Name: PID:

COT5405 - Homework 3

Out date: 10/22/2010 (Friday), due date: 11/03/2010 (Wednesday)

15 points each problem.

You need to turn in the solutions for all eight problems. But we will select four problems and only
grade these four.

6.1. A contiguous subsequence of a list S is a subsequence made up of consecutive
elements of S. For instance, if S is

5,15, =30, 10, -5, 40, 10,

then 15, —30, 10 is a contiguous subsequence but 5, 15, 40 is not. Give a
linear-time algorithm for the following task:

Input: A list of numbers, a;, a, ..., a,.
Output: The contiguous subsequence of maximum sum (a subsequence
of length zero has sum zero).

For the preceding example, the answer would be 10, -5, 40, 10, with a sum of 55.

(Hint: For each j € {1, 2, ..., n}, consider contiguous subsequences ending
exactly at position j.)

Note: Do not output the consecutive subsequences; output the maximum sum.

Let S[j] be the maximum sum of all consecutive subsequences ending exactly at a;.
If j==0

S[j] = 0

elseif j>=1andj<=n

Si1= .
mle(O, a;+S[j-1])

Output = n
max{S[jI}
j=1

Name: PID:

6.2. You are going on a long trip. You start on the road at mile post 0. Along the way
there are n hotels, at mile posts @y < a; < --- < a,, where each g; is measured
from the starting point. The only places you are allowed to stop are at these
hotels, but you can choose which of the hotels you stop at. You must stop at the
final hotel (at distance a,), which is your destination.

You’d ideally like to travel 200 miles a day, but this may not be possible
(depending on the spacing of the hotels). If you travel x miles during a day, the
penalty for that day is (200 — x)*. You want to plan your trip so as to minimize
the total penalty—that is, the sum, over all travel days, of the daily penalties.
Give an efficient algorithm that determines the optimal sequence of hotels at
which to stop.

Note: Output the minimum total penalty.
Let S[j] be the minimum total penalty when you stop at hotel j.
If j::

S[j] = 0

elseif j>=1andj<=n

S[jl =
min {S[i] + (200-(a-a;))*}

i<j

Output =
S[n]

Name: PID:

6.3. Yuckdonald’s is considering opening a series of restaurants along Quaint Valley
Highway (QVH). The n possible locations are along a straight line, and the
distances of these locations from the start of QVH are, in miles and in increasing
order, nmy, M, ..., m,. The constraints are as follows:

* At each location, Yuckdonald’s may open at most one restaurant. The
expected profit from opening a restaurant at location i is p;, where p; > 0
andi=1,2,...,n

* Any two restaurants should be at least k miles apart, where k is a positive
integer.

Give an efficient algorithm to compute the maximum expected total profit
subject to the given constraints.

Note: Output the maximum expected total profit.

Let F[j] be the total profit of restaurants that are within m; miles from the start of QVH (i.e. at
locations m; my, .. m;).

Let a(j) be index of the nearest location that is at least k miles behind location j (i.e. (m; - m.) is
greater than or equal to k and (m; -m,+) is less than k.).

Ifj::

F[j] = 0

else if 1<=j<=n

F[j] =
max {F[j-1], p;+F[a;]}

Output = F[n]

Name: PID:

6.7. A subsequence is palindromic if it is the same whether read left to right or right
to left. For instance, the sequence

AC.G TG, T,C,A A A AT.C.G

has many palindromic subsequences, including A, C, G,C, Aand A, A, A, A (on
the other hand, the subsequence A, C, T is not palindromic). Devise an
algorithm that takes a sequence x[1...n| and returns the (length of the) longest
palindromic subsequence. Its running time should be O(n?).

Note: Output the length of the maximum palindrome in the string.

Let F[i,j] denote the maximum palindrome subsequence in the string x[i,...,j].

if i>j

F[i,j] = 0
else if i==j

F[ij] = 1
else if i<j

F[i,j] =max(F(i+1,), F(i,j-1), F(i+1,j-1) + 2 * match(x[i],x[j]))
where match(a,b) = 1 if a=b, 0 otherwise

Output = F[1,n]

Name: PID:

6.10. Counting heads. Given integers n and k, along with p,, ..., pr € [0, 1], you want
to determine the probability of obtaining exactly k heads when n biased coins
are tossed independently at random, where p; is the probability that the ith coin

comes up heads. Give an O (nk) algorithm for this task.? Assume you can
multiply and add two numbers in [0, 1] in O(1) time.

Let S[i,j] be the probability of tossing coins 1,2,...,i and obtaining exactly j heads.

If i==0
if j==0
S[0][0] = 1
else j!=0
SIOI[j] = 0

else if 1<=i<=n

S[iLjl = pi*Sli-1,j-1]+(1-p:)*S[i-1,j]

Output = S[nk]

Name: PID:

6.22. Give an O(nt) algorithm for the following task.

Input: A list of n positive integers a;, @, . .., a,; a positive integer ¢.
Question: Does some subset of the ¢;’s add up to t? (You can use each a;
at most once.)

Note: Do not output the subset; output either true or false.

Let S[i,j] indicate whether there exist some subset of {a,...,a;} such that the sum of elements in the
subset is equivalent to j, where 0<=j<=t. S[i,j] can be true or false.

If i==0
If j==0
S[0,j] = true
else j!=0
S[0,j] = false

else if 1<=i<=n

S[i,jl = SI[i-1,j] OR S[i-1,j-ai]

Output = S[n,t]

Name: PID:

26.2-2

Show the execution of the Edmonds-Karp algorithm on the flow network below:

Saskatoon

20 Winnipeg

Vancouver

Figure: A flow network G=(V,E) for the Lucky Puck Company's trucking problem. The Vancouver
factory is the source s, and the Winnipeg warehouse is the sink t. Pucks are shipped through
intermediate cities, but only c(u,v) crates per day can go from city u to city v. Each edge is labelled
with its capacity.

TBD

Name: PID:

26.2-9

The edge connectivity of an undirected graph is the minimum number k of edges that must be
removed to disconnect the graph. For example, the edge connectivity of a tree is 1, and the edge
connectivity of a cyclic chain of vertices is 2. Show how the edge connectivity of an undirected
graph G=(V,E) can be determined by running a maximum-flow algorithm on at most |V| flow
networks, each having O(V) vertices and O(E) edges.

Describe your idea clearly in a short paragraph.

Idea: Set the capacity of all the edges in an undirected graph as unit, fix one vertex to be the source,
and try every other vertex to be the sink, and construct |V-1| networks. Apply a maximum-flow
algorithm on all the networks and compute their maximum flows. The minimum maximum flow is

equivalent to the edge connectivity of the graph.

Time complexity: |V-1| times the time complexity of the maximum flow algorithm.

