Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re nonrecursive, (NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate.
a.) $\quad\left\{<\mathbf{f}, \mathbf{g}>\mid \operatorname{domain}\left(\varphi_{f}\right) \subseteq \operatorname{domain}\left(\varphi_{\mathrm{g}}\right)\right\}$

NRNC

Justification:

$\forall<\mathbf{x}, \mathbf{t}>\boldsymbol{\exists} \boldsymbol{s}[\operatorname{STP}(\mathbf{f}, \mathbf{x}, \mathbf{t}) \Rightarrow \operatorname{STP}(\mathbf{g}, \mathbf{x}, \mathbf{s})]$
b.) $\quad\left\{\mathbf{f} \mid\right.$ no number appears more than once in range $\left.\left(\varphi_{f}\right)\right\}$
coRE

Justification:

$\forall<\mathbf{x}, \mathbf{y}, \mathbf{t}>[(\operatorname{STP}(\mathbf{f}, \mathbf{x}, \mathbf{t}) \& \operatorname{STP}(\mathbf{f}, \mathbf{y}, \mathrm{t}) \&(\mathbf{x} \neq \mathbf{y})) \Rightarrow(\operatorname{VALUE}(\mathbf{f}, \mathbf{x}, \mathbf{t}) \neq \operatorname{VALUE}(\mathbf{f}, \mathbf{y}, \mathbf{t}))]$
c.) $\quad\left\{f \mid \varphi_{\mathrm{f}}(\mathrm{f}) \downarrow\right.$ in at most $\mathbf{f}+1$ steps $\}$

REC

Justification:

$\operatorname{STP}(\mathbf{f}, \mathbf{f}, \mathbf{f + 1}$)
d.) $\quad\left\{\mathbf{f} \mid \varphi_{f}(\mathbf{f}) \downarrow\right.$ but takes at least $\mathbf{f}+1$ steps to do so $\}$

RE

Justification:

$\exists \mathrm{t}[\operatorname{STP}(\mathbf{f}, \mathrm{f}, \mathrm{t}) \boldsymbol{\&} \sim \operatorname{STP}(\mathbf{f}, \mathbf{f}, \mathrm{f})]$
e.) $\quad\left\{<\mathbf{f}, \mathbf{x}, \mathrm{y}>\mid \varphi_{\mathrm{f}}(\mathrm{x}) \downarrow\right.$ and $\varphi_{\mathrm{f}}(\mathrm{y}) \downarrow$ but $\varphi_{\mathrm{f}}(\mathrm{x})$ takes longer to converge than does $\left.\varphi_{\mathrm{f}}(\mathrm{y})\right\}$
RE

Justification:

$\boldsymbol{\exists} \mathbf{t} \operatorname{STP}(\mathbf{f}, \mathbf{x}, \mathbf{t}+\mathbf{1}) \& \operatorname{STP}(\mathbf{f}, \mathbf{y}, \mathbf{t}+\mathbf{1}) \& \sim \operatorname{STP}(\mathbf{f}, \mathbf{x}, \mathbf{t})]$

