COT6410 Topics for Final Exams

Computability Theory

Relations between rec, re, co-re, re-complete, non-re/non-co-re
Proofs about relations, e.g., re \& co-re $=>$ decidable; union of re and rec is re but can be rec
Use of quantified decidable predicates to categorize complexity
Reduction (many-one); degrees of unsolvability (many-one)
Rice's Theorem (including its proof)
Applications of Rice's Theorem
Proof of re-completeness (re and known re-complete reduces to problem)
Basic decidability results in formal grammars
Trace languages (CSL) and complement of trace languages (CFL)
$\mathrm{L}=\Sigma^{*}$ for CFL, $\mathrm{L} \neq \varnothing$ for CSL
For CFL L, L = L^{2} ?
For CFL L, $\exists \mathrm{n} \mathrm{L}^{\mathrm{n}}=\mathrm{L}^{\mathrm{n}+1}$?
Post Correspondence Problem
Semi-Thue word problem to PCP
PCP and context free grammars
From any PCP instance, P, can specify CFGs, G1 and G2, such that
$\mathrm{L}(\mathrm{G} 1) \cap \mathrm{L}(\mathrm{G} 2) \neq \varnothing$ iff P has a solution
Merging these together to new grammar G with start symbol S and rule
$\mathrm{S} \rightarrow \mathrm{S} 1 \mid \mathrm{S} 2$ where S 1 is start symbol of G1 and S2 is start symbol og G2 we have that G is ambiguous iff P has a solution
PCP and context sensitive grammars
From any PCP instance, P, can specify CSG, G, such that
$L(G) \neq \varnothing$ iff P has a solution; it is also the case that $L(G)$ is infinite if so
Note that this is second proof of udecidability of emptiness for CSG
PSG
Given TM, M, can specify PSG, G, such that $L(G)=L(M)$
Every PSL is homomorphic image of a CSL

Closure of CSL's under λ-free homomorshisms

Quotient
Given TM, M, can specify CFGs, G1 and G2, such that L(G1) / L(G2) $=\mathrm{L}(\mathrm{M})$

Complexity Theory

P, NP (verification vs non-det. Solution), co-NP, NP-Complete
FP, FNP, TFNP, NP-Easy, NP-Hard, NP-Equivalent, PSPACE
Polynomial many-one versus polynomial Turing reductions
Problems I will focus on
Polynomial-time bounded NDTM to SAT
Polynomial step bounded Semi-Thue to Bounded PCP
SAT to 3-SAT
3SAT to Independent Set problem (IS) for undirected graph
3SAT to SubsetSum
SubsetSum to Partition
KnapSack is limited to one bin and asks for best fit (usually with values \& weights)
SubsetSum optimization problem for $\leq G$ when weight and value are same
BinPacking allows multiple bins and optimizes number of bins of some fixed size
Scheduling with fixed number (p) of processors and no deadlines
Goal is to finish all tasks as soon as possible
This is an optimization version of a p-partition problem
Deadline scheduling
BinPacking uses all items in list so list could be times of tasks and we have a an Optimization problem minimizes the number of processors while obeying a deadline
Scheduling heuristics and anomalies
Unit execution scheduling of tree/forest and of anti-tree/anti-forest
Hamiltonian circuit (cycle)
Travelling Salesman adds distances (weights) and seeks circuit of distance $\leq K$
Reduce HC to TSP by setting distances to 1 where links and to $\mathrm{K}+1$ otherwise Optimization version looks for minimum distance circuit
Integer Linear Programming Feasibility
Is there an assignment that satisfies the constraints?
SAT3 and 0-1 case.
k -vertex cover, k -coloring (3-coloring), Optimization versions: min vertex cover; min coloring
Factor Decision Problem (NP-Complete and Co-NP-Complete)
Parallelisms and non-parallelisms to Recursive, RE, RE-Complete, Co-RE, Co-RE-Complete, RE-Hard (Turing versus many-one reductions)

