Assignment #7.1 Sample

For each of the following languages, either provide a grammar to show it is a CFL or employ the Pumping Lemma to show it is not a.) L = { ai bj | j > 2*I }

b.)
$$L = \{ a^n b^{n!} | n>0 \}$$

Assignment #7.2 Sample

2. Consider the context-free grammar $G = (\{S\}, \{a, b\}, S, P)$, where P is: $S \rightarrow SaSbS \mid SbSaS \mid SaSaS \mid a \mid \lambda$ Provide the first part of the proof that $L(G) = L = \{w \mid w \text{ has at least as many a's as b's} \}$ That is, show that $L(G) \subseteq L$ To attack this problem we can first introduce the notation that, for a syntactic form α , $\alpha_a = \text{the number of a's in } \alpha$, and $\alpha_b = \text{the number of b's in } \alpha$. Using this, we show that if $S \Rightarrow \alpha$, then $\alpha_b \le \alpha_a$ and hence that $L(G) \subseteq L$: A straightforward approach is to show, inductively on the number of steps, i, in a derivation, that, if $S \Rightarrow i \alpha$, then $\alpha_b \le \alpha_a$.