Assignment # 7; Due April 7 at start of class

1. Consider the following set of independent tasks with associated task times: (T1,4), (T2,5), (T3,2), (T4,7), (T5,1), (T6,4), (T7,8)

Fill in the schedules for these tasks under the associated strategies below.

Greedy using the list order above:

Gre	Greedy using a reordering of the list so that longest running tasks appear earliest in the list:																

2. Consider a very simple unit execution time tree with just 7 tasks that we wish to schedule on 2 processors. The tree is below.

a.) Show the Gantt chart associated with the optimal schedule based on the assigned priorities.

b.) Show the Gantt chart associated with some optimal schedule when this is treated as an anti-tree (dependency arrows reversed).

c.) Show the Gantt chart associated with the schedule of this anti-tree when inverted priorities are sued (1 is highest, 2 is second highest, etc.) not be optimal? Comment on any observation you might have of this versus the schedule in **(b)**.