Assignment # 5.1

1. For each of the following, prove it is not regular by using the Pumping Lemma or Myhill-Nerode. You must do at least one of these using the Pumping Lemma and at least one using Myhill-Nerode.

a. L = {
$$a^i b^j | i > 2^* j$$
 }
b. L = { $a^{f(n)} | f(0) = 2; f(i+1) = f(i)^2$ }
c. L = { $a^{g(i)} | g(i) = i^3$ }

Assign # 5.1a,b Answer

1a. **L = { aⁱ b^j | i > 2*j }** using P.L.

- 1. Assume that **L** is regular
- 2. Let N be the positive integer given by the Pumping Lemma
- 3. Let **s** be a string $\mathbf{s} = \mathbf{a}^{2N+1}\mathbf{b}^N \in \mathbf{L}$
- 4. Since $s \in L$ and $|s| \ge N$, s is split by PL into xyz, where $|xy| \le N$ and |y| > 0 and for all $i \ge 0$, $xy^iz \in L$
- 5. We choose i = 0; by PL: $xy^0z = xz \in L$
- 6. Thus, a^{2^N+1-y|} b^N would be in L. But then, there would be equal or fewer than twice as many a's as b's, meaning a^{2^N+1-|y|} b^N cannot be in L.
 This is a contradiction; therefore L is not regular ■

1b. L = { a^{f(n)} | f(0) = 2; f(i+1) = f(i)² } using P.L.

- 1. Assume that **L** is regular
- 2. Let **N** be the positive integer given by the Pumping Lemma
- 3. Let **s** be the string $s = a^{f(N)} \in L$
- Since s ∈ L and |s| ≥ N (actually > N), s is split by PL into xyz, where |xy| ≤ N and |y| > 0 and for all i ≥ 0, xyⁱz ∈ L
- 5. We choose i = 2; by PL: $xy^2z = xyyz \in L$
- Thus, a^{f(N)+|y|} would be in L, but it's not since f(N)+|y| ≤ f(N)+N < f(N)+f(N) < f(N)² when N>0. But the next value in the sequence is f(N)², so a^{f(N)+|y|} ∉ L
- 7. This is a contradiction; therefore L is not regular ■

Sample Assign # 5.1c Answer

- 1c. L = { a^{g(i)} | g(i) = i³ } using P.L.
- 1. Assume that L is regular
- 2. Let N be the positive integer given by the Pumping Lemma
- 3. Let **s** be the string $s = a^{N^3} \in L$
- 4. Since $s \in L$ and $|s| \ge N$, s is split by PL into xyz, where $|xy| \le N$ and |y| > 0 and for all $i \ge 0$, $xy^iz \in L$
- 5. We choose i = 2; by PL: $xy^2z = xyyz \in L$
- 6. Thus, a^{N^3+|y|} would be in L.
 However, N³+|y| ≤ N³+N < N³+N+1 < N³ + 3N² + 3N+1 = (N+1)³ so a^{N^3+|y|} ∉ L
- 7. This is a contradiction; therefore L is not regular ■

Assign # 5.1 Answer

1a. **L = { aⁱ b^j | i > 2*j }** using M.N.

We consider the collection of right invariant equivalence classes $[a^i]$, $i \ge 0$. It's clear that $a^i b^{2i+1}$ is in the language, but $a^j b^{2i+1}$ is not when j > i as 2i+1 < 2j. This shows that there is a separate equivalence class $[a^i]$ induced by R_L , for each $i \ge 0$. Thus, the index of R_L is infinite and Myhill-Nerode states that L cannot be Regular.

1b. L = { a^{f(n)} | f(0) = 2; f(i+1) = f(i)² } using M.N.

We consider the collection of right invariant equivalence classes $[a^{2^{(2^{i})}}]$, $i \ge 0$. It's clear that $a^{(2^{(2^{i})})^2} = a^{2^{(2^{i})} \cdot 2^{(2^{i})}} = a^{2^{(2^{i})} + 2^{i})} = a^{2^{(2^{2^{i}})}} = a^{2^{(2^{(i+1)})}}$ is in L. $a^{2^{(2^{i})}} a^{2^{(2^{i})}} = a^{2^{(2^{i})} + 2^{i}} < a^{2^{(2^{i})} + 2^{i}} = a^{2^{(2^{i})} \cdot 2^{i}} = a^{(2^{(2^{i})})^2}$ when j > i. But, $a^{(2^{(2^{i})})^2}$ is the shortest string longer than $a^{2^{(2^{i})}}$ in L and so $a^{2^{(2^{i})}} a^{2^{(2^{i})}}$ is not in L. This shows that there is a separate equivalence class $[a^{2^{(2^{i})}}]$, induced by R_L , for each $i \ge 0$. Thus, the index of R_L is infinite and Myhill-Nerode states that L cannot be Regular.

1c. L = { a^{g(i)} | g(i) = i³ } using M.N.

We consider the collection of right invariant equivalence classes $[a^{i^3}]$, $i \ge 0$. It's clear that $a^{(i+1)^3} = a^{i^3}a^{3i^2+3i+1}$ is in the language, but $a^{j^3}a^{3i^2+3i+1} < a^{(j+1)^3}$ when j > I and so is no in **L**.

This shows that there is a separate equivalence class $[a^{i^3}]$ induced by R_L , for each $i \ge 0$. Thus, the index of R_L is infinite and Myhill-Nerode states that L cannot be Regular.

COT 4210 © UCF

Assign # 5.2

2. Write a regular (right linear) grammar that generates the set of strings denoted by the regular expression $(00 + 010 + 001)^*$.

Assign # 5.3

