Assignment \#4; Due February 24 at start of class

Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re nonrecursive, (NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate.
a.) $\quad\left\{<\mathbf{f}, \mathbf{g}>\mid \operatorname{domain}\left(\varphi_{f}\right) \subseteq \operatorname{domain}\left(\varphi_{\mathrm{g}}\right)\right\}$

Justification:

Note: This allows equal domains, but even works if domain $\left(\varphi_{f}\right)$ is \varnothing and domain $\left(\varphi_{\mathrm{g}}\right)$ is κ.
b.) $\quad\left\{\mathbf{f} \mid\right.$ no number appears more than once in $\left.\operatorname{range}\left(\varphi_{f}\right)\right\}$

Justification:

Note: This can include functions whose ranges are empty and even those whose ranges do include all natural numbers.
c.) $\quad\left\{f \mid \varphi_{f}(f) \downarrow\right.$ in at most $f+1$ steps $\}$

Justification:

Note: This is similar to the set \mathbf{K} but involves an added twist.
d.) $\quad\left\{\mathbf{f} \mid \varphi_{f}(\mathbf{f}) \downarrow\right.$ but takes at least $\mathbf{f}+\mathbf{1}$ steps to do so $\}$

Justification:

Note: This is also similar to \mathbf{K} but has a twist that differs from that in part (c).
e.) $\quad\left\{<f, x, y>\mid \varphi_{f}(x) \downarrow\right.$ and $\varphi_{f}(\mathbf{y}) \downarrow$ but $\varphi_{f}(x)$ takes longer to converge than does $\left.\varphi_{\mathrm{f}}(\mathrm{y})\right\}$

Justification:

Note: Be careful to address the fact that φ_{f} converges on both \mathbf{x} and \mathbf{y}.

