
Parsing from Grammar

Syntax Directed Left Recursive Grammar

Syntax directed translation adds semantic rules to be carried out when syntactic
rules are applied. Let’s do conversion of infix to postfix.
Expr à Expr Plus Term {out(“ + “);}

| Term
Term à Term Times Factor {out(“ * “);}

| Factor
Factor à Lparen Expr Rparen

| Int {out(“ “, Lex.value, “ “);}

9/26/19 © UCF EECS 2

How It Works

Examples of applying previous syntax directed translation

Input: 15 + 20 + 7 * 3 + 2
Output: 15 20 + 7 3 * + 2 +

Input: 15 + 20 + 7 + 3 * 2
Output: 15 20 + 7 + 3 2 * +

9/26/19 © UCF EECS 3

Removing Left Recursion

Given left recursive and non left recursive rules
A ® Aa1 | … | Aan | b1 | … | bm

Can view as
A ® (b1 | … | bm) (a1 | … | an)*
Star notation is an extension to normal notation with obvious meaning
Now, it should be clear this can be done right recursive as
A ®b1 B| … | bm B
B ®a1B| … | anB | λ

9/26/19 © UCF EECS 4

Treat Actions from Left Rec as Terminals

Expr à Term ExprRest
ExprRest à Plus Term {out (“ + “);} ExprRest

| l
Term à Factor TermRest
TermRest à Times Factor {out(“ * “);} TermRest

| l
Factor à Lparen Expr Rparen

| Int {out(“ “,Lex.value,” “);}

9/26/19 © UCF EECS 5

Recursive Descent

9/26/19 © UCF EECS 6

Expr() {
Term();
ExprRest();

}

ExprRest() {
if (token == Plus) {

nextsy();
Term();
out(“ + “);
ExprRest();

}
}

Term() {
Factor();
TermRest();

}

TermRest() {
If (token == Times) {

nextsy();
Factor();
out(“ * “);
TermRest();

}
}

Factor() {
switch (token) {

case Lparen:
nextsy();
call E
if (token == Rparen)
nextsy();

else
ERROR();

break;
case Id:

out(Lex.value);
nextsy();
break;

default:
ERROR();

}
}

Process

• Write left recursive grammar with semantic actions.
• Rewrite a right recursive with actions treated as terminals in original

rules.
• Develop recursive descent parser.

9/26/19 © UCF EECS 7

