
Propositional Logic



Propositions
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• A proposition is a declarative sentence that is either true 
or false.

• Constructing Propositions
– Propositional Variables: p, q, r, s, …
– The proposition that is always true is denoted by T and the 

proposition that is always false is denoted by F.
– Compound Propositions; constructed from logical connectives 

and other propositions
• Negation 
• Conjunction ר
• Disjunction ש
• Implication ՜
• Biconditional ՞



Truth Table
• These operators are defined by their truth tables, which 

specify the truth value when propositions are combined 
by these operators.

• The negation of a proposition p is denoted by p and 
has this truth table:

p p

T F
F T
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Truth Tables
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p q p ר q 

T T T
T F F
F T F
F F F

p q p שq

T T T
T F T
F T T
F F F

Consider propositions p and q. The truth table for pΛq, pVq, p→q, p↔q

p q p ՜q

T T T
T F F
F T T
F F T

p q p ՞q

T T T
T F F
F T F
F F T



Truth Table

• Construct a truth table for

p q r ¬r p ∨ q p ∨ q ՜¬r

T T T F T F
T T F T T T
T F T F T F
T F F T T T
F T T F T F
F T F T T T
F F T F F T
F F F T F T

5



Equivalent Propositions

• Two propositions are equivalent if they always 
have the same truth value.

• Example: Show using a truth table that the 
conditional is equivalent to the contrapositive.
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p q  p  q p ՜q q ՜ p

T T F F T T

T F F T F F

F T T F T T

F F T T T T



Tautologies, Contradictions, and 
Contingencies

• A tautology is a proposition which is always true.
– Example: p pש

• A contradiction is a proposition which is always false.
– Example: p pר

• A contingency is a proposition which is neither a 
tautology nor a contradiction, such as p

P p p pש p pר

T F T F

F T T F

7



Logically Equivalent
• Two compound propositions p and q are logically equivalent if  
p՞q is a tautology.

• We write this as p֞q or as pؠq where p and q are compound 
propositions.

• Two compound propositions p and q are equivalent if and only 
if the columns in a truth table giving their truth values agree.

• This truth table show p ש q  is equivalent to p ՜ q.

p q p p ש q p՜ q

T T F T T
T F F F F
F T T T T
F F T T T
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Logical Equivalences
1) , (De Morgan’s Laws)
2) , (Identity Laws)
3) , (Domination Laws)
4) , (Idempotent laws)
5) (Double Negation Law)
6) , (Negation Laws)
7) , (Commutative Laws)
8) (Associative Laws)

9) (Distributive Laws)

10) , (Absorption Laws)
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Logical Equivalences
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Equivalence Proofs
Example: Show that                               

is logically equivalent to 
Solution:
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Equivalence Proofs
Example: Show that                               

is a tautology. 
Solution:
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Predicate Logic

• If we have: 
“All men are mortal.”
“Socrates is a man.”

Does it follow that “Socrates is mortal?”

• To draw inferences: Need a language that 
talks about objects, their properties, and 
their relations. 
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Predicate Logic
• Propositional Functions P(x):

– Propositional functions become propositions (and have 
truth values) when their variables are each replaced by a 
value from the domain (or bound by a quantifier).

– The statement P(x) is said to be the value of the 
propositional function P at x.

• Quantifiers:
– Universal Quantifier ∀: ∀x P(x) asserts P(x) is true for 

every x in the domain.
– Existential Quantifier ∃: ∃x P(x) asserts P(x) is true for 

some x in the domain.
• The quantifiers are said to bind the variable x in 

these expressions.
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Properties of Quantifiers
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• The truth value of ∃ and ∀

1. If U is the  positive integers and P(x) is the statement           
“x < 2”, then ∃x Pሺxሻ is true, but ∀ x Pሺxሻ  is false. 

2. If U is the negative integers and P(x) is the statement           
“x < 2”, then both ∃x Pሺxሻ and ∀ x Pሺxሻ  are true. 

3. If U consists of 3, 4, and 5,  and P(x) is the statement           
“x > 2”, then  both ∃x Pሺxሻ and ∀ x Pሺxሻ  are true. But if 
P(x) is the statement “x < 2”, then  both ∃x Pሺxሻ and             
∀ x Pሺxሻ  are false.



Precedence of Quantifiers
• The quantifiers ∀ and ∃ have higher precedence 

than all the logical operators.

• For example,∀ means ∀
∀

∀
∀
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Translating to Predicate Logic

Example 1:  “Every student in this class has taken a course in Java.”
Solution 1: Let U be all students in this class, J(x) denote “x has 
taken a course in Java”: ∀x Jሺxሻ. 
Solution 2: If U is all people, S(x) denotes “x is a student in this 
class”:∀x ሺSሺxሻ՜ Jሺxሻሻ. ∀x ሺSሺxሻ ר Jሺxሻሻ is not correct. 

Example 2: “Some student in this class has taken a course in Java.” 
Solution 1: If U is all students in this class: ∃x Jሺxሻ
Solution 2: But if U is all people: ∃x ሺSሺxሻ ר Jሺxሻሻ.  ∃x ሺSሺxሻ՜ Jሺxሻሻ is 
not correct.
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Equivalences in Predicate Logic

• Statements involving predicates and quantifiers 
are logically equivalent if and only if they have 
the same truth value 
– for every predicate substituted into these statements 

and 
– for every domain of discourse used for the variables 

in the expressions. 
• The notation S 

∀ ∀
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De Morgan’s Laws for Quantifiers

• The rules for negating quantifiers are:
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Order of Nested Quantifiers
Examples:

1. Let be the statement “ .” 
Assume that is the real numbers. Then 
∀ ∀ and∀ ∀ have the same 
truth value.

2. Let be the statement “ .” 
Assume that is the real numbers. Then ∀
∃ is true, but ∃ ∀ is false.
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Quantifications of Two Variables
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Statement When True? When False
P(x,y) is true for every 
pair x,y.

There is a pair x, y for 
which P(x,y) is false.

For every x there is a y
for which P(x,y) is true.

There is an x such that 
P(x,y) is false for every y.

There is an x for which 
P(x,y) is true for every y.

For every x there is a y for 
which P(x,y) is false.

There is a pair x, y for 
which P(x,y) is true.

P(x,y) is false for every 
pair x,y



Translation from English
Choose the obvious predicates and express in predicate logic.

Example 1: “Brothers are siblings.”
Solution: ∀x ∀y (B(x,y) ՜ Sሺx,yሻሻ

Example 2: “Siblinghood is symmetric.”
Solution: ∀x ∀y (S(x,y) ՜ Sሺy,xሻሻ

Example 3: “Everybody loves somebody.”
Solution: ∀x ∃y L(x,y)

Example 4: “There is someone who is loved by everyone.”
Solution: ∃y ∀x L(x,y)

Example 5: “There is someone who loves someone.”
Solution: ∃x ∃y L(x,y)

Example 6: “Everyone loves himself”
Solution: ∀x L(x,x)
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Rules of Inference for Propositional 
Logic

Corresponding Tautology:
(p ר ሺp ՜qሻሻ ՜ q

Modus Ponens

Corresponding Tautology:
(pרሺp ՜qሻሻ՜q

Modus Tollens

Corresponding Tautology:
(ሺp ՜qሻ ר (q՜rሻሻ՜ሺp՜ rሻ

Hypothetical Syllogism

Corresponding Tautology:
(pרሺp qሻሻ՜qש

Disjunctive Syllogism
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Rules of Inference for Propositional 
Logic

Corresponding Tautology:
p՜ሺp שqሻ

Addition

Corresponding Tautology: 
(pרqሻ ՜q

Simplification

Corresponding Tautology:
(ሺp) ר ሺqሻሻ ՜ሺp ר qሻ

Conjunction
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Corresponding Tautology:
((p ש r ሻ ר ሺp ש qሻሻ ՜ሺq ש rሻ

Resolution



Rules of Inference for Quantified 
Statements

• Universal Instantiation (UI)

• Universal Generalization (UG)

• Existential Instantiation (EI)

• Existential Generalization (EG)
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Using Rules of Inference
A valid argument is a sequence of statements. Each statement is either 

a premise or follows from previous statements by rules of inference. 
The last statement is called conclusion.

Example 1: From the single proposition 

Show that q is a conclusion.

Solution:
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Proof Methods

• Direct Proofs
• Indirect Proofs

– Proof of the Contrapositive
– Proof by Contradiction
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Direct Proof
• Proving Conditional Statements: p → q

Direct Proof: Assume that p is true. Use rules of inference, axioms, and 
logical equivalences to show that q must also be true.

Example: Give a direct proof of the theorem “If n is an odd integer, 
then n2 is odd.”

Solution: Assume that n is odd. Then n = 2k + 1 for an integer k. 
Squaring both sides of the equation, we get:
n2 = (2k + 1ሻ2   = 4k2  4k 1 ൌ 2ሺ2k2  2kሻ  1ൌ 2r  1,
where r ൌ 2k2  2k , an integer.                                  
We have proved that if n is an odd integer, then n2 is an odd integer.
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Proof by Contraposition
Example: Prove that for an integer n, if n2 is odd, then n is odd. 

Solution:  Use proof by contraposition. Assume n is even (i.e., not 
odd).  Therefore, there exists an integer k such that n = 2k. Hence,

n2 =  4k2 = 2 (2k2) 
and n2 is even (i.e., not odd).

We have shown that if n is an even integer, then n2 is even. Therefore 
by contraposition, for an integer n, if n2 is odd, then n is odd.
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Proof by Contradiction
To prove q, assume  q and derive a contradiction such as q ר q. 

Since we have shown that q ՜F is true, it follows that the 
contrapositive T՜q also holds.

Example: Use a proof by contradiction to give a proof that √2 is 
irrational.
Solution: Suppose √2 is rational. Then there exists integers a and b
with √2  = a/b, where b≠ 0 and a and b have no common factors. 
Then

Therefore a2 must be even. If a2 is even then a must be even (an 
exercise). Since a is even, a = 2c  for some integer c. Thus,

Therefore b2 is even.  Again then b must be even as well. But then 2 
must divide both a and b. This contradicts our assumption that a and 
b have no common factors. We have proved by contradiction  that 
our initial assumption must be false  and  therefore  √2 is irrational .
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Disproof by Counter-Example
Example: prove that every prime number p of the form 4 n + 1 can be 

written as a sum of two squares.  Thus, 5 = 12 + 22 , 13 = 22 + 32 , 
etc.  
Demonstrating the truth of such a statement by a few examples 
doesn’t constitute a proof, because we can not enumerate infinitely 
many scenarios.  However, to disprove a statement, a single 
example that contradicts to the statement suffices.  Such an 
example is called a counter example.  

• Conjecture. If n is a positive integer, then n2  – n + 41 is a prime 
number.
Disproof: Let n = 41.  Then the expression n2  – n + 41 = 412 – 41 
+ 41 = 412  , which is not a prime.  Thus, the conjecture is disproved 
by the counter example n = 41.

(Note:  It turns out that the expression n2  – n + 41 produces prime 
numbers for 1 ≤ n ≤ 40.)
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Proof by Cases
Theorem. Let n be an integer.  Prove that the expression n (n + 1) is 

always even.

Proof: Since n is an integer, n is either even or odd.
• (Case 1) n is even, that is, n = 2 m for some integer m.  Thus, n (n + 

1) = (2 m) (2 m +1) = 2 (m (2 m +1)), by associative law.  Thus, it is 
even by definition.

• (Case 2) n is odd, that is, n = 2 m + 1 for some integer m. Thus, n (n
+ 1) = (2 m + 1) (2 m +2) = 2 (m + 1) (2 m + 1), by distributive and 
commutative laws.  Thus, it is even by definition.
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