Paper length (your papers) are required to be a minimum of 6 pages, spacing of 1.5 lines and margins of no more than 1" on all sides.

Sample Topics for Papers and Presentations

A great source of interesting papers are those recently published by Christos Papadimitriou

http://dblp.uni-trier.de/pers/hd/p/Papadimitriou:Christos_H=

Computer-Assisted Theorem Proving

Semi-Automated Theorem Proving

http://homotopytypetheory.org/book/

Four-Color Problem

http://www.ams.org/notices/200811/tx081101382p.pdf

Collatz Conjecture: The 3x+1 problem

https://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/Laga

rias3-23.pdf

Factor Replacement

 $2x \rightarrow x$

 $x \rightarrow 3x+1$

Unordered Factor Replacement or Petri Net

 $2x \rightarrow x$

 $2x+1 \rightarrow 6x+4$

2-Tag System where start with a sequence of a's

 $a \rightarrow bc$

 $b \rightarrow a$

 $c \rightarrow aaa$

Chen, H-L, Doty, D. & Soloveichik, D. (2014). Rate-independent computation in continuous chemical reaction networks. *Proceedings of the 5th Innovations in Theoretical Computer Science Conference*, (Princeton, New Jersey, USA, January 12-14, 2014), pp. 313-326.

http://www.dna.caltech.edu/~ddoty/papers/dfccrn-journal.pdf

Chen, H. L., Doty, D., & Soloveichik, D. (2012). Deterministic function computation with chemical reaction networks. In *DNA Computing and Molecular Programming* (pp. 25-42). Springer Berlin Heidelberg.

http://www.dna.caltech.edu/~ddoty/papers/dfccrn-journal.pdf

Cook, M. (2004). Universality in elementary cellular automata. *Complex Systems*, 15(1), 1-40.

http://www.complex-systems.com/pdf/15-1-1.pdf

Doty, D. (2012). Theory of algorithmic self-assembly. *Communications of the ACM* 55(12): 78-88.

http://www.dna.caltech.edu/~ddoty/papers/tasa.pdf

Doty, D., Lutz, J. H., Patitz, M. J., Schweller, R. T., Summers, S. M., & Woods, D. (2012). The tile assembly model is intrinsically universal. In *Foundations of Computer Science (FOCS) 2012*, 302-310.

http://www.dna.caltech.edu/~ddoty/papers/tamiu.pdf

Neary, T., & Woods, D. (2006). P-completeness of cellular automaton Rule 110. In *Automata, Languages and Programming* (pp. 132-143). Springer Berlin Heidelberg http://link.springer.com/chapter/10.1007/11786986_13

Ahmadi, A., Olshevsky, A., Parrilo, P., Tsitsiklis, J. (2013). NP-hardness of Deciding Convexity of Quartic Polynomials and Related Problems. *Mathematical*

Programming, February 2013, Volume 137, Issue 1-2, 453-476

http://link.springer.com/article/10.1007%2Fs10107-011-0499-2#

Kevin Leyton-Brown, Holger H. Hoos, Frank Hutter, and Lin Xu. (2014).

Understanding the empirical hardness of *NP*-complete problems. *Commun. ACM* 57, 5 (May 2014), 98-107.

http://cacm.acm.org/magazines/2014/5/174350-understanding-the-empirical-hardness-of-np-complete-problems/fulltext

Fabio L. Traversa, Chiara Ramella, Fabrizio Bonani, and Massimiliano Di Ventra1 (2014). Memcomputing NP-complete problems in polynomial time using polynomial resources and collective states,

http://arxiv.org/pdf/1411.4798v2.pdf

Textbook resources for topics that you might choose from

Arora&Barak, *Computational Complexity: A Modern Approach*, Cambridge University Press, 2009.

http://www.cs.princeton.edu/theory/complexity/

Oded Goldreich, *P, NP, and NP-Completeness: The Basics of Complexity Theory*, Cambridge University Press, 2010.

http://www.wisdom.weizmann.ac.il/~odedg/bc-drafts.html

Oded Goldreich, *Computational Complexity: A Conceptual Approach*, Cambridge University Press, 2008.

http://www.wisdom.weizmann.ac.il/~odedg/cc-drafts.html

Examples from above are:

Interactive Proofs

Probabilistic Computation

PCP Theorem (Hardness of Approximation)

Probabilistic Proof Systems

Quantum Computing

Randomized Algorithms

Promise Problems

Topics from Last Year

(Not available this year unless some new results came out in last year)

Compute Arbitrary Functions Over Encrypted Data

Turing test as a defining feature of AI-completeness

On NP-Completeness of modularity based algorithms for community detection in graphs

Complexity Analysis on the NP-hard problem of "Generalized Minimum Clique

Problem" and Studying two tractable solutions for solving it.

On the undecidability of probabilistic planning and related stochastic optimization problems

On A fast algorithm for equitable coloring"

Saving space by algebraization

NP-Completeness of the Minimum Manhattan Network Problem

Testing properties of sparse images

Statistical Model Checking

Rush Hour is PSPACE-complete, or "Why you should generously tip parking lot attendants"

Short Lists with Short Programs in Short Time

Rule 110

UNO is hard, even for a single player

Modeling multiple-object tracking as constrained flow optimization problem

Universality in Elementary Cellular Automata

On the computational complexity of a game of cops and robbers.

Self-Assembly for Computation

Complexity of Classic Video Games

Closing Complexity Gaps for Coloring Problems on H-Free Graphs

Deterministic function computation with chemical reaction networks

Turing and Super-Turing Capabilities of Neural Networks

A Comprehensive Study of Self-Assembly in Various Computational Environments

A Hypergraph Partitioner for Sparse Matrix Partitioning

An Energy Complexity Model for Algorithms