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• The notation z = <x,y> denotes the pairing function with inverses x = <z>1 and y = <z>2.  
• The minimization notation µ  y [P(…,y)] means the least y (starting at 0) such that P(…,y) is true. 

The bounded minimization (acceptable in primitive recursive functions) notation  
µ  y (u≤y≤v) [P(…,y)] means the least y (starting at u and ending at v) such that P(…,y) is true. I 
define µ  y (u≤y≤v) [P(…,y)] to be v+1, when no y satisfies this bounded minimization.  

• The tilde symbol, ~, means the complement. Thus, set ~S is the set complement of set S, and the 
predicate ~P(x) is the logical complement of predicate P(x). 

• A function P is a predicate if it is a logical function that returns either 1 (true) or 0 (false). Thus, 
P(x) means P evaluates to true on x, but we can also take advantage of the fact that true is 1 and 
false is 0 in formulas like y ×  P(x), which would evaluate to either y (if P(x)) or 0 (if ~P(x)). 

• A set S is recursive if S has a total recursive characteristic function χS, such that x ∈  S  ⇔  χS(x). 
Note χS is a total predicate. Thus, it evaluates to 0 (false), if x ∉  S. 

• When I say a set S is re, unless I explicitly say otherwise, you may assume any of the following 
equivalent characterizations: 
1. S is either empty or the range of a total recursive function fS. 
2. S is the domain of a partial recursive function gS. 

• If I say a function g is partially computable, then there is an index g (we tend to overload the index 
as the function name), such that Φg(x) = Φ(x, g) = g(x). Here Φ  is a universal partially recursive 
function.  
Moreover, there is a primitive recursive function STP, such that  
STP(g, x, t) is 1 (true), just in case g, started on x, halts in t or fewer steps.  
STP(g, x, t) is 0 (false), otherwise.  
Finally, there is another primitive recursive function VALUE, such that  
VALUE(g, x, t) is g(x), whenever STP(g, x, t).  
VALUE(g, x, t) is defined but meaningless if ~STP(g, x, t). 

• The notation f(x)↓  means that f converges when computing with input x (x ∈  Dom(f)). The notation 
f(x)↑  means f diverges when computing with input x (x ∉  Dom(f)). 

• The Halting Problem for any effective computational system is the problem to determine of an 
arbitrary effective procedure f and input x, whether or not f(x)↓ . The set of all such pairs, K0, is a 
classic re non-recursive set. K0 is also known as Lu, the universal language. The related set, K, is the 
set of all effective procedures f such that f(f)↓  or more precisely Φ f(f). 

• The Uniform Halting Problem is the problem to determine of an arbitrary effective procedure f, 
whether or not f is an algorithm (halts on all input). This set, TOTAL, is a classic non re set. 

• When I ask for a reduction of one set of indices to another, the formal rule is that you must produce a 
function that takes an index of one function and produces the index of another having whatever 
property you require. However, I allow some laxness here. You can start with a function, given its 
index, and produce another function, knowing it will have a computable index. For example, given f, 
a unary function, I might define Gf, another unary function, by  
Gf(0) = f(0); Gf(y+1) = Gf(y) + f(y+1) 
This would get Gf(x) as the sum of the values of f(0)+f(1)+…+f(x). 

• The Post Correspondence Problem (PCP) is known to be undecidable. This problem is 
characterized by instances that are described by a number n>0 and two n-ary sequences of non-
empty words <x1,x2,…,xn>, <y1,y2,…,yn>. The question is whether or not there exists a sequence, 
i1,i2,…,ik, such that 1≤ij≤n, 1≤j≤k, and xi1xi2

…xik = yi1yi2
…yik  
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• When I ask you to show one set of indices, A, is many-one reducible to another, B, denoted  

A ≤m B, you must demonstrate a total computable function f, such that x ∈  A ⇔  f(x) ∈  B. The 
stronger relationship is that A and B are many-one equivalent, A ≡m B, requires that you show  
A ≤m B  and B ≤m A. The related notion of one-one reducibility and equivalence require that the 
reducing function, f above, be 1-1. The notation just replaces the m with a 1, as in A ≤1 B. 

• The related notion of polynomial reducibility and equivalence require that the reducing function, f 
above, be computable in polynomial time in the size of the instance of the element being checked. 
The notation just replaces the m with a p, as in A ≤p B and A ≡p B. 

• A decision problem P is in P if it can be solved by a deterministic Turing machine in polynomial 
time. 

• A function problem F is in FP if it can be solved by a deterministic Turing machine in polynomial 
time. 

• A decision problem P is in NP if it can be solved by a non-deterministic Turing machine in 
polynomial time. Alternatively, P is in NP if a proposed proof of any instance having answer yes can 
be verified by a deterministic Turing machine in polynomial time. 

• A function problem F is in FNP if a proposed solution to it can be verified by a deterministic Turing 
machine in polynomial time. The proposed solution must be at most polynomial larger than the 
input. 

• A decision problem P is NP-complete if and only if it is in NP and, for any problem Q in NP, it is 
the case that Q ≤p P. 

• A function problem P is NP-hard if and only if there is an NP-complete problem Q that is 
polynomial time Turing-reducible to P. We often limit our domain of consideration to decision 
problems when talking of NP-hard, but the concept also applies to function problems. 

• A function problem P is NP-easy if and only if it is polynomial time Turing-reducible to some NP 
problem Q.  

• A function problem P is NP-equivalent if and only if it is both NP-hard and NP-easy.  
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 1. Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC) 
recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through d) by 
listing all possible categories. No justification is required. 
a.) D = ~C           

b.) D ⊆  (A∪C)           
c.) D = ~B            

d.) D = B −  A           

 2. Choosing from among (D) decidable, (U) undecidable, (?) unknown, categorize each of the 
following decision problems. No proofs are required.  

 

Problem / Language Class Regular Context Free Context Sensitive 

L = Σ* ?    

L = φ  ?    

L = L2 ?    

x  ∈  L2, for arbitrary x ?    

 3. Use PCP to show the undecidability of the problem to determine if the intersection of two context 
free languages is non-empty. That is, show how to create two grammars GA and GB based on some 
instance P = <<x1,x2,…,xn>, <y1,y2,…,yn>> of PCP, such that L(GA) ∩  L(GB) ≠  φ  iff P has a 
solution. Assume that P is over the alphabet Σ . You should discuss what languages your grammars 
produce and why this is relevant, but no formal proof is required. 
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 4. Consider the set of indices CONSTANT = { f | ∃K ∀y [ ϕ f(y) = K ] }. Use Rice’s Theorem to show 
that CONSTANT is not recursive. Hint: There are two properties that must be demonstrated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5. Show that CONSTANT ≡m TOT, where TOT = { f | ∀y ϕ f(y)↓  }. 
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 6. Why does Rice’s Theorem have nothing to say about the following? Explain by showing some 

condition of Rice’s Theorem that is not met by the stated property.  
  AT-LEAST-LINEAR = { f | ∀y ϕ f(y) converges in no fewer than y steps }. 

 
 
 
 
 
 
 
 
  

 7. The trace language of a computational device like a Turing Machine is a language of the form 
Trace = { C1#C2# … Cn#  |  Ci ⇒  Ci+1, 1 ≤  i <  n } 
Trace is Context Sensitive, non-Context Free. Actually, a trace language typically has every other 
configuration word reversed, but the concept is the same. Oddly, the complement of such a trace is 
Context Free. Explain what makes its complement a CFL. In other words, describe the 
characteristics of this complement and why these characteristics are amenable to a CFG description.  

 
 
 
 
 
 

 8. We demonstrated a proof that the context sensitive languages are not closed under homomorphism, 
To start, we assumed G = (N, Σ , S, P) is an arbitrary Phrase Structured Grammar, with N its set of 
non-terminals, Σ  its terminal alphabet, S its starting non-terminal and P its productions (rules). Since 
G is a PSG, it can have length increasing, length preserving and length decreasing rules. We wished 
to convert G to a CSG, G’ = (N’, Σ’, S’, P’) where there are no rules that are length decreasing 
(since a CSG cannot have these). We developed a way to pad the length decreasing rules from G and 
then a homomorphism that gets rid of these padding characters. Define G’ and the homomorphism h 
that we discussed in class and then briefly discuss why this new grammar and homomorphism 
combine so h(L(G’)) = L(G), thereby showing that all re sets are the homomorphic images of CSLs. 
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 9. We described the proof that 3SAT is polynomial reducible to Subset-Sum.  
a.) Describe Subset-Sum 
 
b.) Show that Subset-Sum is in NP 
 
c.) Assuming a 3SAT expression (a + ~b + c) (~a + b + ~c), fill in the upper right part of the 
reduction from 3SAT to Subset-Sum. 

 a b c a + ~b + c ~a + b + ~c 
a      

~a      
b      

~b      
c      

~c      
C1      
C1’      
C2      
C2’      

      

  d.) List some subset of the numbers above (each associated with a row) that sums to 1 1 1 3 3. 
Indicate what the related truth values are for a, b and c. 

 10. Partition refers to the decision problem as to whether some set of positive integers S can be 
partitioned into two disjoint subsets whose elements have equal sums. Subset-Sum refers to the 
decision problem as to whether there is a subset of some set of positive integers S that precisely 
sums to some goal number G. 

 a.) Show that Partition ≤p Subset-Sum. 

 b.) Show that Subset-Sum ≤p Partition. 
 

 11. Consider the decision problem asking if there is a coloring of a graph with at most k colors, and the 
optimization version that asks what is the minimum coloring number of a graph. You can reduce in 
both directions. So, do that. Make sure you carefully explain for each direction just what it is that 
you are proving. 

 12. QSAT is the decision problem to determine if an arbitrary fully quantified Boolean expression is 
true. Note: SAT only uses existential, whereas QSAT can have universal qualifiers as well so it 
includes checking for Tautologies as well as testing Satisfiability. What can you say about the 
complexity of QSAT (is it in P, NP, NP-Complete, NP-Hard)? Justify your conclusion. 
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 13. Consider the following set of independent tasks with associated task times: 
(T1,7), (T2,6), (T3,2), (T4,5), (T5,6), (T7,1), (T8,2) 
Fill in the schedules for these tasks under the associated strategies below. 

Greedy using the list order above: 

               

               

Greedy using a reordering of the list so that longest running tasks appear earliest in the list: 

               

               

Greedy using a reordering of the list so that shortest running tasks appear earliest in the list: 

                 

                 

 14. Present a gadget used in the reduction of 3-SAT to some graph theoretic problem where the gadget 
guarantees that each variable is assigned either True or False, but not both. Of course, you must tell 
me what graph theoretic problem is being shown NP-Complete and you must explain why the 
gadget works. 

 


