Assignment#2; Due February 3 at start of class

Let set **A** be non-empty recursive, **B** be re non-recursive and **C** be non-re. Using the terminology **(REC) recursive**, **(RE) non-recursive recursively enumerable**, **(NR) non-re**, categorize each set below, saying whether or not the set can be of the given category and justifying each answer. You may assume, for any set **S**, the existence of comparably hard sets

 $S_E = \{2x | x \in S\}$ and $S_D = \{2x+1 | x \in S\}$. The following is a sample of the kind of answer I require:

Sample.) $A \cap C = \{ x \mid x \in A \text{ and } x \in C \}$

REC: Yes. If $A = \{0\}$ then $A \cap C = \emptyset$ ot $\{0\}$, each of which is in REC.

RE: Yes. Let $A = \aleph_E = \{ 2x \mid x \in \aleph \}$; let $C = TOT_D \cup HALT_E$ then $A \cap C = HALT_E$ which is in RE

NR: Yes. If $A = \aleph$ then $A \cap C = C$, which is in NR.

- a.) $A B = \{ x \mid x \in A \text{ and } x \notin B \} // \text{ Set difference}$
- b.) $\min(A, B) = \{ \min(x, y) \mid x \in A \text{ and } y \in B \} // \text{Minimum}$
- c.) $A \oplus C = \{ x \mid x \in A \text{ or } x \in C \text{ but } \notin A \cap C \} // \text{ Set exclusive union}$

Be careful: Some may not be possible. If so, you must justify why this is so.

Note:

TOT = { $x | \forall \phi_x (y) \downarrow$ }. These are the indices of the set of algorithms. **HALT** = { $\langle x, y \rangle | \phi_x (y) \downarrow$ }. This is the set of pairs of procedures and input for which the given procedure halts.

The set S_E , for any set S, is defined as $\{2x \mid x \in S\}$ The set S_D , for any set S, is defined as $\{2x+1 \mid x \in S\}$. The complexities of S, S_E and S_D are the same. That is, all three are either in REC, RE or NR.