Non-Regular Languages

For each of the following, prove it is not regular by using the Pumping Lemma or Myhill-Nerode.

a. { $a^{k!} | k>0$ } This is set { a^1 , a^2 , a^6 , a^{24} , a^{120} , ... }

b. { aⁱb^jc^k | i≥0, j≥0, k≥0, j = i + k }

Pumping Lemma (k!)

1a. { a^{k!} | k>0 } using P.L.

- 1. Assume that L is regular
- 2. Let N be the positive integer given by the Pumping Lemma
- 3. Let s be a string s = $a^{(N+1)!} \in L$
- 4. Since $s \in L$ and $|s| \ge N$, s is split by PL into xyz, where $|xy| \le N$ and |y| > 0 and for all $i \ge 0$, $xy^i z \in L$
- 5. We choose i = 2; by PL: $xy^2z = xyyz \in L$
- 6. Thus, $a^{(N+1)!+|y|}$ would be \in L. This means that there is a factorial between (N+1)! and (N+1)!+N, but the smallest factorial after (N+1)! Is (N+2)! = (N+2) (N+1)! = N(N+1)! + 2(N+1)! > (N+1)! + 2N > (N+1)!+N
- 7. This is a contradiction, therefore L is not regular
- Note: Using N is dangerous because N could be 1 and 2! is within N (1) of 1!

Pumping Lemma (aⁱb^jc^k)

1b. { $a^{i}b^{j}c^{k} | i \ge 0, j \ge 0, k \ge 0, j = i + k$ } using P.L.

- 1. Assume that L is regular
- 2. Let N be the positive integer given by the Pumping Lemma
- 3. Let s be the string s = $a^N b^N \in L$
- 4. Since $s \in L$ and $|s| \ge N$, s is split by PL into xyz, where $|xy| \le N$ and |y| > 0 and for all $i \ge 0$, $xy^iz \in L$
- 5. We choose i = 0; by PL: $xz = xz \in L$
- 6. Thus, $a^{N-|y|}b^N$ would be \in L, but it's not since N-|y| + 0 < N. Note: The 0 is because there are 0 c's
- 7. This is a contradiction, therefore L is not regular

Myhill-Nerode (k!)

1a. { $a^{k!}$ | k>0 } using M.N. We consider the collection of right invariant equivalence classes $[a^{j!-j}], j \ge 0$. It's clear that $a^{j!-j}a^j$ is in the language, but $a^{k!-k}a^{j}$ is not when j < kThis shows that there is a separate equivalence class $[a^{j!-j}]$ induced by R_i , for each $j \ge 0$. Thus, the index of R_1 is infinite and Myhill-Nerode states that L cannot be Regular.

Myhill-Nerode (aⁱb^jc^k)

- 1b. { $a^{i}b^{j}c^{k} | i \ge 0, j \ge 0, k \ge 0, j = i + k$ } using M.N.
- We consider the collection of right invariant equivalence classes $[a^{j}], j \ge 0$.
- It's clear that a^jb^j is in the language,
- but $a^k b^j$ is not when $j \neq k$
- This shows that there is a separate equivalence class $[a^j]$ induced by R_L , for each $j \ge 0$. Thus, the index of R_L is infinite and Myhill-Nerode states that L cannot be Regular.