
COT5405 - Homework I

Out date: **09/08/2010** (Wednesday), due date: **09/14/2010** (Wednesday) **15** points each problem.

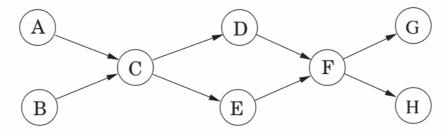
You need to turn in the solutions for **all four** problems. But we will select **two** problems and **only** grade these two.

3.2. Perform depth-first search on each of the following graphs; whenever there's a choice of vertices, pick the one that is alphabetically first. Classify each edge as a tree edge, forward edge, back edge, or cross edge, and give the pre and post number of each vertex.

Problem (a)

Vertices	Pre number	Post number
A		
В		
С		
D		
Е		
F		
G		
Н		

Edges	Tree Edge	Cross Edge	Back Edge	Forward Edge
A>B				
A>F				
B>C				
B>E				
C>D				


D>B		
D>H		
E>D		
E>G		
F>E		
F>G		
G>F		
H>G		

Problem (b)

Vertices	Pre number	Post number
A		
В		
С		
D		
Е		
F		
G		
Н		

Edges	Tree Edge	Cross Edge	Back Edge	Forward Edge
A>B				
A>H				
B>F				
C>B				
D>C				
D>E				
F>C				
F>D				
F>E				
G>A				
G>B				
G>F				
H>G				

3.3. Run the DFS-based topological ordering algorithm on the following graph. Whenever you have a choice of vertices to explore, always pick the one that is alphabetically first.

- (a) Indicate the pre and post numbers of the nodes.
- (b) What are the sources and sinks of the graph?
- (c) What topological ordering is found by the algorithm?
- (d) How many topological orderings does this graph have?

Problem (a)

Vertices	Pre number	Post number
A		
В		
С		
D		
E		
F		
G		
Н		

Problem (b)

Sources	
Sinks	

Problem (c)

Topo ordering				

Dro	blem	(4)
PIU	orem	. tu

3.5. The *reverse* of a directed graph G = (V, E) is another directed graph $G^R = (V, E^R)$ on the same vertex set, but with all edges reversed; that is, $E^R = \{(v, u) : (u, v) \in E\}$.

Give a linear-time algorithm for computing the reverse of a graph in adjacency list format.

- 3.6. In an undirected graph, the *degree* d(u) of a vertex u is the number of neighbors u has, or equivalently, the number of edges incident upon it. In a directed graph, we distinguish between the *indegree* $d_{in}(u)$, which is the number of edges into u, and the *outdegree* $d_{out}(u)$, the number of edges leaving u.
 - (a) Show that in an undirected graph, $\sum_{u \in V} d(u) = 2|E|$.
 - (b) Use part (a) to show that in an undirected graph, there must be an even number of vertices whose degree is odd.
 - (c) Does a similar statement hold for the number of vertices with odd indegree in a directed graph?