Propositional Logic

Propositions

- A proposition is a declarative sentence that is either true or false.
- Constructing Propositions
 - Propositional Variables: p, q, r, s, ...
 - The proposition that is always true is denoted by T and the proposition that is always false is denoted by F.
 - Compound Propositions; constructed from logical connectives and other propositions
 - Negation –
 - Conjunction ∧
 - Disjunction v
 - Implication \rightarrow
 - Biconditional \leftrightarrow

Truth Table

- These operators are defined by their *truth tables*, which specify the truth value when propositions are combined by these operators.
- The *negation* of a proposition *p* is denoted by ¬*p* and has this truth table:

Truth Tables

Consider propositions *p* and *q*. The truth table for $p\land q$, $p\lor q$, $p\rightarrow q$, $p\leftrightarrow q$

р	q	$p \land q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F
p	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	т	т

F

Т

F

p	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F
n	~	$\mathbf{n} \to \mathbf{a}$
P	q	$p \leftrightarrow q$
р Т	<i>q</i> Т	<i>p</i> ⇔q T
T T	q T F	<i>p</i> ⇔ <i>q</i> T F
T T F	<i>q</i> T F T	<i>p</i> ↔ <i>q</i> T F F

Truth Table

- Construct a truth table for $\ p \lor q \to \neg r$

р	q	r	¬r	$\mathbf{b} \wedge \mathbf{d}$	$\mathbf{p} \lor \mathbf{q} \rightarrow \neg \mathbf{r}$
Т	Т	Т	F	Т	F
Т	Т	F	Т	Т	Т
Т	F	Т	F	Т	F
Т	F	F	Т	Т	Т
F	Т	Т	F	Т	F
F	Т	F	Т	Т	Т
F	F	Т	F	F	Т
F	F	F	Т	F	Т

Equivalent Propositions

- Two propositions are *equivalent* if they always have the same truth value.
- **Example**: Show using a truth table that the conditional is equivalent to the contrapositive.

p	<i>q</i>	$\neg p$	$\neg q$	$p \rightarrow q$	$\neg q \rightarrow \neg p$
Т	Т	F	F	Т	Т
Т	F	F	Т	F	F
F	Т	Т	F	Т	Т
F	F	Т	Т	Т	Т

Tautologies, Contradictions, and Contingencies

- A tautology is a proposition which is always true.
 Example: p ∨¬p
- A contradiction is a proposition which is always false.
 Example: p ∧¬p
- A *contingency* is a proposition which is neither a tautology nor a contradiction, such as *p*

Р	$\neg p$	$p \vee \neg p$	$p \wedge \neg p$
Т	F	Т	F
F	Т	Т	F

Logically Equivalent

- Two compound propositions p and q are logically equivalent if p↔q is a tautology.
- We write this as *p*⇔*q* or as *p*≡*q* where *p* and *q* are compound propositions.
- Two compound propositions *p* and *q* are equivalent if and only if the columns in a truth table giving their truth values agree.
- This truth table show $\neg p \lor q$ is equivalent to $p \rightarrow q$.

p	<i>q</i>	$\neg p$	$\neg p \lor q$	$p \rightarrow q$
Т	Т	F	Т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

Logical Equivalences

1)
$$\neg (p \land q) \equiv \neg p \lor \neg q, \ \neg (p \lor q) \equiv \neg p \land \neg q$$

2) $p \land T \equiv p, \ p \lor F \equiv p$
3) $p \lor T \equiv T, \ p \land F \equiv F$
4) $p \lor p \equiv p, \ p \land p \equiv p$
5) $\neg (\neg p) \equiv p$
6) $p \lor \neg p \equiv T, \ p \land \neg p \equiv F$
7) $p \lor q \equiv q \lor p, \ p \land q \equiv q \land p$
8) $(p \land q) \land r \equiv p \land (q \land r)$
 $(p \lor q) \lor r \equiv p \lor (q \lor r)$
9) $(p \lor (q \land r) \equiv (p \lor q)) \land (p \lor r)$
 $(p \land (q \lor r)) \equiv (p \land q) \lor (p \land r)$
10) $p \lor (p \land q) \equiv p, \ p \land (p \lor q) \equiv p$

(De Morgan's Laws)
(Identity Laws)
(Domination Laws)
(Idempotent laws)
(Double Negation Law)
(Negation Laws)
(Commutative Laws)
(Associative Laws)

(Distributive Laws)

(Absorption Laws)

Logical Equivalences

TABLE 7Logical EquivalencesInvolving Conditional Statements.

$$p \rightarrow q \equiv \neg p \lor q$$

$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

$$p \lor q \equiv \neg p \rightarrow q$$

$$p \land q \equiv \neg (p \rightarrow \neg q)$$

$$\neg (p \rightarrow q) \equiv p \land \neg q$$

$$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$$

$$(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$$

$$(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$$

$$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

TABLE 8LogicalEquivalences InvolvingBiconditional Statements.

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$
$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$
$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Equivalence Proofs

Example: Show that $\neg (p \lor (\neg p \land q))$ is logically equivalent to $\neg p \land \neg q$

Solution:

$$\begin{array}{rcl} (p \lor (\neg p \land q)) & \equiv & \neg p \land \neg (\neg p \land q) & & & \\ & \equiv & \neg p \land [\neg (\neg p) \lor \neg q] & & & \\ & \equiv & \neg p \land (p \lor \neg q) & & & \\ & \equiv & (\neg p \land p) \lor (\neg p \land \neg q) & & & \\ & \equiv & F \lor (\neg p \land \neg q) & & & \\ & \equiv & (\neg p \land \neg q) \lor F & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & &$$

by the second De Morgan law by the first De Morgan law by the first De Morgan law by the double negation law by the second distributive law because $\neg p \land p \equiv F$ by the commutative law for disjunction by the identity law for **F**

Equivalence Proofs

Example: Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.

Solution:

$$\begin{array}{ll} (p \wedge q) \rightarrow (p \vee q) & \equiv & \neg (p \wedge q) \vee (p \vee q) \\ & \equiv & (\neg p \vee \neg q) \vee (p \vee q) \\ & \equiv & (\neg p \vee p) \vee (\neg p \vee \neg q) \end{array}$$

$$\equiv T \lor T \\ \equiv T$$

by truth table for \rightarrow by the first De Morgan law by associative and commutative laws laws for disjunction by truth tables by the domination law

Predicate Logic

• If we have:

"All men are mortal."

"Socrates is a man."

Does it follow that "Socrates is mortal?"

 To draw inferences: Need a language that talks about objects, their properties, and their relations.

Predicate Logic

- Propositional Functions P(x):
 - Propositional functions become propositions (and have truth values) when their variables are each replaced by a value from the *domain* (or *bound* by a quantifier).
 - The statement P(x) is said to be the value of the propositional function P at x.
- Quantifiers:
 - Universal Quantifier $\forall : \forall x P(x)$ asserts P(x) is true for <u>every</u> x in the domain.
 - *Existential Quantifier* $\exists : \exists x P(x) \text{ asserts } P(x) \text{ is true for } \underline{\text{some } x \text{ in the domain.}}$
- The quantifiers are said to bind the variable *x* in these expressions.

Properties of Quantifiers

- The truth value of $\exists x P(x)$ and $\forall x P(x)$ depend on both the propositional function P(x) and on the domain *U*.
- Examples:
 - 1. If *U* is the positive integers and P(x) is the statement "x < 2", then $\exists x P(x)$ is true, but $\forall x P(x)$ is false.
 - 2. If *U* is the negative integers and P(x) is the statement "*x* < 2", then both $\exists x P(x)$ and $\forall x P(x)$ are true.
 - 3. If *U* consists of 3, 4, and 5, and *P*(*x*) is the statement "x > 2", then both $\exists x P(x)$ and $\forall x P(x)$ are true. But if *P*(*x*) is the statement "x < 2", then both $\exists x P(x)$ and $\forall x P(x)$ and $\forall x P(x)$ are false.

Precedence of Quantifiers

- The quantifiers ∀ and ∃ have higher precedence than all the logical operators.
- For example, $\forall x P(x) \lor Q(x)$ means $(\forall x P(x)) \lor Q(x)$
- $\forall x (P(x) \lor Q(x))$ means something different.
- Unfortunately, often people write $\forall x P(x) \lor Q(x)$ when they mean $\forall x (P(x) \lor Q(x))$.

Translating to Predicate Logic

- **Example** 1: "Every student in this class has taken a course in Java." **Solution** 1: Let *U* be all students in this class, J(x) denote "x has taken a course in Java": $\forall x J(x)$. **Solution** 2: If *U* is all people, S(x) denotes "x is a student in this class": $\forall x (S(x) \rightarrow J(x))$. $\forall x (S(x) \land J(x))$ is not correct.
- **Example 2**: "Some student in this class has taken a course in Java." **Solution** 1: If *U* is all students in this class: $\exists x J(x)$ **Solution 2**: But if *U* is all people: $\exists x (S(x) \land J(x))$. $\exists x (S(x) \rightarrow J(x))$ is not correct.

Equivalences in Predicate Logic

- Statements involving predicates and quantifiers are *logically equivalent* if and only if they have the same truth value
 - for every predicate substituted into these statements and
 - for every domain of discourse used for the variables in the expressions.
- The notation $S \equiv T$ indicates that *S* and *T* are logically equivalent.
- Example: $\forall x \neg \neg S(x) \equiv \forall x S(x)$

De Morgan's Laws for Quantifiers

• The rules for negating quantifiers are:

TABLE 2 De Morgan's Laws for Quantifiers.				
Negation	Equivalent Statement	When Is Negation True?	When False?	
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.	
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x.	

Order of Nested Quantifiers

Examples:

- 1. Let P(x,y) be the statement "x + y = y + x." Assume that *U* is the real numbers. Then $\forall x \forall y P(x,y)$ and $\forall y \forall x P(x,y)$ have the same truth value.
- 2. Let Q(x,y) be the statement "x + y = 0." Assume that *U* is the real numbers. Then $\forall x \exists y P(x,y)$ is true, but $\exists y \forall x P(x,y)$ is false.

Quantifications of Two Variables

Statement	When True?	When False
$\forall x \forall y P(x,y)$	<i>P</i> (<i>x</i> , <i>y</i>) is true for every pair <i>x</i> , <i>y</i> .	There is a pair x , y for which $P(x,y)$ is false.
$\forall y \forall x P(x,y)$		
$\forall x \exists y P(x,y)$	For every <i>x</i> there is a <i>y</i> for which <i>P</i> (<i>x</i> , <i>y</i>) is true.	There is an x such that $P(x,y)$ is false for every y.
$\exists x \forall y P(x,y)$	There is an x for which $P(x,y)$ is true for every y .	For every x there is a y for which $P(x,y)$ is false.
$\exists x \exists y P(x,y)$	There is a pair x , y for which $P(x,y)$ is true.	<i>P</i> (x,y) is false for every pair <i>x,y</i>
$\exists y \exists x P(x,y)$		04

Translation from English

Choose the obvious predicates and express in predicate logic.

Example 1: "Brothers are siblings." **Solution**: $\forall x \forall y (B(x,y) \rightarrow S(x,y))$ Example 2: "Siblinghood is symmetric." **Solution**: $\forall x \forall y (S(x,y) \rightarrow S(y,x))$ Example 3: "Everybody loves somebody." **Solution**: $\forall x \exists y L(x,y)$ **Example** 4: "There is someone who is loved by everyone." **Solution**: $\exists y \forall x L(x,y)$ Example 5: "There is someone who loves someone." **Solution**: $\exists x \exists y L(x,y)$ Example 6: "Everyone loves himself" **Solution**: $\forall x L(x,x)$

Rules of Infe	rence fo	r Propositional		
Logic				
Modus Ponens	$\begin{array}{c} p \to q \\ p \\ \hline \therefore q \end{array}$	Corresponding Tautology: $(p \land (p \rightarrow q)) \rightarrow q$		
Modus Tollens	$\begin{array}{c} p \to q \\ \neg q \\ \hline \ddots \neg p \end{array}$	Corresponding Tautology: $(\neg p \land (p \rightarrow q)) \rightarrow \neg q$		
Hypothetical Syllogism	$\begin{array}{c} p \to q \\ q \to r \\ \hline \therefore p \to r \end{array}$	Corresponding Tautology: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$		
Disjunctive Syllogism	$\begin{array}{c} p \lor q \\ \neg p \\ \hline \therefore q \end{array}$	Corresponding Tautology: $(\neg p \land (p \lor q)) \rightarrow q$		

Rules of Inference for Propositional Logic

Addition	$\frac{p}{\therefore p \lor q}$	Corresponding Tautology: $p \rightarrow (p \lor q)$
Simplification	$\frac{p \wedge q}{\therefore q}$	Corresponding Tautology: $(p \land q) \rightarrow q$
Conjunction	$p \\ q \\ \therefore p \wedge q$	Corresponding Tautology: $((p) \land (q)) \rightarrow (p \land q)$
Resolution	$ \begin{array}{c} \neg p \lor r \\ p \lor q \\ \hline \therefore q \lor r \end{array} $	Corresponding Tautology: $((\neg p \lor r) \land (p \lor q)) \rightarrow (q \lor r)$

Rules of Inference for Quantified Statements

- Universal Instantiation (UI)
- Universal Generalization (UG)
- Existential Instantiation (EI)
- Existential Generalization (EG)

$$\frac{\forall x P(x)}{\therefore P(c)}$$

 $\frac{P(c) \text{ for an arbitrary } c}{\therefore \forall x P(x)}$

 $\exists x P(x) \\ \therefore P(c) \text{ for some element } c$

 $\frac{P(c) \text{ for some element } c}{\therefore \exists x P(x)}$

Using Rules of Inference

A *valid argument* is a sequence of statements. Each statement is either a premise or follows from previous statements by rules of inference. The last statement is called conclusion.

Example 1: From the single proposition

$$p \land (p \to q)$$

Show that q is a conclusion.

Solution:

StepReason1.
$$p \land (p \rightarrow q)$$
Premise2. p Conjunction using (1)3. $p \rightarrow q$ Conjunction using (1)4. q Modus Ponens using (2) and (3)

Proof Methods

- Direct Proofs
- Indirect Proofs
 - Proof of the Contrapositive
 - Proof by Contradiction

Direct Proof

• Proving Conditional Statements: $p \rightarrow q$

Direct Proof: Assume that p is true. Use rules of inference, axioms, and logical equivalences to show that q must also be true. **Example**: Give a direct proof of the theorem "If n is an odd integer, then n^2 is odd."

Solution: Assume that *n* is odd. Then n = 2k + 1 for an integer *k*.

Squaring both sides of the equation, we get: $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1 = 2r + 1$,

where $r = 2k^2 + 2k$, an integer.

We have proved that if n is an odd integer, then n^2 is an odd integer.

Proof by Contraposition

Example: Prove that for an integer n, if n^2 is odd, then n is odd.

Solution: Use proof by contraposition. Assume *n* is even (i.e., not odd). Therefore, there exists an integer *k* such that n = 2k. Hence, $n^2 = 4k^2 = 2(2k^2)$ and n^2 is even (i.e., not odd).

We have shown that if *n* is an even integer, then n^2 is even. Therefore by contraposition, for an integer *n*, if n^2 is odd, then *n* is odd.

Proof by Contradiction

To prove q, assume $\neg q$ and derive a contradiction such as $q \land \neg q$. Since we have shown that $\neg q \rightarrow F$ is true, it follows that the contrapositive $\mathbf{T} \rightarrow q$ also holds.

Example: Use a proof by contradiction to give a proof that $\sqrt{2}$ is irrational.

Solution: Suppose $\sqrt{2}$ is rational. Then there exists integers *a* and *b* with $\sqrt{2} = a/b$, where $b \neq 0$ and *a* and *b* have no common factors. Then $2 = \frac{a^2}{b^2}$ $2b^2 = a^2$

Therefore a^2 must be even. If a^2 is even then *a* must be even (an exercise). Since *a* is even, a = 2c for some integer *c*. Thus, $2b^2 = 4c^2$ $b^2 = 2c^2$

Therefore b^2 is even. Again then *b* must be even as well. But then 2 must divide both *a* and *b*. This contradicts our assumption that *a* and *b* have no common factors. We have proved by contradiction that our initial assumption must be false and therefore $\sqrt{2}$ is irrational.

Disproof by Counter-Example

Example: prove that every prime number *p* of the form 4 *n* + 1 can be written as a sum of two squares. Thus, 5 = 12 + 22, 13 = 22 + 32, etc.

Demonstrating the truth of such a statement by a few examples doesn't constitute a proof, because we can not enumerate infinitely many scenarios. However, to *disprove* a statement, a single example that contradicts to the statement suffices. Such an example is called a *counter example*.

• **Conjecture.** If *n* is a positive integer, then $n^2 - n + 41$ is a prime number.

Disproof: Let n = 41. Then the expression n2 - n + 41 = 412 - 41 + 41 = 412, which is not a prime. Thus, the conjecture is disproved by the counter example n = 41.

(*Note*: It turns out that the expression $n^2 - n + 41$ produces prime numbers for $1 \le n \le 40$.)

Proof by Cases

Theorem. Let *n* be an integer. Prove that the expression n(n + 1) is always even.

Proof: Since *n* is an integer, *n* is either even or odd.

- (Case 1) n is even, that is, n = 2 m for some integer m. Thus, n (n + 1) = (2 m) (2 m + 1) = 2 (m (2 m + 1)), by associative law. Thus, it is even by definition.
- (Case 2) n is odd, that is, n = 2 m + 1 for some integer m. Thus, n (n + 1) = (2 m + 1) (2 m + 2) = 2 (m + 1) (2 m + 1), by distributive and commutative laws. Thus, it is even by definition.