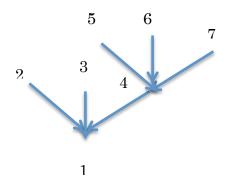
Assignment # 7 Key

1. Consider the following set of independent tasks with associated task times: (T1,4), (T2,5), (T3,2), (T4,7), (T5,1), (T6,4), (T7,8)

Fill in the schedules for these tasks under the associated strategies below.

Greedy using the list order above:

<i>T1</i>	<i>T1</i>	<i>T1</i>	<i>T1</i>	<i>T3</i>	<i>T3</i>	<i>T5</i>	T6	T6	T6	T6	<i>T7</i>	
<i>T2</i>	<i>T2</i>	<i>T2</i>	<i>T2</i>	<i>T2</i>	<i>T4</i>							


19 units

Greedy using a reordering of the list so that longest running tasks appear earliest in the list:

<i>T7</i>	T 7	T 7	T 7	T 7	<i>T7</i>	T 7	<i>T7</i>	<i>T1</i>	<i>T1</i>	<i>T1</i>	<i>T1</i>	T6	T6	T6	T6		
<i>T4</i>	<i>T4</i>	<i>T4</i>	<i>T4</i>	<i>T4</i>	<i>T4</i>	<i>T4</i>	<i>T2</i>	<i>T2</i>	<i>T2</i>	<i>T2</i>	<i>T2</i>	<i>T3</i>	<i>T3</i>	<i>T5</i>			

16 units (optimal)

2. Consider a very simple unit execution time tree with just 7 tasks that we wish to schedule on 2 processors. The tree is below.

a.) Show the Gantt chart associated with the optimal schedule based on the assigned priorities.

<i>T7</i>	<i>T5</i>	<i>T4</i>	<i>T1</i>								
T6	<i>T3</i>	<i>T2</i>									

b.) Show the Gantt chart associated with some optimal schedule when this is treated as an anti-tree (dependency arrows reversed).

<i>T1</i>	<i>T4</i>	<i>T5</i>	<i>T7</i>								
	<i>T2</i>	<i>T3</i>	T6								

c.) Show the Gantt chart associated with the schedule of this anti-tree when inverted priorities are used (1 is highest, 2 is second highest, etc.). Comment on any observation you might have of this versus the schedule in **(b)**.

<i>T1</i>	<i>T2</i>	<i>T4</i>	T5	T 7							
	<i>T3</i>		T6								

This schedule ignores the importance of completing T4 to open up T5, T6 and T7. In other words, it is not cognizant of the importance of critical paths.