1, which of these are candidates for using Rice's Theorem to show their unsolvability? Check all for which Rice Theorem might apply.
a) $\sqrt{ }$
b) \qquad
c) \qquad
d) \qquad

6 3. Let set \mathbf{A} be recursive, \mathbf{B} be re non-recursive and \mathbf{C} be non-re. Choosing from among (REC) recursive, (RE) re non-recursive, (NR) non-re, categorize the set \mathbf{D} in each of a) through d) by listing all possible categories. No justification is required.
a.) $\mathbf{D}=\mathbf{C}-\mathbf{A}$ (set difference) \qquad REC, RE, NR
b.) $\mathbf{A} \subseteq \mathbf{D}$ (set containment) \qquad
REC, RE, NR
c.) $\mathbf{D}=\mathbf{A} \times \mathbf{B}($ cross product $)$ \qquad
d.) $\mathbf{D}=\mathbf{A}-\mathbf{B}$ (set difference) \qquad
REC, NR
4. Define NON_TRIVIAL_RANGE $=(\mathbf{f}| | \operatorname{range}(\mathbf{f}) \mid>1\}$.

2 a.) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of this set. (Hint: Look at c.) and d.) to get a clue as to what this must be.)
$\exists<x, y, t>[S T P(f, x, t) \& \& S T P(f, y, t) \& \&(V A L U E(f, x, t) \neq \operatorname{VALUE}(f, y, t))]$
5 b.) Use Rice's Theorem to prove that NON_TRIVIAL_RANGE is undecidable.
First show NON_TRIVIAL_RANGE is non-trivial:
$I(x)=x \in$ NON_TRIVIAL_RANGE $\quad C_{0}(x)=0 \notin N O N_{-} T R I V I A L _R A N G E$ and thus, the set and its complement are non-empty as required.

Let f, g be two arbitrary indices (functions) such that range $\left(\varphi_{f}\right)=$ range $\left(\varphi_{g}\right)$.
$f \in$ NON_TRIVIAL_RANGE iff \mid range $\left(\varphi_{f}\right) \mid>1$ Definition of NON_TRIVIAL_RANGE

$$
\text { iff }\left|\operatorname{range}\left(\varphi_{g}\right)\right|>1 \quad \text { range }\left(\varphi_{f}\right)=\operatorname{range}\left(\varphi_{g}\right)
$$

iff $g \in$ NON_TRIVIAL_RANGE
Definition of NON_TRIVIAL_RANGE
This weak form of Rice's Theorem shows NON_TRIVIAL_RANGE to be undecidable.
4 c.) Show that $\mathbf{K}_{\mathbf{0}} \leq_{\mathrm{m}}$ NON_TRIVIAL_RANGE, where $\mathbf{K}_{\mathbf{0}}=\left\{\langle\mathbf{x}, \mathbf{y}\rangle \mid \varphi_{\mathrm{x}}(\mathbf{y}) \downarrow\right\}$.
Let $\langle x, y>$ be an arbitrary pair of natural numbers.
Define $f_{x, y}(z)=\varphi_{x}(y)-\varphi_{x}(y)+z$
$<x, y>\in K_{0}$ implies $\forall z f_{x, y}(z)=z$ implies $f_{x, y} \in$ NON_TRIVIAL_RANGE
$<x, y>\notin K_{0}$ implies $\forall z f_{x, y}(z) \uparrow$ implies $f_{x, y} \notin$ NON_TRIVIAL_RANGE
Thus, $\langle x, y\rangle \in K_{0} \Leftrightarrow f_{x, y} \in$ NON_TRIVIAL_RANGE
And so, $K_{0} \leq_{m}$ NON_TRIVIAL_RANGE

4 d.) Show that NON_TRIVIAL_RANGE $\leq_{\mathrm{m}} \mathrm{K}_{\mathbf{0}}$.
Let f be an arbitrary index (function)
Define $g_{f}(z)=\boldsymbol{\exists}<x, y, t>[S T P(f, x, t) \& \& S T P(f, y, t) \& \&(V A L U E(f, x, t) \neq \operatorname{VALUE}(f, y, t))]$
$f \in$ NON_TRIVIAL_RANGE implies $\forall z g_{f}(z)=1$ implies $\langle g f, 0\rangle \in K_{0}$
$f \notin$ NON_TRIVIAL_RANGE implies $\forall z g_{f}(z) \uparrow$ implies $<g f, 0>\notin K_{0}$
Thus, $f \in$ NON_TRIVIAL_RANGE $\Leftrightarrow<g f, 0\rangle \in K_{0}$
And so, NON_TRIVIAL_RANGE $\leq_{m} K_{0}$

2 e.) From a.) through d.) what can you conclude about the complexity of NON_TRIVIAL_RANGE (Recursive, RE, RE-COMPLETE, CO-RE, CO-RE-COMPLETE, NON-RE/NON-CO-RE)?

RE-COMPLETE
5. Rice's Theorem deals with properties \mathbf{P} of partial recursive functions and their corresponding sets of indices $\mathbf{S}_{\mathbf{P}}$. The following image describing a function $\mathbf{f}_{\mathbf{x}, \mathbf{y}, \mathbf{r}}$ that is central to understanding Rice's Theorem.

Given the hypotheses \mathbf{P} is non-trivial and is an I/O behavior and that we assume, without loss of generality that all functions with empty domains/ranges do not have property \mathbf{P}, explain the meaning of this diagram by doing the following:
a.) Indicate what \mathbf{r} is, how it is chosen and how we can guarantee its existence.
r is some arbitrary member of the set S_{P}. As P is non-trivial S_{P} must be non-empty and so such an r must exist.

2 b.) Using recursive function notations, write down precisely what $\mathbf{f}_{\mathbf{x}, \mathbf{y}, \mathbf{r}}$ computes for the Strong Form of Rice's Theorem.
$f_{x, y, r}(z)=\varphi_{x}(y)-\varphi_{x}(y)+\varphi_{r}(z)$
5
c.) Specify how the function $\mathbf{f}_{\mathbf{x}, \mathbf{y}, \mathbf{r}}$ behaves with respect to \mathbf{x}, \mathbf{y} and \mathbf{r}, and how this relates to the original problem, \mathbf{P}, and set, $\mathbf{S}_{\mathbf{P}}$.
If $\varphi_{x}(y) \uparrow$ then $\forall z f_{x, y, r}(z) \uparrow$ and so $f_{x, y, r}$ is in the complement of the set S_{P}
If $\varphi_{x}(y) \downarrow$ then $\forall z f_{x, y, r}(z)=\varphi_{r}(z)$ and so $f_{x, y, r}$ is in the set S_{P}
Combining these, we have that $\left\langle x, y>\right.$ is in K_{0} iff $f_{x, y, r}$ is S_{P}
This means that a solution to membership in S_{P} implies a solution to membership in K_{0}.
As K_{0} is the set associated with the Halting Problem, its membership is undecidable and thus so is membership in S_{P}. Hence the problem P is at least as hard as the Halt Problem and hence must also be undecidable.
6. Let \mathbf{S} be an arbitrary non-recursive semi-decidable set. This means that \mathbf{S} is the domain of some partial recursive function f_{s}, whose domain is infinite. Using f_{S}, show that S has an infinite recursive subset, call it \mathbf{R}. To be complete you will need to create a characteristic function for $\mathbf{R}, \chi_{\mathbf{R}}$, and argue that the set \mathbf{R} you defined is infinite. Hint: Inductively define a monotonically increasing algorithm that enumerates \mathbf{R}. I'll even do this part for you.
$\mathbf{f}_{\mathrm{R}}(\mathbf{0})=<\mu<\mathbf{x}, \mathrm{t}>\left[\operatorname{STP}\left(\mathbf{f}_{\mathrm{S}}, \mathbf{x}, \mathrm{t}\right)\right]>_{\mathbf{1}}$
// Extract first component of <x, $\mathbf{t}>$
$\left.\mathrm{f}_{\mathrm{R}}(\mathrm{y}+1)=<\mu<x, t>\left[\operatorname{STP}\left(f_{S}, x, t\right)\right] \quad \& \&\left(x>f_{R}(y)\right)\right]>_{1} \quad / /$ You fill this part in
You now need to argue that \mathbf{f}_{R} is total and monotonically increasing. From that you must argue that the set \mathbf{R} enumerated by $\mathbf{f}_{\mathbf{R}}$ is an infinite subset of \mathbf{S} and then you must define the characteristic function $\chi_{\mathbf{R}}$ for \mathbf{R}. I started the hardest part.

First, since the domain of f_{s} is infinite, it is non-empty. Thus, $f_{R}(0)=<\mu<x, t>\left[S T P\left(f_{s}, x, t\right)\right]>_{1}$ will converge and return some value in the domain of $f_{s .}$ Thus, $f_{R}(0)$ converges and returns an element in S.
Assume that $f_{R}(y)$ converges and returns a value in S greater than any value previously enumerated by f_{R}.
As the domain of f_{s}, is infinite, there is value in its domain that is larger than $f_{R}(y)$. Thus, our search at $y+1$ will always find an $<x, t>$ such that $\left.\operatorname{STP}\left(f_{s}, x, t\right)\right] \& \&\left(V A L U E\left(f_{s}, x, t\right)>f_{R}(y)\right)$ and that vale will be greater than $f_{R}(y)$ and also in S. This inductively shows that $f_{R}(y)$ is monotonically increasing and enumerates a set R that is a subset of S.
$\left.\chi_{R}(x)=\exists y \leq x / f_{R}(y)==x\right]$ decides membership in R.
3 7. We proved that TOTAL $=\left\{\mathbf{f} \mid \forall \mathbf{x} \varphi_{f}(\mathbf{x}) \downarrow\right\}$ is not recursively enumerable. The proof is straightforward in that we assume the property to be so and that implies there is an algorithm \mathbf{A} that enumerates the indices of all algorithms. Using the universal machine, φ, where $\varphi(\mathbf{f}, \mathbf{x})=\varphi_{\mathrm{f}}(\mathbf{x})$, we have that $\varphi(\mathbf{A}(\mathbf{f}), \mathbf{x})=\varphi_{\mathbf{A f}}(\mathbf{x})$, that is, the value of the \mathbf{f}-th algorithm at the input \mathbf{x}. We then can define a new algorithm $\mathbf{D}(\mathbf{x})=\varphi(\mathbf{A}(\mathbf{x}), \mathbf{x})+\mathbf{1}$. Now you must finish the arguments that show that \mathbf{D} contradicts its own existence and hence of the existence of the enumerating algorithm \mathbf{A}.

As D is an algorithm its index must be enumerated by A. Assume then that D is the d-th algorithm enumerated by A and thus $D(x)=\varphi(A(d), x)$. Now, consider $D(d)$, which must be defined since D is an algorithm.

$$
\begin{array}{rlrl}
D(d) & = & \varphi(A(d), d)+1 & \\
& =b y \text { definition of } D \\
& =\quad D(d)+1 & & \text { since } D \text { is the d-th algorithm }
\end{array}
$$

But then $D(d)=D(d)+1$, which cannot be so if D converges on d, which it must.
The consequence is that D cannot exist, but then A cannot exist and hence TOTAL is not recursively enumerable, as assuming that to be so was the only non-constructive part of this reasoning.

