Assignment # 8.1 Sample Key

1. Use reduction from Halt to show that one cannot decide REPEATS, where REPEATS = { f | for some x and y, $x \neq y$, $\varphi_f(x) \downarrow$, $\varphi_f(y) \downarrow$ and $\varphi_f(x) == \varphi_f(y)$ }

Let f,x be an arbitrary pair of natural numbers. <f,x> is in Halt iff $\phi_f(x)\downarrow$

Define g by $\forall y \phi_g(y) = \phi_f(x)$.

Clearly, $\forall y \phi_g(y) = \phi_f(x)$, and so, if $\phi_f(x) \downarrow$ then $\forall y \phi_g(y) \downarrow$ and is the constant $\phi_f(x)$; else if $\phi_f(x) \uparrow$ then $\forall y \phi_g(y) \uparrow$.

Formally,

 $<f,x> \in$ Halt iff $\forall y \phi_g(y) \downarrow$ and is the constant $\phi_f(x)$, which implies $g \in$ REPEATS $<f,x> \notin$ Halt iff $\forall y \phi_g(y)\uparrow$, which implies $g \notin$ REPEATS

Halt \leq_{m} **REPEATS** as we were to show.

Note: I have not overloaded the index of a function with the function in my proof, but I do not mind if you do such overloading.

Assignment # 8.2 Sample Key

2. Show that **REPEATS** reduces to Halt. (1 plus 2 show they are equally hard)

Let f be an arbitrary natural number. f is in REPEATS iff for some x and y, $x \neq y$, $\phi_f(x) \downarrow$, $\phi_f(y) \downarrow$ and $\phi_f(x) == \phi_f(y)$

Define g by ∀z φ_g(z) = ∃<x,y,t> [STP(f,x,t) & STP(f,y,t) & (x≠y) & (VALUE(f,x,t) = (VALUE(f,y,t))].

f ∈ Repeats iff ∃x,y, x≠y, such that $\varphi_f(x) \downarrow$ and $\varphi_f(y) \downarrow$ and $\varphi_f(x) = \varphi_f(y)$ iff $\forall z \varphi_g(z) = 1$ which implies g is an algorithm and so <g,0> ∈ Halt (note: 0 is just chosen randomly)

f ∉ Repeats iff ~∃x,y, x≠y, such that $\varphi_f(x)$ ↓ and $\varphi_f(y)$ ↓ and $\varphi_f(x) = \varphi_f(y)$ iff $\forall z \varphi_g(z)$ ↑ which implies <g,0> ∉ Halt .

Summarizing, f is in REPEATS iff <g,0> is in Halt and so

REPEATS \leq_{m} Halt as we were to show.

Assignment # 8.3 Sample Key

3. Use Reduction from Total to show that DOUBLES is not even re, where DOUBLES = { f | for all x, $\varphi_f(x) \downarrow$, $\varphi_f(x+1) \downarrow$ and $\varphi_f(x+1)=2^*\varphi_f(x)$ }

Let f be an arbitrary natural number. f is in Total iff $\forall x \phi_f(x) \downarrow$

Define g by $\forall x \phi_g(x) = \phi_f(x) - \phi_f(x)$, for all x.

f \in Total iff $\forall x \phi_f(x) \downarrow$ iff $\forall x \phi_g(x) = 0$ which implies $\forall x \phi_g(x+1) = 2^* \phi_g(x) = 0$ which implies $g \in \text{DOUBLES}$.

f ∉ Total iff ∃x $φ_f(x)$ ↓ iff ∃x $φ_g(x)$ ↑ implies g ∉ DOUBLES.

Summarizing, f is in Total iff g is in DOUBLES and so

TOTAL \leq_{m} **DOUBLES** as we were to show.

Assignment # 8.3 Alternate Key

Use Reduction from Total to show that DOUBLES is not even re, where
DOUBLES = { f | for all x, φ_f(x)↓, φ_f(x+1)↓ and φ_f(x+1)=2*φ_f(x) }

Let f be an arbitrary natural number. f is in Total iff $\forall x \phi_f(x) \downarrow$ Define g by $\phi_g(x) = \phi_f(x) - \phi_f(x) + 2^x$ for all x. Clearly, $\phi_g(x) = 2^x$, and so $\phi_g(x+1) = 2^*\phi_g(x) = 2^x(x+1)$ for all x, iff $\forall x \phi_f(x) \downarrow$; otherwise $\phi_g(x) \uparrow$ for some x. Summarizing, f is in Total iff g is in DOUBLES and so TOTAL \leq_m DOUBLES as we were to show.

Assignment # 8.4 Sample Key

4. Show DOUBLES reduces to Total. (3 plus 4 show they are equally hard)

Let f be an arbitrary natural number. f is in DOUBLES iff $\forall x \phi_f(x) \downarrow$, $\phi_f(x+1) \downarrow$ and $\phi_f(x+1)=2^*\phi_f(x)$.

Define g by $\forall x \phi_g(x) = \mu y[\phi_f(x+1) = 2^* \phi_f(x)].$

 $f \in DOUBLES \text{ iff } \forall x \phi_f(x) \downarrow, \phi_f(x+1) \downarrow \text{ and } \phi_f(x+1)=2^*\phi_f(x) \text{ iff } \forall x \phi_g(x) \downarrow \text{ iff } g \in TOTAL.$

Summarizing, f is in DOUBLES iff g is in Total and so

DOUBLES \leq_{m} **TOTAL** as we were to show.

Assignment # 8.5 Sample Key

5. Use Rice's Theorem to show that **REPEATS** is undecidable First, REPEATS is non-trivial as CO(x) = 0 is in REPEATS and S(x) = x+1 is

not.

Second, REPEATS is an I/O property.

To see this, let f and g are two arbitrary indices such that $\forall x [\phi_f(x) = \phi_g(x)]$

f ∈ REPEATS iff ∃ y,z, y ≠ z, such that $φ_f(y)$ ↓, $φ_f(z)$ ↓ and $φ_f(y) = φ_f(z)$ iff, since∀x [$φ_f(x) = ∀x φ_g(x)$], ∃ y,z, y ≠ z, (same y,z as above) such that $φ_g(y)$ ↓, $φ_g(z)$ ↓ and $φ_g(y) = φ_g(z)$ iff g ∈ REPEATS.

Thus, $f \in REPEATS$ iff $g \in REPEATS$.

Assignment # 8.6 Sample Key

6. Use Rice's Theorem to show that DOUBLES is undecidable First, DOUBLES is non-trivial as CO(x) = 0 (2*0 = 0) is in DOUBLES and

S(x) = x+1 is not.

Second, DOUBLES is an I/O property.

To see this, let f and g are two arbitrary indices such that $\forall x [\phi_f(x) = \phi_g(x)].$

f \in DOUBLES iff for all x, $\varphi_f(x) \downarrow$, $\varphi_f(x+1) \downarrow$ and $\varphi_f(x+1)=2^*\varphi_f(x)$ iff, since $\forall x [\varphi_f(x) = \varphi_g(x)]$, for all x, $\varphi_g(x) \downarrow$, $\varphi_g(x+1) \downarrow$ and $\varphi_g(x+1)=2^*\varphi_g(x)$ iff $g \in$ DOUBLES.

Thus, $f \in DOUBLES$ iff $g \in DOUBLES$.