
COT 6410 Spring 2015 Sample Final and Midterm Makeup Exams
• The notation z = <x,y> denotes the pairing function with inverses x = <z>1 and y = <z>2.
• The minimization notation µ y [P(…,y)] means the least y (starting at 0) such that P(…,y) is true.

The bounded minimization (acceptable in primitive recursive functions) notation
µ y (u≤y≤v) [P(…,y)] means the least y (starting at u and ending at v) such that P(…,y) is true. I
define µ y (u≤y≤v) [P(…,y)] to be v+1, when no y satisfies this bounded minimization.

• The tilde symbol, ~, means the complement. Thus, set ~S is the set complement of set S, and the
predicate ~P(x) is the logical complement of predicate P(x).

• A function P is a predicate if it is a logical function that returns either 1 (true) or 0 (false). Thus,
P(x) means P evaluates to true on x, but we can also take advantage of the fact that true is 1 and
false is 0 in formulas like y × P(x), which would evaluate to either y (if P(x)) or 0 (if ~P(x)).

• A set S is recursive if S has a total recursive characteristic function χS, such that x ∈ S ⇔ χS(x).
Note χS is a total predicate. Thus, it evaluates to 0 (false), if x ∉ S.

• When I say a set S is re, unless I explicitly say otherwise, you may assume any of the following
equivalent characterizations:
1. S is either empty or the range of a total recursive function fS.
2. S is the domain of a partial recursive function gS.

• If I say a function g is partially computable, then there is an index g (we tend to overload the index
as the function name), such that Φg(x) = Φ(x, g) = g(x). Here Φ is a universal partially recursive
function.
Moreover, there is a primitive recursive function STP, such that
STP(g, x, t) is 1 (true), just in case g, started on x, halts in t or fewer steps.
STP(g, x, t) is 0 (false), otherwise.
Finally, there is another primitive recursive function VALUE, such that
VALUE(g, x, t) is g(x), whenever STP(g, x, t).
VALUE(g, x, t) is defined but meaningless if ~STP(g, x, t).

• The notation f(x)↓ means that f converges when computing with input x (x ∈ Dom(f)). The notation
f(x)↑ means f diverges when computing with input x (x ∉ Dom(f)).

• The Halting Problem for any effective computational system is the problem to determine of an
arbitrary effective procedure f and input x, whether or not f(x)↓ . The set of all such pairs, K0, is a
classic re non-recursive set. K0 is also known as Lu, the universal language. The related set, K, is the
set of all effective procedures f such that f(f)↓ or more precisely Φ f(f).

• The Uniform Halting Problem is the problem to determine of an arbitrary effective procedure f,
whether or not f is an algorithm (halts on all input). This set, TOTAL, is a classic non re set.

• When I ask for a reduction of one set of indices to another, the formal rule is that you must produce a
function that takes an index of one function and produces the index of another having whatever
property you require. However, I allow some laxness here. You can start with a function, given its
index, and produce another function, knowing it will have a computable index. For example, given f,
a unary function, I might define Gf, another unary function, by
Gf(0) = f(0); Gf(y+1) = Gf(y) + f(y+1)
This would get Gf(x) as the sum of the values of f(0)+f(1)+…+f(x).

• The Post Correspondence Problem (PCP) is known to be undecidable. This problem is
characterized by instances that are described by a number n>0 and two n-ary sequences of non-
empty words <x1,x2,…,xn>, <y1,y2,…,yn>. The question is whether or not there exists a sequence,
i1,i2,…,ik, such that 1≤ij≤n, 1≤j≤k, and xi1xi2

…xik = yi1yi2
…yik

COT 6410: Spring 2015 – 2 – Sample Final and Midterm Makeup – Hughes
• When I ask you to show one set of indices, A, is many-one reducible to another, B, denoted

A ≤m B, you must demonstrate a total computable function f, such that x ∈ A ⇔ f(x) ∈ B. The
stronger relationship is that A and B are many-one equivalent, A ≡m B, requires that you show
A ≤m B and B ≤m A. The related notion of one-one reducibility and equivalence require that the
reducing function, f above, be 1-1. The notation just replaces the m with a 1, as in A ≤1 B.

• The related notion of polynomial reducibility and equivalence require that the reducing function, f
above, be computable in polynomial time in the size of the instance of the element being checked.
The notation just replaces the m with a p, as in A ≤p B and A ≡p B.

• A decision problem P is in P if it can be solved by a deterministic Turing machine in polynomial
time.

• A function problem F is in FP if it can be solved by a deterministic Turing machine in polynomial
time.

• A decision problem P is in NP if it can be solved by a non-deterministic Turing machine in
polynomial time. Alternatively, P is in NP if a proposed proof of any instance having answer yes can
be verified by a deterministic Turing machine in polynomial time.

• A function problem F is in FNP if a proposed solution to it can be verified by a deterministic Turing
machine in polynomial time. The proposed solution must be at most polynomial larger than the
input.

• A decision problem P is NP-complete if and only if it is in NP and, for any problem Q in NP, it is
the case that Q ≤p P.

• A function problem P is NP-hard if and only if there is an NP-complete problem Q that is
polynomial time Turing-reducible to P. We often limit our domain of consideration to decision
problems when talking of NP-hard, but the concept also applies to function problems.

• A function problem P is NP-easy if and only if it is polynomial time Turing-reducible to some NP
problem Q.

• A function problem P is NP-equivalent if and only if it is both NP-hard and NP-easy.

COT 6410 Spring2015 Sample Final and Midterm Makeup Exams

 1. Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC)
recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through d) by
listing all possible categories. No justification is required.
a.) D = ~C

b.) D ⊆ (A∪C)
c.) D = ~B

d.) D = B − A

 2. Choosing from among (D) decidable, (U) undecidable, (?) unknown, categorize each of the
following decision problems. No proofs are required.

Problem / Language Class Regular Context Free Context Sensitive

L = Σ* ?

L = φ ?

L = L2 ?

x ∈ L2, for arbitrary x ?

 3. Use PCP to show the undecidability of the problem to determine if the intersection of two context
free languages is non-empty. That is, show how to create two grammars GA and GB based on some
instance P = <<x1,x2,…,xn>, <y1,y2,…,yn>> of PCP, such that L(GA) ∩ L(GB) ≠ φ iff P has a
solution. Assume that P is over the alphabet Σ . You should discuss what languages your grammars
produce and why this is relevant, but no formal proof is required.

COT 6410: Spring 2015 – 2 – Sample Final and Midterm Makeup – Hughes

 4. Consider the set of indices CONSTANT = { f | ∃K ∀y [ϕ f(y) = K] }. Use Rice’s Theorem to show
that CONSTANT is not recursive. Hint: There are two properties that must be demonstrated.

 5. Show that CONSTANT ≡m TOT, where TOT = { f | ∀y ϕ f(y)↓ }.

COT 6410: Spring 2015 – 3 – Sample Final and Midterm Makeup – Hughes

 6. Why does Rice’s Theorem have nothing to say about the following? Explain by showing some

condition of Rice’s Theorem that is not met by the stated property.
 AT-LEAST-LINEAR = { f | ∀y ϕ f(y) converges in no fewer than y steps }.

 7. The trace language of a computational device like a Turing Machine is a language of the form
Trace = { C1#C2# … Cn# | Ci ⇒ Ci+1, 1 ≤ i < n }
Trace is Context Sensitive, non-Context Free. Actually, a trace language typically has every other
configuration word reversed, but the concept is the same. Oddly, the complement of such a trace is
Context Free. Explain what makes its complement a CFL. In other words, describe the
characteristics of this complement and why these characteristics are amenable to a CFG description.

 8. We demonstrated a proof that the context sensitive languages are not closed under homomorphism,
To start, we assumed G = (N, Σ , S, P) is an arbitrary Phrase Structured Grammar, with N its set of
non-terminals, Σ its terminal alphabet, S its starting non-terminal and P its productions (rules). Since
G is a PSG, it can have length increasing, length preserving and length decreasing rules. We wished
to convert G to a CSG, G’ = (N’, Σ’, S’, P’) where there are no rules that are length decreasing
(since a CSG cannot have these). We developed a way to pad the length decreasing rules from G and
then a homomorphism that gets rid of these padding characters. Define G’ and the homomorphism h
that we discussed in class and then briefly discuss why this new grammar and homomorphism
combine so h(L(G’)) = L(G), thereby showing that all re sets are the homomorphic images of CSLs.

COT 6410: Spring 2015 – 4 – Sample Final and Midterm Makeup – Hughes

 9. We described the proof that 3SAT is polynomial reducible to Subset-Sum.
a.) Describe Subset-Sum

b.) Show that Subset-Sum is in NP

c.) Assuming a 3SAT expression (a + ~b + c) (~a + b + ~c), fill in the upper right part of the
reduction from 3SAT to Subset-Sum.

 a b c a + ~b + c ~a + b + ~c
a

~a
b

~b
c

~c
C1
C1’
C2
C2’

 d.) List some subset of the numbers above (each associated with a row) that sums to 1 1 1 3 3.
Indicate what the related truth values are for a, b and c.

 10. Partition refers to the decision problem as to whether some set of positive integers S can be
partitioned into two disjoint subsets whose elements have equal sums. Subset-Sum refers to the
decision problem as to whether there is a subset of some set of positive integers S that precisely
sums to some goal number G.

 a.) Show that Partition ≤p Subset-Sum.

 b.) Show that Subset-Sum ≤p Partition.

 11. Consider the decision problem asking if there is a coloring of a graph with at most k colors, and the
optimization version that asks what is the minimum coloring number of a graph. You can reduce in
both directions. So, do that. Make sure you carefully explain for each direction just what it is that
you are proving.

 12. QSAT is the decision problem to determine if an arbitrary fully quantified Boolean expression is
true. Note: SAT only uses existential, whereas QSAT can have universal qualifiers as well so it
includes checking for Tautologies as well as testing Satisfiability. What can you say about the
complexity of QSAT (is it in P, NP, NP-Complete, NP-Hard)? Justify your conclusion.

COT 6410: Spring 2015 – 5 – Sample Final and Midterm Makeup – Hughes

 13. Consider the following set of independent tasks with associated task times:
(T1,7), (T2,6), (T3,2), (T4,5), (T5,6), (T7,1), (T8,2)
Fill in the schedules for these tasks under the associated strategies below.

Greedy using the list order above:

Greedy using a reordering of the list so that longest running tasks appear earliest in the list:

Greedy using a reordering of the list so that shortest running tasks appear earliest in the list:

 14. Present a gadget used in the reduction of 3-SAT to some graph theoretic problem where the gadget
guarantees that each variable is assigned either True or False, but not both. Of course, you must tell
me what graph theoretic problem is being shown NP-Complete and you must explain why the
gadget works.

