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Equivalence of Models

Equivalency of computation by 
Turing machines,
register machines, 

factor replacement systems, 
recursive functions
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Proving Equivalence
• Constructions do not, by themselves, 

prove equivalence. 
• To do so, we need to develop a notion of 

an “instantaneous description” (id) of each 
model of computation (well, almost as 
recursive functions are a bit different). 

• We then show a mapping of id’s between 
the models.
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Instantaneous Descriptions
• An instantaneous description (id) is a finite description of 

a state achievable by a computational machine, M.
• Each machine starts in some initial id, id0. 
• The semantics of the instructions of M define a relation 
ÞM such that, idi ÞM idi+1, i³0, if the execution of a 
single instruction of M would alter M’s state from idi to 
idi+1 or if M halts in state idi and idi+1=idi.

• Þ+
M is the transitive closure of ÞM

• Þ*M is the reflexive transitive closure of ÞM
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id Definitions
• For a register machine, M, an id is an s+1 tuple of the form 

(i, r1,…,rs)M specifying the number of the next instruction to be 
executed and the values of all registers prior to its execution.  

• For a factor replacement system, an id is just a natural number.
• For a Turing machine, M, an id is some finite representation of the 

tape, the position of the read/write head and the current state. This 
is usually represented as a string aqxb, where a (b) is the shortest 
string representing all non-blank squares to the left (right) of the 
scanned square, x is the symbol at the scanned square and q is the 
current state.

• Recursive functions do not have id’s, so we will handle their 
simulation by an inductive argument, using the primitive functions 
are the basis and composition, induction and minimization in the 
inductive step.
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Equivalence Steps
• Assume we have a machine M in one model of computation and a 

mapping of M into a machine M’ in a second model.
• Assume the initial configuration of M is id0 and that of M’ is id’0
• Define a mapping, h, from id’s of M into those of M’, such that, 

RM = { h(d) | d is an instance of an id of M }, and
– id’0Þ*M’ h(id0), and h(id0) is the only member of RM in the 

configurations encountered in this derivation.
– h(idi)Þ+

M’ h(idi+1), i³0, and h(idi+1) is the only member of RM in 
this derivation.

• The above, in effect, provides an inductive proof that 
– id0Þ*M id implies id’0Þ*M’ h(id), and
– If id’0Þ*M’ id’ then either id0Þ*M id, where id’ = h(id), or 

id’ Ï RM

8/21/19



All Models are Equivalent

Equivalency of computation by 
Turing machines, register machines, 

factor replacement systems, 
recursive functions
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Our Plan of Attack

• We will now show 
TURING ≤ REGISTER ≤ FACTOR ≤ 

RECURSIVE ≤ TURING 
where by A ≤ B, we mean that every 
instance of A can be replaced by an 
equivalent instance of B. 

• The transitive closure will then get us the 
desired result.
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Encoding a TM’s State
• Assume that we have an n state Turing machine.  Let 

the states be numbered 0,…, n-1.  
• Assume our machine is in state 7, with its tape 

containing
… 0 0 1 0 1 0 0 1 1 q7 0 0 0 …

• The underscore indicates the square being read.  We 
denote this by the finite id
1 0 1 0 0 1 1 q7 0

• In this notation, we always write down the scanned 
square, even if it and all symbols to its right are blank.  
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More on Encoding of TM
• An id can be represented by a triple of natural numbers, 

(R,L,i), where R is the number denoted by the reversal 
of the binary sequence to the right of the qi, L is the 
number denoted by the binary sequence to the left, and i
is the state index.  

• So, 
… 0 0 1 0 1 0 0 1 1 q7 0 0 0 … 
is just (0, 83, 7).
… 0 0 1 0 q5 1 0 1 1 0 0 …
is represented as (13, 2, 5).

• We can store the R part in register 1, the L part in 
register 2, and the state index in register 3. 
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Simulation by RM
1. DEC3[2,q0] : Go to simulate actions in state 0
2. DEC3[3,q1] : Go to simulate actions in state 1
…
n. DEC3[ERR,qn-1] : Go to simulate actions in state n-1
…
qj. IF_r1_ODD[qj+2] : Jump if scanning a 1
qj+1. JUMP[set_k] : If (qj 0 0 qk) is rule in TM
qj+1. INC1[set_k] : If (qj 0 1 qk) is rule in TM
qj+1. DIV_r1_BY_2 : If (qj 0 R qk) is rule in TM

MUL_r2__BY_2
JUMP[set_k]

qj+1. MUL_r1_BY_2 : If (qj 0 L qk) is rule in TM
IF_r2_ODD then INC1
DIV_r2__BY_2[set_k]

…
set_n-1. INC3[set_n-2] : Set r3 to index n-1 for simulating state n-1
set_n-2. INC3[set_n-3] : Set r3 to index n-2 for simulating state n-2
…
set_0. JUMP[1] : Set r3 to index 0 for simulating state 0
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Fixups
• Need epilog so action for missing quad 

(halting) jumps beyond end of simulation 
to clean things up, placing result in r1.  

• Can also have a prolog that starts with 
arguments in first n registers and stores 
values in r1, r2 and r3 to represent Turing 
machines starting configuration.
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Prolog
Example assuming n arguments (fix as needed)
1. MUL_rn+1_BY_2[2] : Set rn+1 = 11…102, where, #1's = r1
2. DEC1[3,4] : r1 will be set to 0
3. INCn+1[1] : 
4. MUL_rn+1_BY_2[5] : Set rn+1 = 11…1011…102, where, #1's = r1, then r2
5. DEC2[6,7] : r2 will be set to 0
6. INCn+1[4] : 
…
3n-2. DECn[3n-1,3n+1] : Set rn+1 = 11…1011…1011…12, where, #1's = r1, r2,…
3n-1. MUL_rn+1_BY_2[3n] : rn will be set to 0
3n. INCn+1[3n-2] : 
3n+1 DECn+1[3n+2,3n+3] : Copy rn+1 to r1, rn+1 is set to 0
3n+2. INC2[3n+1] : 
3n+3. : r2 = left tape, r1 = 0 (right), r3 = 0 (initial state)
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Epilog
1. DEC3[1,2] : Set r3 to 0 (just cleaning up)
2. IF_r1_ODD[3,5] : Are we done with answer?
3. INC2[4] : putting answer in r2
4. DIV_r1_BY_2[2] : strip a 1 from r1
5. DEC1[5,6] : Set r1 to 0 (prepare for answer)
6. DEC2[6,7] : Copy r2 to r1 
7. INC1[6] : 
8. : Answer is now in r1

8/21/19
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Encoding a RM’s State
• This is a really easy one based on the fact that every member of Z+

(the positive integers) has a unique prime factorization.  Thus all 
such numbers can be uniquely written in the form

where the pi's are distinct primes and the ki's are non-zero values, 
except that the number 1 would be represented by 20. 

• Let R be an arbitrary n-register machine, having m instructions.

Encode the contents of registers r1,…,rn by the powers of p1,…pn . 

Encode rule number's 1,…,m by primes pn+1 ,…, pn+m

Use pn+m+1 as prime factor that indicates simulation is done.
• This is in essence the Gödel number of the RM’s state.

1i
1kp

2i
2kp …

ji
jkp
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Simulation by FRS
• Now, the j-th instruction (1≤j≤m) of R has 

associated factor replacement rules as follows:
j. INCr[i]

pn+jx ® pn+iprx
j. DECr[s, f]

pn+jprx ® pn+sx
pn+jx ® pn+fx

• We also add the halting rule associated with 
m+1 of

pn+m+1x ® x 

8/21/19
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Importance of Order
• The relative order of the two rules to 

simulate a DEC are critical.  
• To test if register r has a zero in it, we, in 

effect, make sure that we cannot execute 
the rule that is enabled when the r-th
prime is a factor.  

• If the rules were placed in the wrong order, 
or if they weren't prioritized, we would be 
non-deterministic.  
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Example of Order
Consider the simple machine to compute 
r1:=r2 – r3 (limited)
1. DEC3[2,3]
2. DEC2[1,1]
3. DEC2[4,5]
4. INC1[3]
5.

8/21/19
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Subtraction Encoding
Start with 3x5y7

7 • 5 x ® 11 x
7 x ® 13 x
11 • 3 x ® 7 x
11 x ® 7 x
13 • 3 x ® 17 x
13 x ® 19 x
17 x ® 13 • 2 x
19 x ® x

8/21/19
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Analysis of Problem
• If we don't obey the ordering here, we could take 

an input like 35527 and immediately apply the 
second rule (the one that mimics a failed 
decrement).  

• We then have 355213, signifying that we will 
mimic instruction number 3, never having 
subtracted the 2 from 5.  

• Now, we mimic copying r2 to r1 and get 255219 . 
• We then remove the 19 and have the wrong 

answer.
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Universal Machine
• In the process of doing this reduction, we will 

build a Universal Machine.  
• This is a single recursive function with two 

arguments.  The first specifies the factor system 
(encoded) and the second the argument to this 
factor system.  

• The Universal Machine will then simulate the 
given machine on the selected input.
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Encoding FRS
• Let (n, ((a1,b1), (a2,b2), … ,(an,bn)) be 

some factor replacement system, where 
(ai,bi) means that the i-th rule is

aix ® bix
• Encode this machine by the number F,

pppp nnnn

n bababa nn

2212212117532 2211

++-
!

8/21/19
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Simulation by Recursive # 1
• We can determine the rule of F that applies to x by

RULE(F, x) = µ z (1 ≤ z ≤ exp(F, 0)+1) [ exp(F, 2*z-1) | x ]
• Note: if x is divisible by ai, and i is the least integer for which this is 

true, then exp(F,2*i-1) = ai where ai is the number of prime factors 
of F involving p2i-1.  Thus, RULE(F,x) = i. 

If x is not divisible by any ai, 1≤i≤n, then x is divisible by 1, and 
RULE(F,x) returns n+1.  That’s why we added p2n+1 p2n+2.

• Given the function RULE(F,x), we can determine NEXT(F,x), the 
number that follows x, when using F, by

NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x))
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© UCF EECS 27

Simulation by Recursive # 2
• The configurations listed by F, when 

started on x, are
CONFIG(F, x, 0) = x
CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))

• The number of the configuration on which 
F halts is

HALT(F, x) = µ y [CONFIG(F, x, y) == CONFIG(F, x, y+1)]
This assumes we converge to a fixed point only if we 
stop
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Simulation by Recursive # 3
• A Universal Machine that simulates an arbitrary 

Factor System, Turing Machine, Register 
Machine, Recursive Function can then be 
defined by 

Univ(F, x) =  exp ( CONFIG ( F, x, HALT ( F, x ) ), 0)

• This assumes that the answer will be returned 
as the exponent of the only even prime, 2.  We 
can fix F for any given Factor System that we 
wish to simulate.  

8/21/19
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FRS Subtraction
• 203a5b Þ 2a-b

3*5x ® x or 1/15
5x ® x or 1/5
3x ® 2x or 2/3

• Encode F = 23 315 51 75 111 133 172 191 231

• Consider a=4, b=2
• RULE(F, x) = µ z (1 ≤ z ≤ 4) [ exp(F, 2*z-1) | x ]

RULE (F,34 52) = 1, as 15 divides 34 52

• NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x))
NEXT(F,34 52) = (34 52 // 15 * 1) = 3351

NEXT(F,33 51) = (33 51 // 15 * 1) = 32

NEXT(F,32) = (32 // 3 * 2) = 2131

NEXT(F, 2131) = (2131 // 3 * 2) = 22

NEXT(F, 22) = (22 // 1 * 1) = 22

8/21/19
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Rest of simulation
• CONFIG(F, x, 0) = x

CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))
• CONFIG(F,34 52,0) = 34 52

CONFIG(F,34 52,1) = 3351

CONFIG(F,34 52,2) = 32

CONFIG(F,34 52,3) = 2131

CONFIG(F,34 52,4) = 22

CONFIG(F,34 52,5) = 22

• HALT(F, x)=µy[CONFIG(F,x,y)==CONFIG(F,x,y+1)] = 4
• Univ(F, x) =  exp ( CONFIG ( F, x, HALT ( F, x ) ), 0)

= exp(22,0) = 2

8/21/19
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Simplicity of Universal
• A side result is that every computable 

(recursive) function can be expressed in 
the form

F(x) = G(µ y H(x, y))

where G and H are primitive recursive. 
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Standard Turing Computation
• Our notion of standard Turing computability of 

some n-ary function F assumes that the 
machine starts with a tape containing the n
inputs, x1, … , xn in the form

…01x101x20…01xn0…

and ends with

…01x101x20…01xn01y0…

where y = F(x1, … , xn).

8/21/19
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More Helpers
• To build our simulation we need to construct some useful 

submachines, in addition to the R, L, R, L, and Ck machines already 
defined.

• T -- translate moves a value left one tape square 
…?01x0… Þ …?1x00… 

• Shift -- shift a rightmost value left, destroying value to its left
…01x101x20… Þ …01x20… 

• Rotk -- Rotate a k value sequence one slot to the left  
…01x101x20…01xk0… 

Þ …01x20…01xk01x10…

 R1 L0 R 

 
R 1 

L T 

R 

0 
k L k 

k+1 1 L k L 0 T k L k+1 

 
L 1 

T 
L 0 T 

0 
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Basic Functions
All Basis Recursive Functions are Turing 
computable:

• Ca
n(x1,…,xn) = a

(R1)aR
• (x1,…,xn) = xi

Cn-i+1
• S(x) = x+1

C11R

		 i
nI

8/21/19
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Closure Under Composition
If G, H1, … , Hk are already known to be Turing computable, then so 
is F, where

F(x1,…,xn) = G(H1(x1,…,xn), … , Hk(x1,…,xn))

To see this, we must first show that if E(x1,…,xn) is Turing 
computable then so is 

E<m>(x1,…,xn, y1,…,ym) = E(x1,…,xn)

This can be computed by the machine

Ln+m (Rotn+m)n Rn+m E  Ln+m+1 (Rotn+m)m Rn+m+1

Can now define F by 

H1 H2<1> H3<2> … Hk<k-1> G Shiftk

8/21/19



Closure Under Induction
To prove the that Turing Machines are closed under induction (primitive 
recursion), we must simulate some arbitrary primitive recursive function 
F(y,x1,x2, …, xn) on a Turing Machine, where
F(0, x1,x2, …, xn) = G(x1,x2, …, xn)
F(y+1, x1,x2, …, xn) = H(y, x1,x2, …, xn, F(y,x1,x2, …, xn))
Where, G and H are Standard Turing Computable.  We define the 
function F for the Turing Machine as follows:

Since our Turing Machine simulator can produce the same value for 
any arbitrary PRF, F, we show that Turing Machines are closed under 
induction (primitive recursion).

8/21/19 © UCF EECS 37

GLn+1 L
1

0

0Rn+2 H Shift Ln+2 1
Rn+2 



© UCF EECS 38

Closure Under Minimization
If G is already known to be Turing 
computable, then so is F, where

F(x1,…,xn) = µy (G(x1,…,xn, y) == 1)

This can be done by
 

R G L 1 0 L 
0 

1 
8/21/19
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Consequences of Equivalence

• Theorem: The computational power of 
Recursive Functions, Turing Machines, Register 
Machine, and Factor Replacement Systems are 
all equivalent.

• Theorem: Every Recursive Function (Turing 
Computable Function, etc.) can be performed 
with just one unbounded type of iteration.

• Theorem: Universal machines can be 
constructed for each of our formal models of 
computation.

8/21/19



HAMILTONIAN CIRCUIT (HC) 
DECISION PROBLEM IS NP-HARD
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HC Variable Gadget
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HC Gadgets Combined
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Hamiltonian Path
• Note we can split an arbitrary node, v, into 

two (v’,v’’ – one, v’, has in-edges of v, 
other, v’’, has out-edges. Path (not cycle) 
must start at v’’ and end at v’ and goal is 
still K.
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Travelling Salesman
• Start with HC = (V,E), K=|V|
• Set edges from HC instance to 1
• Add edges between pairs that lack such 

edges and make those weights 2 (often 
people make these K+1); this means that 
the reverse of unidirectional links also get 
weight 2

• Goal weight is K for cycle
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Tiling

Undecidable and NP-Complete
Variants



Basic Idea of Tiling
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A single tile has colors on all four sides.
Tiles are often called dominoes as 
assembling them follows the rules of
placing dominoes. That is, the color 
(or number) of a side must match that
of its adjacent tile, e.g., tile, t2, to right 
of a tile, t1, must have same color on
Its left as is on the right side of t1.
This constraint applies to top and as 
well as sides. Boundary tiles do not
have constraints on their sides that touch
the boundaries.



Instance of Tiling Problem
• A finite set of tile types (a type is determined by 

the colors of its edges)
• Some 2d area (finite or infinite) on which the tiles 

are to be laid out
• An optional starting set of tiles in fixed positions
• The goal of tiling the plane following the 

adjacency constraints and whatever constraints 
are indicated by the starting configuration.
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A Valid 3 by 3 Tiling of Tile 
Types from Previous Slide
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Some Variations
• Infinite 2d plane (impossible in general)

– Our two tile types can easily tile the 2d plane
• Finite 2d plane (hard in general)

– Our two tile types can easily tile any finite 2d plane
– This is called the Bounded Tiling Problem.

• One dimensional space (hmm?)
• Infinite 3d space (not even semi-decidable in 

general)
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Tiling the Plane
• We will start with a Post Machine, M = (Q, Σ, δ, q0), with tape 

alphabet Σ = {B,1} where B is blank and δ maps pairs from Q×Σ to 
Q×(Σ È {R,L}). M starts in state q0
– (Turing Machine with each action being L, R or Print)

• We will consider the case of M starting with a blank tape
• We will constrain our machine to never go to the left of its starting 

position (semi unbounded tape)
• We will mimic the computation steps of M
• Termination occurs if in state q reading b and δ(q,b) is not defined
• We will use the fact that halting when starting at the left end of a 

semi unbounded tape in its initial state with a blank tape is 
undecidable
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The Tiling Decision Problem
• Given a finite set of tile types and a 

starting tile in lower left corner of 2d plane, 
can we tile all places in the plane?

• A place is defined by its coordinates (x,y), 
x≥0, y≥0

• The fixed starting tile is at (0,0)
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Colors
• Given M, define our tile colors as 
• {X, Y, *, B, 1, YB, Y1} È Q×{B,1} È

Q×{YB,Y1} È Q×{R,L}
• Simplest tile (represents Blank on X axis)
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B
BB

X



Tiles for Copying Tape Cell
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B
**

B

YB
*Y

YB

Copy cells not on
left boundary and 
not scanned

1
**

1

Y1
*Y

Y1

Copy cells on
left boundary
but not scanned



Right Move δ(q,a) = (p,R)
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Ya
p,RY

q,Ya

a
p,R*

q,a

p,b
*p,R

b

where bÎΣ



Left Move δ(q,a) = (p,L)
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p,Yb
p,LY

Yb

p,b
p,L*

b

a
*p,L

q,a

where bÎΣ



Print δ(q,a) = (p,c)
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p,Yc
*Y

Yc

p,c
**

q,a



Corner Tile and Bottom Row
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q0,YB
BY

X

Zero-ed Row is forced to be

q0,YB
BY

X

B
BB

X

B
BB

X………...



First Action Print
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p,Ya
*Y

q0,YB

As we cannot move left of leftmost character first action is either right or print. 
Assume for now that δ(q0,B) = (p,a)

q0,YB
BY

X

B
BB

X

B
BB

X………...

B
**

B

B
**

B………...



First Action Right Move
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YB
p,RY

q0,YB

As we cannot move left of leftmost character first action is either right or print. 
Assume for now that δ(q0,B) = (p,R)

q0,YB
BY

X

B
BB

X

B
BB

X………...

p,B
*p,R

B

B
**

B………...



The Rest of the Story Part 1
• Inductively we can show that, if the i-th

row represents an infinite transcription of 
the Turing configuration after step i then 
the (i+1)-st represents such a transcription 
after step i+1. Since we have shown the 
base case, we have a successful 
simulation.
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The Rest of the Story Part 2
• Consider the case where M eventually 

halts when started on a blank tape in state 
q0. In this case we will reach a point where 
no actions fill the slots above the one 
representing the current state. That means 
that we cannot tile the plane.

• If M never halts, then we can tile the plane 
(in the limit).
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The Rest of the Story Part 3
• The consequences of Parts 1 and 2 are 

that Tiling the plane is as hard as the 
complement of the Halting problem which 
is co-RE Complete.

• This is not surprising as this problem 
involves a universal quantification over all 
coordinates (x,y) in the plane.
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Constraints on M
• The starting blank tape is not a real constraint as we can create M 

so its first actions are to write arguments on its tape.
• The semi unbounded tape is not new. If you look back at Standard 

Turing Computing (STC), we assumed there that we never moved 
left of the blank preceding our first argument.

• If you prefer to consider all computation based on the STC model 
then we add to M the simple prologue
(R1)x1R(R1)x2R…(R1)xkR so the actual computation starts with a 
vector of x1 … xk on the tape and with the scanned square to the 
blank to right of this vector. The rest of the tape is blank.

• Think about how, in the preceding pages, you could actually start 
the tiling in this configuration.
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Bounded Tiling Problem #1
• Consider a slight change to our machine M. First, it is non-

deterministic, so our transition function maps to sets.
• Second, we add two auxiliary states 

{qa, qr}, where qa is our only accept state and qr is our only 
reject state.

• We make it so the reject state has no successor states, but 
the accept state always transitions back to itself rewriting the 
scanned square unchanged.

• We also assume our machine accepts or rejects in at most nk

steps, where n is the length of its starting input which is 
written immediately to the right of the initial scanned square.
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Bounded Tiling Problem #2
• We limit our rows and column to be of size 

nk+1. We change our initial condition of the tape 
to start with the input to M. Thus, it looks like

• Note that there are nk – n of these blank representations 
at the end. But we really only need the first.
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Bounded Tiling Problem #3
• The finitely bounded Tiling Problem we just described mimics the 

operation of any given polynomially-bounded non-deterministic 
Turing machine. 

• This machine can tile the finite plane of size 
(nk+1) * (nk+1) just in case the initial string is accepted in nk or fewer 
steps on some path. 

• If the string is not accepted then we will hit a reject state on all paths 
and never complete tiling.

• This shows that the bounded tiling problem is NP-Hard
• Is it in NP? Yes. How? Well, we can be shown a tiling (posed 

solution takes space polynomial in n) and check it for completeness 
and consistency (this takes linear time in terms of proposed 
solution). Thus, we can verify the solution in time polynomial in n.

8/21/19 COT 4210 © UCF 66



A Final Comment on Tiling
• If you look back at the unbounded version, you can see 

that we could have simulated a non-deterministic Turing 
machine there, but it would have had the problem that 
the plane would be tiled if any of the non-deterministic 
choices diverged and that is not what we desired.

• However, we need to use a non-deterministic machine 
for the finite case as we made this so it tiled iff some 
path led to acceptance. If all lead to rejection, we get 
stalled out on all paths as the reject state can go 
nowhere.
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Comments on Variations
• One dimensional space (think about it)

• Infinite 3d space (really impossible in general)
– This become a ∀∃ problem
– In fact, one can mimic acceptance on all inputs here, 

meaning M is an algorithm iff we can tile the 3d space
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