- Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, (NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate.

Justification:  $\forall x \exists t \ [STP(f,0,t) \&\& VALUE(f,0,t)=1 \&\& STP(f,1,t) \&\& VALUE(f,1,t)=1 \&\& STP(f,x,t) \&\& STP(f,x+1,t) \&\& STP(f,x+2,t) \&\& (VALUE(f,x+2,t) = VALUE(f,x+1,t) + VALUE(f,x,t))]$ 

- b.) { f | if f(x) converges, it does so in more than  $(2^x)$  units of time } Justification:  $\forall x \sim STP(f,x,2^x)$
- c.) { <f,x> | if f(x) converges, it does so in more than  $(2^x)$  units of time } <u>REC</u> Justification: ~ *STP(f,x,2<sup>x</sup>)*
- d.) { f | f(x) = f(x+1) for at least one value of x }  $\underline{RE}$ Justification:  $\exists \langle x,t \rangle [STP(f,x,t) \&\& STP(f,x+1,t) \&\& (VALUE(f,x,t) = VALUE(f,x+1,t))]$
- 2 2. Looking back at Question 1, which of these are candidates for using Rice's Theorem to show their unsolvability? Check all for which Rice Theorem might apply.
  - a)  $\underline{\checkmark}$  b)  $\underline{\qquad}$  c)  $\underline{\qquad}$  d)  $\underline{\checkmark}$
- 6 3. Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC) recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through d) by listing all possible categories. No justification is required.

| a.) $D = C - A$ (set difference)                                | REC, RE, NR                                 |
|-----------------------------------------------------------------|---------------------------------------------|
| b.) $A \subseteq D$ (set containment)                           | REC, RE, NR                                 |
| c.) $\mathbf{D} = \mathbf{A} \times \mathbf{B}$ (cross product) | <b>RE, REC (only when</b> $A = \emptyset$ ) |
| d.) D = A – B (set difference)                                  | REC, NR                                     |

- 4. Define NON\_TRIVIAL\_RANGE =  $(f | |range(f)| > 1 \}$ .
- 2 a.) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of this set. (Hint: Look at c.) and d.) to get a clue as to what this must be.)

 $\exists \langle x, y, t \rangle [STP(f, x, t) \&\& STP(f, y, t) \&\& (VALUE(f, x, t) \neq VALUE(f, y, t))]$ 

5 b.) Use Rice's Theorem to prove that NON TRIVIAL RANGE is undecidable.

First show NON\_TRIVIAL\_RANGE is non-trivial:

 $I(x) = x \in NON\_TRIVIAL\_RANGE$   $C_0(x) = 0 \notin NON\_TRIVIAL\_RANGE$ and thus, the set and its complement are non-empty as required.

Let f, g be two arbitrary indices (functions) such that range  $(\varphi_f) = range (\varphi_g)$ .

 $f \in NON\_TRIVIAL\_RANGE$  iff | range  $(\varphi_f)$ | > 1 Definition of NON\\_TRIVIAL\\_RANGE

*iff* | range  $(\varphi_g)$  | > 1 range  $(\varphi_f)$  = range  $(\varphi_g)$ 

*iff*  $g \in NON_TRIVIAL_RANGE$  *Definition of*  $NON_TRIVIAL_RANGE$ 

This weak form of Rice's Theorem shows NON\_TRIVIAL\_RANGE to be undecidable.

4 c.) Show that  $K_0 \leq_m NON\_TRIVIAL\_RANGE$ , where  $K_0 = \{ \langle x, y \rangle | \phi_x(y) \downarrow \}$ .

Let  $\langle x,y \rangle$  be an arbitrary pair of natural numbers. Define  $f_{x,y}(z) = \varphi_x(y) - \varphi_x(y) + z$   $\langle x,y \rangle \in K_0$  implies  $\forall z f_{x,y}(z) = z$  implies  $f_{x,y} \in NON\_TRIVIAL\_RANGE$   $\langle x,y \rangle \notin K_0$  implies  $\forall z f_{x,y}(z) \uparrow$  implies  $f_{x,y} \notin NON\_TRIVIAL\_RANGE$ Thus,  $\langle x,y \rangle \in K_0 \Leftrightarrow f_{x,y} \in NON\_TRIVIAL\_RANGE$ And so,  $K_0 \leq_m NON\_TRIVIAL\_RANGE$ 

4 d.) Show that **NON\_TRIVIAL\_RANGE**  $\leq_{m} K_{0}$ .

Let f be an arbitrary index (function) Define  $g_f(z) = \exists \langle x, y, t \rangle [STP(f, x, t) \&\& STP(f, y, t) \&\& (VALUE(f, x, t) \neq VALUE(f, y, t))]$   $f \in NON\_TRIVIAL\_RANGE$  implies  $\forall z g_f(z) = 1$  implies  $\langle gf, 0 \rangle \in K_0$   $f \notin NON\_TRIVIAL\_RANGE$  implies  $\forall z g_f(z) \uparrow$  implies  $\langle gf, 0 \rangle \notin K_0$ Thus,  $f \in NON\_TRIVIAL\_RANGE \Leftrightarrow \langle gf, 0 \rangle \in K_0$ And so, NON TRIVIAL\\_RANGE  $\leq_m K_0$ 

2 e.) From a.) through d.) what can you conclude about the complexity of NON\_TRIVIAL\_RANGE (Recursive, RE, RE-COMPLETE, CO-RE, CO-RE-COMPLETE, NON-RE/NON-CO-RE)?

**RE-COMPLETE** 

5. Rice's Theorem deals with properties **P** of partial recursive functions and their corresponding sets of indices  $S_P$ . The following image describing a function  $f_{x,y,r}$  that is central to understanding Rice's Theorem.



Given the hypotheses  $\mathbf{P}$  is non-trivial and is an I/O behavior and that we assume, without loss of generality that all functions with empty domains/ranges do not have property  $\mathbf{P}$ , explain the meaning of this diagram by doing the following:

2 a.) Indicate what  $\mathbf{r}$  is, how it is chosen and how we can guarantee its existence.

## r is some arbitrary member of the set $S_P$ . As P is non-trivial $S_P$ must be non-empty and so such an r must exist.

2 b.) Using recursive function notations, write down precisely what  $f_{x,y,r}$  computes for the Strong Form of Rice's Theorem.

 $f_{x,y,r}(z) = \varphi_x(y) - \varphi_x(y) + \varphi_r(z)$ 

5 c.) Specify how the function  $f_{x,y,r}$  behaves with respect to x,y and r, and how this relates to the original problem, P, and set, S<sub>P</sub>.

If  $\varphi_x(y) \uparrow$  then  $\forall z f_{x,y,r}(z) \uparrow$  and so  $f_{x,y,r}$  is in the complement of the set  $S_P$ 

If  $\varphi_x(y) \downarrow$  then  $\forall z f_{x,y,r}(z) = \varphi_r(z)$  and so  $f_{x,y,r}$  is in the set  $S_P$ 

Combining these, we have that  $\langle x, y \rangle$  is in  $K_0$  iff  $f_{x,y,r}$  is  $S_P$ 

This means that a solution to membership in  $S_P$  implies a solution to membership in  $K_{0}$ .

As  $K_{\theta}$  is the set associated with the Halting Problem, its membership is undecidable and thus so is membership in  $S_{P}$ . Hence the problem P is at least as hard as the Halt Problem and hence must also be undecidable.

6 6. Let S be an arbitrary non-recursive semi-decidable set. This means that S is the domain of some partial recursive function  $f_s$ , whose domain is infinite. Using  $f_S$ , show that S has an infinite recursive subset, call it **R**. To be complete you will need to create a characteristic function for **R**,  $\chi_R$ , and argue that the set **R** you defined is infinite. Hint: Inductively define a monotonically increasing algorithm that enumerates **R**. I'll even do this part for you.

 $f_R(0) = \langle \mu \langle x,t \rangle [ STP(f_S, x, t) ] \rangle_1$  // Extract first component of  $\langle x, t \rangle$   $f_R(y+1) = \langle \mu \langle x,t \rangle [ STP(f_S, x, t) ] \&\& (x \rangle f_R(y) ) ] \rangle_1$  // You fill this part in You now need to argue that  $f_R$  is total and monotonically increasing. From that you must argue that the set **R** enumerated by  $f_R$  is an infinite subset of **S** and then you must define the characteristic function  $\chi_R$  for **R**. I started the hardest part.

First, since the domain of  $f_s$  is infinite, it is non-empty. Thus,  $f_R(0) = \langle \mu \langle x, t \rangle [STP(f_s, x, t)] \rangle_1$ will converge and return some value in the domain of  $f_s$ . Thus,  $f_R(0)$  converges and returns an element in S.

Assume that  $f_R(y)$  converges and returns a value in S greater than any value previously enumerated by  $f_R$ .

As the domain of  $f_s$ , is infinite, there is value in its domain that is larger than  $f_R(y)$ . Thus, our search at y+1 will always find an  $\langle x,t \rangle$  such that  $STP(f_s, x, t) \mid \&\& (VALUE(f_s, x, t) \geq f_R(y))$  and that vale will be greater than  $f_R(y)$  and also in S. This inductively shows that  $f_R(y)$  is monotonically increasing and enumerates a set R that is a subset of S.

 $\chi_R(x) = \exists y \leq x \ [f_R(y) == x ]$  decides membership in R.

3 7. We proved that  $TOTAL = \{ f | \forall x \phi_f(x) \downarrow \}$  is not recursively enumerable. The proof is straightforward in that we assume the property to be so and that implies there is an algorithm A that enumerates the indices of all algorithms. Using the universal machine,  $\phi$ , where  $\phi(f,x) = \phi_f(x)$ , we have that  $\phi(A(f),x) = \phi_{Af}(x)$ , that is, the value of the f-th algorithm at the input x. We then can define a new algorithm  $D(x) = \phi(A(x),x) + 1$ . Now you must finish the arguments that show that D contradicts its own existence and hence of the existence of the enumerating algorithm A.

As D is an algorithm its index must be enumerated by A. Assume then that D is the d-th algorithm enumerated by A and thus  $D(x) = \varphi(A(d),x)$ . Now, consider D(d), which must be defined since D is an algorithm.

| D(d) | = | $\varphi(A(d),d) + 1$ | by definition of D            |
|------|---|-----------------------|-------------------------------|
|      | = | D(d) + 1              | since D is the d-th algorithm |

But then D(d) = D(d) + 1, which cannot be so if D converges on d, which it must.

The consequence is that D cannot exist, but then A cannot exist and hence TOTAL is not recursively enumerable, as assuming that to be so was the only non-constructive part of this reasoning.