Assignment # 8.1 Key

1. Use reduction from Halt to show that one cannot decide HasOdd, where HasOdd = { f | range(f) contains an odd number }

Let f,x be an arbitrary pair of natural numbers. <f,x> is in Halt iff $\varphi_f(x)\downarrow$

Define g by $\varphi_g(y) = \varphi_f(x) - \varphi_f(x) + 1$, for all y.

Clearly, $\varphi_g(y) = 1$, for all y, iff $\varphi_f(x) \downarrow$, and $\varphi_g(y) \uparrow$, for all y, otherwise.

Formally,

```
(f,x) \in Halt iff \forall y \phi_g(y) = 1, which implies g \in HasOdd
```

 $\langle f, x \rangle \notin Halt iff \forall y \phi_g(y) \uparrow$, which implies $g \notin HasOdd$

Halt \leq_{m} **HasOdd** as we were to show.

Note: I have not overloaded the index of a function with the function in my proof, but I do not mind if you do such overloading.

Assignment # 8.2 Key

2. Show that HasOdd reduces to Halt. (1 plus 2 show they are equally hard)

Let f be an arbitrary natural number. f is in HasOdd iff for some x, $\phi_f(x)\psi$ and $\phi_f(x)$ is an odd number.

Define g by $\varphi_g(z) = \exists \langle x, y, t \rangle [STP(f, x, t) \& (VALUE(f, x, t) = 2y+1)]$, for all z.

Clearly, $\varphi_{g}(z) = 1$, for all z, iff for some x, $\varphi_{f}(x) \downarrow$ and $\varphi_{f}(x)$ is an odd number (form 2y+1), and $\varphi_{g}(z)$ for all z, otherwise.

Formally,

f ∈ HadOdd iff ∃x such that $\varphi_f(x)$ ↓ and is an odd number iff $\forall z \varphi_g(z) = 1$ which implies g is an algorithm and so <g,0> ∈ Halt (note: 0 is just chosen randomly)

f ∉ HasOdd iff ∀x [$φ_f(x)$ ↓ implies $φ_f(x)$ is not an odd number] iff ∀z $φ_g(z)$ ↑ which implies <g,0> ∉ Halt .

Summarizing, f is in HasOdd iff <g,0> is in Halt and so

 $HasOdd \leq_m Halt$ as we were to show.

Assignment # 8.3 Key

3. Use Reduction from Total to show that IsAllOdds is not even re, where IsAllOdds = { f | range(f) = Set of all odd natural numbers }

Let f be an arbitrary natural number. f is in Total iff $\forall x \phi_f(x) \downarrow$

Define g by $\varphi_g(x) = \varphi_f(x) - \varphi_f(x) + 2x+1$, for all x.

Clearly, $\varphi_g(x) = 2x+1$, for all x, iff $\forall x \varphi_f(x) \downarrow$ and so range(g) is all odd numbers, i.e., $g \in IsAllOdds$; otherwise $\varphi_g(x) \uparrow$ for some x and IsAllOdd and so, for that x, 2x+1 is not in range(g) and thus $g \notin IsAllOdds$.

Formally,

f \in Total iff $\forall x \phi_f(x) \downarrow$ iff $\forall x \phi_g(x) = 2x+1$ which implies $g \in$ isAllOdds.

f ∉ Total iff ∃x $\phi_f(x)$ ↑ iff ∃x $\phi_g(x)$ ↑ implies g ∉ IsAllOdds.

Summarizing, f is in Total iff g is in IsAllOdds and so

TOTAL \leq_{m} **IsAllOdds** as we were to show.

Assignment # 8.4 Key

4. Show IsAllOdds reduces to Total. (3 plus 4 show they are equally hard)

Let f be an arbitrary natural number. f is in IsAllOdds iff $\forall x$ there is a y such that $\varphi_f(y) \downarrow$, $\varphi_f(y)=2x+1$.

Define g by $\varphi_g(x) = \exists \langle y,t \rangle [STP(f,y,t) \& VALUE(f,y,t) = 2x+1]$, for all x.

Clearly, $\varphi_g(x) \downarrow$ iff $\exists y [\varphi_f(y) \downarrow \& \varphi_f(y)=2x+1]$ and, thus, $\forall x \varphi_g(x) \downarrow$ iff $\forall x 2x+1$ is in range(f) iff f \in IsAllOdds; otherwise $\varphi_g(x) \uparrow$ for some x and so $g \notin$ Total.

Summarizing, f is in IsAllOdds iff g is in Total and so

IsAllOdds \leq_{m} **TOTAL** as we were to show.

Assignment # 8.5 Key

5. Use Rice's Theorem to show that HasOdd is undecidable

First, HasOdd is non-trivial as C1(x) = 1 is in HasOdd and C0(x) = 0 is not.

Second, HasOdd is a property of the range of effective procedures.

To see this, let f and g are two arbitrary indices such that ∀x [Range(f) = Range(g)]

 $f \in HasOdd iff 2y+1 \in Range(f)$, for some natural number y, iff, since Range(f) = Range(g), $2y+1 \in Range(g)$, for some natural number y, iff $g \in HasOdd$.

Thus, $f \in HasOdd iff g \in HasOdd$.

Thus, by Rice's Weak#2 Theorem, HasOdd is undecidable.

Assignment # 8.6 Key

6. Use Rice's Theorem to show that IsAllOdds is undecidable First, IsAllOdds is non-trivial as C1(x) = 2x+1 is in IsAllOdds and C0(x) = 0 is not.

Second, IsAllOdds is a property of the range of effective procedures.

To see this, let f and g are two arbitrary indices such that ∀x [Range(f) = Range(g)]

 $f \in IsAllOdds \ iff \ 2y+1 \in Range(f)$, for all natural numbers y and Range(f) contains no even numbers, iff, since Range(f) = Range(g), $2y+1 \in Range(g)$, for all natural numbers y and Range(g) contains no even number, iff $g \in IsAllOdds$.

Thus, $f \in IsAllOdds$ iff $g \in IsAllOdds$.

Thus, by Rice's Weak#2 Theorem, IsAllOdds is undecidable.