
Discrete II
Theory of Computation

Charles E. Hughes
Supplemental

Equivalence of Models

Equivalency of computation by
Turing machines,
register machines,

factor replacement systems,
recursive functions

© UCF EECS 3

Proving Equivalence
• Constructions do not, by themselves,

prove equivalence.
• To do so, we need to develop a notion of

an “instantaneous description” (id) of each
model of computation (well, almost as
recursive functions are a bit different).

• We then show a mapping of id’s between
the models.

8/21/19

© UCF EECS 4

Instantaneous Descriptions
• An instantaneous description (id) is a finite description of

a state achievable by a computational machine, M.
• Each machine starts in some initial id, id0.
• The semantics of the instructions of M define a relation
ÞM such that, idi ÞM idi+1, i³0, if the execution of a
single instruction of M would alter M’s state from idi to
idi+1 or if M halts in state idi and idi+1=idi.

• Þ+
M is the transitive closure of ÞM

• Þ*M is the reflexive transitive closure of ÞM

8/21/19

© UCF EECS 5

id Definitions
• For a register machine, M, an id is an s+1 tuple of the form

(i, r1,…,rs)M specifying the number of the next instruction to be
executed and the values of all registers prior to its execution.

• For a factor replacement system, an id is just a natural number.
• For a Turing machine, M, an id is some finite representation of the

tape, the position of the read/write head and the current state. This
is usually represented as a string aqxb, where a (b) is the shortest
string representing all non-blank squares to the left (right) of the
scanned square, x is the symbol at the scanned square and q is the
current state.

• Recursive functions do not have id’s, so we will handle their
simulation by an inductive argument, using the primitive functions
are the basis and composition, induction and minimization in the
inductive step.

8/21/19

© UCF EECS 6

Equivalence Steps
• Assume we have a machine M in one model of computation and a

mapping of M into a machine M’ in a second model.
• Assume the initial configuration of M is id0 and that of M’ is id’0
• Define a mapping, h, from id’s of M into those of M’, such that,

RM = { h(d) | d is an instance of an id of M }, and
– id’0Þ*M’ h(id0), and h(id0) is the only member of RM in the

configurations encountered in this derivation.
– h(idi)Þ+

M’ h(idi+1), i³0, and h(idi+1) is the only member of RM in
this derivation.

• The above, in effect, provides an inductive proof that
– id0Þ*M id implies id’0Þ*M’ h(id), and
– If id’0Þ*M’ id’ then either id0Þ*M id, where id’ = h(id), or

id’ Ï RM

8/21/19

All Models are Equivalent

Equivalency of computation by
Turing machines, register machines,

factor replacement systems,
recursive functions

© UCF EECS 8

Our Plan of Attack

• We will now show
TURING ≤ REGISTER ≤ FACTOR ≤

RECURSIVE ≤ TURING
where by A ≤ B, we mean that every
instance of A can be replaced by an
equivalent instance of B.

• The transitive closure will then get us the
desired result.

8/21/19

TURING ≤ REGISTER

© UCF EECS 10

Encoding a TM’s State
• Assume that we have an n state Turing machine. Let

the states be numbered 0,…, n-1.
• Assume our machine is in state 7, with its tape

containing
… 0 0 1 0 1 0 0 1 1 q7 0 0 0 …

• The underscore indicates the square being read. We
denote this by the finite id
1 0 1 0 0 1 1 q7 0

• In this notation, we always write down the scanned
square, even if it and all symbols to its right are blank.

8/21/19

© UCF EECS 11

More on Encoding of TM
• An id can be represented by a triple of natural numbers,

(R,L,i), where R is the number denoted by the reversal
of the binary sequence to the right of the qi, L is the
number denoted by the binary sequence to the left, and i
is the state index.

• So,
… 0 0 1 0 1 0 0 1 1 q7 0 0 0 …
is just (0, 83, 7).
… 0 0 1 0 q5 1 0 1 1 0 0 …
is represented as (13, 2, 5).

• We can store the R part in register 1, the L part in
register 2, and the state index in register 3.

8/21/19

© UCF EECS 12

Simulation by RM
1. DEC3[2,q0] : Go to simulate actions in state 0
2. DEC3[3,q1] : Go to simulate actions in state 1
…
n. DEC3[ERR,qn-1] : Go to simulate actions in state n-1
…
qj. IF_r1_ODD[qj+2] : Jump if scanning a 1
qj+1. JUMP[set_k] : If (qj 0 0 qk) is rule in TM
qj+1. INC1[set_k] : If (qj 0 1 qk) is rule in TM
qj+1. DIV_r1_BY_2 : If (qj 0 R qk) is rule in TM

MUL_r2__BY_2
JUMP[set_k]

qj+1. MUL_r1_BY_2 : If (qj 0 L qk) is rule in TM
IF_r2_ODD then INC1
DIV_r2__BY_2[set_k]

…
set_n-1. INC3[set_n-2] : Set r3 to index n-1 for simulating state n-1
set_n-2. INC3[set_n-3] : Set r3 to index n-2 for simulating state n-2
…
set_0. JUMP[1] : Set r3 to index 0 for simulating state 0

8/21/19

© UCF EECS 13

Fixups
• Need epilog so action for missing quad

(halting) jumps beyond end of simulation
to clean things up, placing result in r1.

• Can also have a prolog that starts with
arguments in first n registers and stores
values in r1, r2 and r3 to represent Turing
machines starting configuration.

8/21/19

© UCF EECS 14

Prolog
Example assuming n arguments (fix as needed)
1. MUL_rn+1_BY_2[2] : Set rn+1 = 11…102, where, #1's = r1
2. DEC1[3,4] : r1 will be set to 0
3. INCn+1[1] :
4. MUL_rn+1_BY_2[5] : Set rn+1 = 11…1011…102, where, #1's = r1, then r2
5. DEC2[6,7] : r2 will be set to 0
6. INCn+1[4] :
…
3n-2. DECn[3n-1,3n+1] : Set rn+1 = 11…1011…1011…12, where, #1's = r1, r2,…
3n-1. MUL_rn+1_BY_2[3n] : rn will be set to 0
3n. INCn+1[3n-2] :
3n+1 DECn+1[3n+2,3n+3] : Copy rn+1 to r1, rn+1 is set to 0
3n+2. INC2[3n+1] :
3n+3. : r2 = left tape, r1 = 0 (right), r3 = 0 (initial state)

8/21/19

© UCF EECS 15

Epilog
1. DEC3[1,2] : Set r3 to 0 (just cleaning up)
2. IF_r1_ODD[3,5] : Are we done with answer?
3. INC2[4] : putting answer in r2
4. DIV_r1_BY_2[2] : strip a 1 from r1
5. DEC1[5,6] : Set r1 to 0 (prepare for answer)
6. DEC2[6,7] : Copy r2 to r1
7. INC1[6] :
8. : Answer is now in r1

8/21/19

REGISTER £ FACTOR

© UCF EECS 17

Encoding a RM’s State
• This is a really easy one based on the fact that every member of Z+

(the positive integers) has a unique prime factorization. Thus all
such numbers can be uniquely written in the form

where the pi's are distinct primes and the ki's are non-zero values,
except that the number 1 would be represented by 20.

• Let R be an arbitrary n-register machine, having m instructions.

Encode the contents of registers r1,…,rn by the powers of p1,…pn .

Encode rule number's 1,…,m by primes pn+1 ,…, pn+m

Use pn+m+1 as prime factor that indicates simulation is done.
• This is in essence the Gödel number of the RM’s state.

1i
1kp

2i
2kp …

ji
jkp

8/21/19

© UCF EECS 18

Simulation by FRS
• Now, the j-th instruction (1≤j≤m) of R has

associated factor replacement rules as follows:
j. INCr[i]

pn+jx ® pn+iprx
j. DECr[s, f]

pn+jprx ® pn+sx
pn+jx ® pn+fx

• We also add the halting rule associated with
m+1 of

pn+m+1x ® x

8/21/19

© UCF EECS 19

Importance of Order
• The relative order of the two rules to

simulate a DEC are critical.
• To test if register r has a zero in it, we, in

effect, make sure that we cannot execute
the rule that is enabled when the r-th
prime is a factor.

• If the rules were placed in the wrong order,
or if they weren't prioritized, we would be
non-deterministic.

8/21/19

© UCF EECS 20

Example of Order
Consider the simple machine to compute
r1:=r2 – r3 (limited)
1. DEC3[2,3]
2. DEC2[1,1]
3. DEC2[4,5]
4. INC1[3]
5.

8/21/19

© UCF EECS 21

Subtraction Encoding
Start with 3x5y7

7 • 5 x ® 11 x
7 x ® 13 x
11 • 3 x ® 7 x
11 x ® 7 x
13 • 3 x ® 17 x
13 x ® 19 x
17 x ® 13 • 2 x
19 x ® x

8/21/19

© UCF EECS 22

Analysis of Problem
• If we don't obey the ordering here, we could take

an input like 35527 and immediately apply the
second rule (the one that mimics a failed
decrement).

• We then have 355213, signifying that we will
mimic instruction number 3, never having
subtracted the 2 from 5.

• Now, we mimic copying r2 to r1 and get 255219 .
• We then remove the 19 and have the wrong

answer.

8/21/19

FACTOR £ RECURSIVE

© UCF EECS 24

Universal Machine
• In the process of doing this reduction, we will

build a Universal Machine.
• This is a single recursive function with two

arguments. The first specifies the factor system
(encoded) and the second the argument to this
factor system.

• The Universal Machine will then simulate the
given machine on the selected input.

8/21/19

© UCF EECS 25

Encoding FRS
• Let (n, ((a1,b1), (a2,b2), … ,(an,bn)) be

some factor replacement system, where
(ai,bi) means that the i-th rule is

aix ® bix
• Encode this machine by the number F,

pppp nnnn

n bababa nn

2212212117532 2211

++-
!

8/21/19

© UCF EECS 26

Simulation by Recursive # 1
• We can determine the rule of F that applies to x by

RULE(F, x) = µ z (1 ≤ z ≤ exp(F, 0)+1) [exp(F, 2*z-1) | x]
• Note: if x is divisible by ai, and i is the least integer for which this is

true, then exp(F,2*i-1) = ai where ai is the number of prime factors
of F involving p2i-1. Thus, RULE(F,x) = i.

If x is not divisible by any ai, 1≤i≤n, then x is divisible by 1, and
RULE(F,x) returns n+1. That’s why we added p2n+1 p2n+2.

• Given the function RULE(F,x), we can determine NEXT(F,x), the
number that follows x, when using F, by

NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x))

8/21/19

© UCF EECS 27

Simulation by Recursive # 2
• The configurations listed by F, when

started on x, are
CONFIG(F, x, 0) = x
CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))

• The number of the configuration on which
F halts is

HALT(F, x) = µ y [CONFIG(F, x, y) == CONFIG(F, x, y+1)]
This assumes we converge to a fixed point only if we
stop

8/21/19

© UCF EECS 28

Simulation by Recursive # 3
• A Universal Machine that simulates an arbitrary

Factor System, Turing Machine, Register
Machine, Recursive Function can then be
defined by

Univ(F, x) = exp (CONFIG (F, x, HALT (F, x)), 0)

• This assumes that the answer will be returned
as the exponent of the only even prime, 2. We
can fix F for any given Factor System that we
wish to simulate.

8/21/19

© UCF EECS 29

FRS Subtraction
• 203a5b Þ 2a-b

3*5x ® x or 1/15
5x ® x or 1/5
3x ® 2x or 2/3

• Encode F = 23 315 51 75 111 133 172 191 231

• Consider a=4, b=2
• RULE(F, x) = µ z (1 ≤ z ≤ 4) [exp(F, 2*z-1) | x]

RULE (F,34 52) = 1, as 15 divides 34 52

• NEXT(F, x) = (x // exp(F, 2*RULE(F, x)-1)) * exp(F, 2*RULE(F, x))
NEXT(F,34 52) = (34 52 // 15 * 1) = 3351

NEXT(F,33 51) = (33 51 // 15 * 1) = 32

NEXT(F,32) = (32 // 3 * 2) = 2131

NEXT(F, 2131) = (2131 // 3 * 2) = 22

NEXT(F, 22) = (22 // 1 * 1) = 22

8/21/19

© UCF EECS 30

Rest of simulation
• CONFIG(F, x, 0) = x

CONFIG(F, x, y+1) = NEXT(F, CONFIG(F, x, y))
• CONFIG(F,34 52,0) = 34 52

CONFIG(F,34 52,1) = 3351

CONFIG(F,34 52,2) = 32

CONFIG(F,34 52,3) = 2131

CONFIG(F,34 52,4) = 22

CONFIG(F,34 52,5) = 22

• HALT(F, x)=µy[CONFIG(F,x,y)==CONFIG(F,x,y+1)] = 4
• Univ(F, x) = exp (CONFIG (F, x, HALT (F, x)), 0)

= exp(22,0) = 2

8/21/19

© UCF EECS 31

Simplicity of Universal
• A side result is that every computable

(recursive) function can be expressed in
the form

F(x) = G(µ y H(x, y))

where G and H are primitive recursive.

8/21/19

RECURSIVE £ TURING

© UCF EECS 33

Standard Turing Computation
• Our notion of standard Turing computability of

some n-ary function F assumes that the
machine starts with a tape containing the n
inputs, x1, … , xn in the form

…01x101x20…01xn0…

and ends with

…01x101x20…01xn01y0…

where y = F(x1, … , xn).

8/21/19

© UCF EECS 34

More Helpers
• To build our simulation we need to construct some useful

submachines, in addition to the R, L, R, L, and Ck machines already
defined.

• T -- translate moves a value left one tape square
…?01x0… Þ …?1x00…

• Shift -- shift a rightmost value left, destroying value to its left
…01x101x20… Þ …01x20…

• Rotk -- Rotate a k value sequence one slot to the left
…01x101x20…01xk0…

Þ …01x20…01xk01x10…

 R1 L0 R

R 1

L T

R

0
k L k

k+1 1 L k L 0 T k L k+1

L 1

T
L 0 T

0

8/21/19

© UCF EECS 35

Basic Functions
All Basis Recursive Functions are Turing
computable:

• Ca
n(x1,…,xn) = a

(R1)aR
• (x1,…,xn) = xi

Cn-i+1
• S(x) = x+1

C11R

		 i
nI

8/21/19

© UCF EECS 36

Closure Under Composition
If G, H1, … , Hk are already known to be Turing computable, then so
is F, where

F(x1,…,xn) = G(H1(x1,…,xn), … , Hk(x1,…,xn))

To see this, we must first show that if E(x1,…,xn) is Turing
computable then so is

E<m>(x1,…,xn, y1,…,ym) = E(x1,…,xn)

This can be computed by the machine

Ln+m (Rotn+m)n Rn+m E Ln+m+1 (Rotn+m)m Rn+m+1

Can now define F by

H1 H2<1> H3<2> … Hk<k-1> G Shiftk

8/21/19

Closure Under Induction
To prove the that Turing Machines are closed under induction (primitive
recursion), we must simulate some arbitrary primitive recursive function
F(y,x1,x2, …, xn) on a Turing Machine, where
F(0, x1,x2, …, xn) = G(x1,x2, …, xn)
F(y+1, x1,x2, …, xn) = H(y, x1,x2, …, xn, F(y,x1,x2, …, xn))
Where, G and H are Standard Turing Computable. We define the
function F for the Turing Machine as follows:

Since our Turing Machine simulator can produce the same value for
any arbitrary PRF, F, we show that Turing Machines are closed under
induction (primitive recursion).

8/21/19 © UCF EECS 37

GLn+1 L
1

0

0Rn+2 H Shift Ln+2 1
Rn+2

© UCF EECS 38

Closure Under Minimization
If G is already known to be Turing
computable, then so is F, where

F(x1,…,xn) = µy (G(x1,…,xn, y) == 1)

This can be done by

R G L 1 0 L
0

1
8/21/19

© UCF EECS 39

Consequences of Equivalence

• Theorem: The computational power of
Recursive Functions, Turing Machines, Register
Machine, and Factor Replacement Systems are
all equivalent.

• Theorem: Every Recursive Function (Turing
Computable Function, etc.) can be performed
with just one unbounded type of iteration.

• Theorem: Universal machines can be
constructed for each of our formal models of
computation.

8/21/19

HAMILTONIAN CIRCUIT (HC)
DECISION PROBLEM IS NP-HARD

8/21/19 COT 4210 © UCF 40

HC Variable Gadget

8/21/19 COT 4210 © UCF 41

HC Gadgets Combined

8/21/19 COT 4210 © UCF 42

Hamiltonian Path
• Note we can split an arbitrary node, v, into

two (v’,v’’ – one, v’, has in-edges of v,
other, v’’, has out-edges. Path (not cycle)
must start at v’’ and end at v’ and goal is
still K.

8/21/19 COT 4210 © UCF 43

Travelling Salesman
• Start with HC = (V,E), K=|V|
• Set edges from HC instance to 1
• Add edges between pairs that lack such

edges and make those weights 2 (often
people make these K+1); this means that
the reverse of unidirectional links also get
weight 2

• Goal weight is K for cycle

8/21/19 COT 4210 © UCF 44

Tiling

Undecidable and NP-Complete
Variants

Basic Idea of Tiling

8/21/19 COT 4210 © UCF 46

A single tile has colors on all four sides.
Tiles are often called dominoes as
assembling them follows the rules of
placing dominoes. That is, the color
(or number) of a side must match that
of its adjacent tile, e.g., tile, t2, to right
of a tile, t1, must have same color on
Its left as is on the right side of t1.
This constraint applies to top and as
well as sides. Boundary tiles do not
have constraints on their sides that touch
the boundaries.

Instance of Tiling Problem
• A finite set of tile types (a type is determined by

the colors of its edges)
• Some 2d area (finite or infinite) on which the tiles

are to be laid out
• An optional starting set of tiles in fixed positions
• The goal of tiling the plane following the

adjacency constraints and whatever constraints
are indicated by the starting configuration.

8/21/19 COT 4210 © UCF 47

A Valid 3 by 3 Tiling of Tile
Types from Previous Slide

8/21/19 COT 4210 © UCF 48

Some Variations
• Infinite 2d plane (impossible in general)

– Our two tile types can easily tile the 2d plane
• Finite 2d plane (hard in general)

– Our two tile types can easily tile any finite 2d plane
– This is called the Bounded Tiling Problem.

• One dimensional space (hmm?)
• Infinite 3d space (not even semi-decidable in

general)

8/21/19 COT 4210 © UCF 49

Tiling the Plane
• We will start with a Post Machine, M = (Q, Σ, δ, q0), with tape

alphabet Σ = {B,1} where B is blank and δ maps pairs from Q×Σ to
Q×(Σ È {R,L}). M starts in state q0
– (Turing Machine with each action being L, R or Print)

• We will consider the case of M starting with a blank tape
• We will constrain our machine to never go to the left of its starting

position (semi unbounded tape)
• We will mimic the computation steps of M
• Termination occurs if in state q reading b and δ(q,b) is not defined
• We will use the fact that halting when starting at the left end of a

semi unbounded tape in its initial state with a blank tape is
undecidable

8/21/19 COT 4210 © UCF 50

The Tiling Decision Problem
• Given a finite set of tile types and a

starting tile in lower left corner of 2d plane,
can we tile all places in the plane?

• A place is defined by its coordinates (x,y),
x≥0, y≥0

• The fixed starting tile is at (0,0)

8/21/19 COT 4210 © UCF 51

Colors
• Given M, define our tile colors as
• {X, Y, *, B, 1, YB, Y1} È Q×{B,1} È

Q×{YB,Y1} È Q×{R,L}
• Simplest tile (represents Blank on X axis)

8/21/19 COT 4210 © UCF 52

B
BB

X

Tiles for Copying Tape Cell

8/21/19 COT 4210 © UCF 53

B
**

B

YB
*Y

YB

Copy cells not on
left boundary and
not scanned

1
**

1

Y1
*Y

Y1

Copy cells on
left boundary
but not scanned

Right Move δ(q,a) = (p,R)

8/21/19 COT 4210 © UCF 54

Ya
p,RY

q,Ya

a
p,R*

q,a

p,b
*p,R

b

where bÎΣ

Left Move δ(q,a) = (p,L)

8/21/19 COT 4210 © UCF 55

p,Yb
p,LY

Yb

p,b
p,L*

b

a
*p,L

q,a

where bÎΣ

Print δ(q,a) = (p,c)

8/21/19 COT 4210 © UCF 56

p,Yc
*Y

Yc

p,c
**

q,a

Corner Tile and Bottom Row

8/21/19 COT 4210 © UCF 57

q0,YB
BY

X

Zero-ed Row is forced to be

q0,YB
BY

X

B
BB

X

B
BB

X………...

First Action Print

8/21/19 COT 4210 © UCF 58

p,Ya
*Y

q0,YB

As we cannot move left of leftmost character first action is either right or print.
Assume for now that δ(q0,B) = (p,a)

q0,YB
BY

X

B
BB

X

B
BB

X………...

B
**

B

B
**

B………...

First Action Right Move

8/21/19 COT 4210 © UCF 59

YB
p,RY

q0,YB

As we cannot move left of leftmost character first action is either right or print.
Assume for now that δ(q0,B) = (p,R)

q0,YB
BY

X

B
BB

X

B
BB

X………...

p,B
*p,R

B

B
**

B………...

The Rest of the Story Part 1
• Inductively we can show that, if the i-th

row represents an infinite transcription of
the Turing configuration after step i then
the (i+1)-st represents such a transcription
after step i+1. Since we have shown the
base case, we have a successful
simulation.

8/21/19 COT 4210 © UCF 60

The Rest of the Story Part 2
• Consider the case where M eventually

halts when started on a blank tape in state
q0. In this case we will reach a point where
no actions fill the slots above the one
representing the current state. That means
that we cannot tile the plane.

• If M never halts, then we can tile the plane
(in the limit).

8/21/19 COT 4210 © UCF 61

The Rest of the Story Part 3
• The consequences of Parts 1 and 2 are

that Tiling the plane is as hard as the
complement of the Halting problem which
is co-RE Complete.

• This is not surprising as this problem
involves a universal quantification over all
coordinates (x,y) in the plane.

8/21/19 COT 4210 © UCF 62

Constraints on M
• The starting blank tape is not a real constraint as we can create M

so its first actions are to write arguments on its tape.
• The semi unbounded tape is not new. If you look back at Standard

Turing Computing (STC), we assumed there that we never moved
left of the blank preceding our first argument.

• If you prefer to consider all computation based on the STC model
then we add to M the simple prologue
(R1)x1R(R1)x2R…(R1)xkR so the actual computation starts with a
vector of x1 … xk on the tape and with the scanned square to the
blank to right of this vector. The rest of the tape is blank.

• Think about how, in the preceding pages, you could actually start
the tiling in this configuration.

8/21/19 COT 4210 © UCF 63

Bounded Tiling Problem #1
• Consider a slight change to our machine M. First, it is non-

deterministic, so our transition function maps to sets.
• Second, we add two auxiliary states

{qa, qr}, where qa is our only accept state and qr is our only
reject state.

• We make it so the reject state has no successor states, but
the accept state always transitions back to itself rewriting the
scanned square unchanged.

• We also assume our machine accepts or rejects in at most nk

steps, where n is the length of its starting input which is
written immediately to the right of the initial scanned square.

8/21/19 COT 4210 © UCF 64

Bounded Tiling Problem #2
• We limit our rows and column to be of size

nk+1. We change our initial condition of the tape
to start with the input to M. Thus, it looks like

• Note that there are nk – n of these blank representations
at the end. But we really only need the first.

8/21/19 COT 4210 © UCF 65

q0,YB
BY

X

x1

BB
X

B
BB

X…

xn

BB
X …

Bounded Tiling Problem #3
• The finitely bounded Tiling Problem we just described mimics the

operation of any given polynomially-bounded non-deterministic
Turing machine.

• This machine can tile the finite plane of size
(nk+1) * (nk+1) just in case the initial string is accepted in nk or fewer
steps on some path.

• If the string is not accepted then we will hit a reject state on all paths
and never complete tiling.

• This shows that the bounded tiling problem is NP-Hard
• Is it in NP? Yes. How? Well, we can be shown a tiling (posed

solution takes space polynomial in n) and check it for completeness
and consistency (this takes linear time in terms of proposed
solution). Thus, we can verify the solution in time polynomial in n.

8/21/19 COT 4210 © UCF 66

A Final Comment on Tiling
• If you look back at the unbounded version, you can see

that we could have simulated a non-deterministic Turing
machine there, but it would have had the problem that
the plane would be tiled if any of the non-deterministic
choices diverged and that is not what we desired.

• However, we need to use a non-deterministic machine
for the finite case as we made this so it tiled iff some
path led to acceptance. If all lead to rejection, we get
stalled out on all paths as the reject state can go
nowhere.

8/21/19 COT 4210 © UCF 67

Comments on Variations
• One dimensional space (think about it)

• Infinite 3d space (really impossible in general)
– This become a ∀∃ problem
– In fact, one can mimic acceptance on all inputs here,

meaning M is an algorithm iff we can tile the 3d space

8/21/19 COT 4210 © UCF 68

