Assignment # 10.1 Key

1. Recast the decision problem for the Boolean expression (p+q+~r)(p+~q)(r) as a SubsetSum problem using the construction discussed in class. Indicate what rows would need to be chosen for a solution.

	p	q	r	p + q + ~r	p + p + ~q	r + r + r	
p	1	0	0	1	1 (or 2)	0	
~р	1	0	0	0	0	0	
q	0	1	0	1	0	0	
~q	0	1	0	0	1	0	
r	0	0	1	0	0	1 (or 3)	
~r	0	0	1	1	0	0	
C1	0	0	0	1	0	0	
C1 '	0	0	0	1	0	0	
C2	0	0	0	0	1	0	
C2 ′	0	0	0	0	1 (0 if 2)	0	
С3	0	0	0	0	0	1 (0 if 3)	
СЗ ′	0	0	0	0	0	1 (0 if 3)	
	1	1	1	3	3	3	

Used Red Colored rows for ones chosen

Assignment # 10.2 Key

 Recast the SubsetSum problem {7, 17, 4, 11, 6, 2, 7}, G=36 as a Partition Problem using the construction discussed in class. Indicate what values would need to be chosen to equal 36. Indicate the partitions that evenly divide the Partition Problem you posed

 $\{7, 17, 4, 11, 6, 2, 7\}$ 7+17+4+6+2 = 36 $\{15, 7, 12, 4, 11, 6, 4, 12, 3, 2, 72, 90\}$ Can partition as $\{7, 17, 4, 6, 2, 72\}$ = 108; $\{11, 7, 90\}$ = 108

Assignment # 10.3 Key

 Recast the decision problem for the Boolean expression (p+q+~r)(p+~q)(r) as a 0,1-Integer Linear Programming problem using the construction discussed in class. Indicate what binary (0,1) values of p, q, and r give rise to a solution to the Integer Linear Programming problem you posed.

0≤p≤1; 0≤q≤1; 0≤r≤1

 $p+q+(1-r)\geq 1$

 $p + (1-q) \geq 1$

 $r \geq 1$

Solution: p = 1; q = 1; r = 1 – Lots of other solutions