Propositional Logic



Propositions

* A proposition is a declarative sentence that is either true
or false.

« Constructing Propositions
— Propositional Variables: p, g, r, s, ...
— The proposition that is always true is denoted by T and the
proposition that is always false is denoted by F.

— Compound Propositions; constructed from logical connectives

and other propositions
* Negation —

Conjunction A
Disjunction v
Implication —
Biconditional &



Truth Table

« These operators are defined by their truth tables, which
specify the truth value when propositions are combined
by these operators.

« The negation of a proposition pis denoted by —p and
has this truth table:



Truth Tables

Consider propositions p and q. The truth table for pAq, pVq, p—q, p<q

T T T T T T
T F F T F T
F T F F T T
F F F F F F
T T T T T T
T F F T F F
F T T F T F
F F T F F T



Truth Table

« Construct a truth table for pV q — —r



Equivalent Propositions

« Two propositions are equivalent if they always
have the same truth value.

« Example: Show using a truth table that the
conditional is equivalent to the contrapositive.

m om 4 -
m 4 m -
- -4 T
- M -
- 4 T -
- 4 T -



Tautologies, Contradictions, and
Contingencies

« A tautology is a proposition which is always true.
— Example: pv-p

* A contradiction is a proposition which is always false.
— Example: p A—p

* A contingency is a proposition which is neither a
tautology nor a contradiction, such as p



Logically Equivalent

Two compound propositions p and q are logically equivalent if
p<q is a tautology.

We write this as p&qg or as p=g where p and g are compound

propositions.
Two compound propositions p and g are equivalent if and only

iIf the columns in a truth table giving their truth values agree.
This truth table show —pV g is equivalentto p — q.

nm o+ -
nm 4 T -
- o T
- 4 T -
- 4 T -



Logical Equivalences

1) =(pAq)=-pV—q, =(pVqg) =-pA-q (DeMorgan’'s Laws)

2) pANT =p, pVF=p (Identity Laws)

3) pvVT =T, pANF=F (Domination Laws)

4) pVp=p,pAp=Dp (Idempotent laws)

5) =(—p)=p (Double Negation Law)

6) pV-p=1 pAN—p=F (Negation Laws)

7) PVgq=qVp pANqQ=qAp (Commutative Laws)

8) (PAgQAT=pA(gAT) (Associative Laws)
(pVg)Vr=pVi(gVr)

9) (pV(gAr)=((mVa)A(pVr) (Distributive Laws)

(pA(gVr)=@Aq)V(PAT)
10)pV (pAqQ) =p, pA(pVqg) =p (Absorption Laws)



Logical Equivalences

TABLE 7 Logical Equivalences
Involving Conditional Statements.

p—>q=—pVvgqg
p—>q=—q—>—p
pvg=—p—gq
pAg=—(p— —q)
~(p—>q)=pA—g

P> PA(p—>r)y=p—>(qAr)
(p—=r)AN(g—=r)y=(pvVvg)—r
(p—>qg)V(p—>r)=p—>(@qVr)
(p—=>r)vig—>r)=(png)—>r

TABLE 8 Logical

Equivalences Involving
Biconditional Statements.

peg=(p—->q9)A(Gg—p)
peq=-poq
peoq=(pAqg)V(mpA—q)
“(peqg)=pe g




Equivalence Proofs

Example: Show that —(p V (—p A q))
IS logically equivalent to —=p A\ —q

Solution:
~(pV (—pAq))

—p A =(=pAq)

—p A [=(=p) V =]
—pA(pVq)

(=P Ap)V (=pA—q)
FV (=p A —q)
(7pA—q)VF

(—=p A —q)

by the second De Morgan law
by the first De Morgan law
by the double negation law
by the second distributive law
because -pAp=F

by the commutative law

for disjunction

by the identity law for F
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Equivalence Proofs

Example: Show that (p A q) — (p V q)
IS a tautology.

Solution:
(pAgq)— (pVq)

~(pAq)V(pVaq)
(=pV—q)V(pVaq)
(=pVp)V(=pV—q)

TvT
T

by truth table for —

by the first De Morgan law
by associative and
commutative laws

laws for disjunction

by truth tables

by the domination law
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Predicate Logic

* |f we have:
“All men are mortal.”
“Socrates is a man.”

Does it follow that “Socrates is mortal?”

* To draw inferences: Need a language that
talks about objects, their properties, and
their relations.
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Predicate Logic

 Propositional Functions P(x):

— Propositional functions become propositions (and have
truth values) when their variables are each replaced by a
value from the domain (or bound by a quantifier).

— The statement P(x) is said to be the value of the
propositional function P at x.
« Quantifiers:

— Universal Quantifier V. ¥ x P(x) asserts P(x) is true for
every x in the domain.

— Existential Quantifier 3. 3x P(x) asserts P(x) is true for
some x in the domain.

* The quantifiers are said to bind the variable x in
these expressions.
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Properties of Quantifiers

* The truth value of Zx P(x) and V' x P(x) depend on
both the propositional function P(x) and on the
domain U.

e Examples:

1.1f U is the positive integers and P(x) is the statement
“x < 27, then Fx P(x)is true, but V' x P(x) is false.

2. If U is the negative integers and P;)x IS the statement
“x < 27, then both E’XP()Q() and V' x P(x) are true.

3. If U consists of 3, 4, and 5, and P(x) is the statement
“x > 2", then both Fx P(x) and V' x P(x) are true. But if
P(x) is the statement “x < 2", then both Zx P(x) and
V' x P(x) are false.



Precedence of Quantifiers

The quantifiers V and 3 have higher precedence
than all the logical operators.

For example, Vx P(x) V Q(x) means (Vx P(x))V Q(x)
Vx (P(x) vV Q(x)) means something different.

Unfortunately, often people write Vx P(x) V Q(x)
when they mean Vx (P(x) V Q(x)).
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Translating to Predicate Logic

Example 1: “Every student in this class has taken a course in Java.”

Solution 1: Let U be all students in this class, J(x) denote “x has
taken a course in Java”: Vx /(x).

Solution 2:If U is all people, S(x) denotes “x is a student in this
class™ Vx (5(x)- J(x)). Vx (5(x) A J(x)) is not correct.

Example 2: “Some student in this class has taken a course in Java.”
Solution 1: If U is all students in this class: 7x /(x)

Solution 2: But if U is all people: Zx (S(x) N J(x)). Ix (S(x)— J(x))is
not correct.
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Equivalences in Predicate Logic

« Statements involving predicates and quantifiers
are logically equivalent if and only if they have
the same truth value

— for every predicate substituted into these statements
and

— for every domain of discourse used for the variables
In the expressions.
 The notation S =7 indicates that Sand 7 are

logically equivalent.
e Example: Vx——-5(x)= Vx5(x)
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De Morgan’s Laws for Quantifiers

* The rules for negating quantifiers are:

TABLE 2 De Morgan’s Laws for Quantifiers.

Negation Equivalent Statement When Is Negation True? When False?

—dx P(x) Vx—P(x) For every x, P(x) is false. There 1s an x for which
P(x) 1s true.

=VYxP(x) dx—-P(x) There 1s an x for which P (x) 1s true for every x.

P(x) 1s false.
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Order of Nested Quantifiers

Examples:

1. Let P(x,y)be the statement “x +y =y +x.”
Assume that Uis the real numbers. Then
VxVyP(x,y) and VyVxP(x,y) have the same

truth value.

2. Let Q(xy)be the statement “x + y=0."
Assume that Uis the real numbers. Then Vx
dyP(x,y) is true, but Ay VxP(x,y)is false.
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Quantifications of Two Variables

Valy p("}j: -y) ijgr ))/()}I/S true for every

VyveP(z,y)

- For every xthereisa y
VeIYP(2,9)  for which Pixy) is true.

. —~..% Thereis an x for which
Hxvyp(‘r’ 9) P(x,y) is true for every y.

| v There is a pair x, y for
JudyP(x,y which P(x,y) is true.

JydzP(z,y)

There is a pair x, y for
which P(x,y) is false.

There is an x such that
P(x,y) is false for every y.

For every x there is a y for
which P(x,y) is false.

P(x,y) is false for every
pair x,y
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Translation from English

Choose the obvious predicates and express in predicate logic.

Example 1: “Brothers are siblings.”
Solution: Vx Vy (B(x,y) = S(x,y))

Example 2: “Siblinghood is symmetric.”
Solution: Vx Yy (S(x,y) = S(yx))

Example 3: “Everybody loves somebody.”

Solution: Vx 3y L(x,y)
Example 4: “There is someone who is loved by everyone.”

Solution: 3y Vx L(x,y)
Example 5: “There is someone who loves someone.”

Solution: Ix 3y L(x,y)
Example 6: “Everyone loves himself”

Solution: Vx L(x,x)
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Rules of Inference for Propositional
Logic

Modus Ponens p—4q Corresponding Tautology:
P PAP@—q)—q
‘ q

Modus Tollens p—4q Corresponding Tautology:
—q (=pA(Pp=g))——g
Lo Tp

Hypothetical Syllogism p—4q Corresponding Tautology:
q—r (=9 A (q=1)=>(p~ D)
Sop =T

Disjunctive Syllogism pVq Corresponding Tautology:
—p (=pA(PV)—q

. q



Rules of Inference for Propositional

Addition

Simplification

Conjunction

Resolution

Logic

P

.pVg

PAg

- q

2

S.PpAQ

pVr
pVgq

qgVvr

Corresponding Tautology:
p—(pVvg

Corresponding Tautology:
(PAQ) —q

Corresponding Tautology:
OROEY)

Corresponding Tautology:
((mpVvr)A(pV @) —->(gVD
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« Universal Instantiation (Ul)

« Existential Generalization (EG)

Rules of Inference for Quantified
Statements

Ve P(x)
. P(e)

+ Universal Generalization (UG) _* E;?‘) ;CET ;111 arbitrary ¢
CoVE £Z

« Existential Instantiation (EI) JzP ()

.. P(c) for some element c

P(c) for some element ¢
C.dxP(x)
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Using Rules of Inference

A valid argument is a sequence of statements. Each statement is either
a premise or follows from previous statements by rules of inference.
The last statement is called conclusion.

Example 1: From the single proposition

pA(p—q)

Show that q is a conclusion.

Solution:
Step Reason
1. pA(p—q) Premise
2. p Conjunction using (1)
3. p—q Conjunction using (1)
4. q Modus Ponens using (2) and (3)
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Proof Methods

 Direct Proofs

* Indirect Proofs
— Proof of the Contrapositive
— Proof by Contradiction
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Direct Proof

« Proving Conditional Statements: p — q

Direct Proof. Assume that pis true. Use rules of inference, axioms, and
logical equivalences to show that g must also be true.

Example: Give a direct proof of the theorem “If n is an odd integer,
then n? is odd.”

Solution: Assume that nis odd. Then n = 2k + 1 for an integer k.

Squaring both sides of the equation, we get:
n? =(2k+1)2 =4k + 4k+1 =202k*+ 2k) + 1=2r+1,

where r= 2k*+ 2k, an integer.
We have proved that if n is an odd integer, then n? is an odd integer.
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Proof by Contraposition

Example: Prove that for an integer n, if n? is odd, then n is odd.

Solution:_Use ]proofb y contraposition. Assume n is even (i.e., not
odd). Therefore, thére exists an integer k such that n = 2k. Hence,

n* = 4k?> =2 (2k?)
and n? is even (i.e., not odd).

We have shown that if n is an even integer, then n? is even. Therefore
by contraposition, for an integer n, if n? is odd, then n is odd.
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Proof by Contradiction

To prove g, assume —¢g and derive a contradiction such as g A —g.
Since we have shown that —g —F is true, it follows that the
contrapositive T—g also holds.

Example: Use a proof by contradiction to give a proof that V2 is
irrational.

Solution: Suppose V2 is rational. Then there exists integers a and b
with V2 = a/b, where b# 0 and a and b have no common factors.

2
Then ) — g._z 22 = g2

Therefore a? must be even. If a2 is even then a must be even (an
exercise). Since a is even, a = 2¢ for some integer c. Thus,

2% = 4c? b? = 2¢?
Therefore b? is even. Again then b must be even as well. But then 2
must divide both a and b. This contradicts our assumption that a and

b have no common factors. We have proved by contradiction that
our initial assumption must be false and therefore V2 is irrational .
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Disproof by Counter-Example

Example: prove that every prime number p of the form 4 n + 1 can be

written as a sum of two squares. Thus, 5=12+22,13=22 + 32,

etc.

Demonstrating the truth of such a statement by a few examples
doesn’t constitute a proof, because we can not enumerate infinitely
many scenarios. However, to disprove a statement, a single
example that contradicts to the statement suffices. Such an
example is called a counter example.

« Conjecture. If nis a positive integer, then n2 — n + 41 is a prime
number.

Disproof: Let n=41. Then the expressionn2 —n+ 41 =412 - 41
+41 =412 , which is not a prime. Thus, the conjecture is disproved

by the counter example n = 41.

(Note: It turns out that the expression n2 — n + 41 produces prime
numbers for 1 <n <40.)
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Proof by Cases

Theorem. Let n be an integer. Prove that the expression n (n+ 1) is
always even.

Proof. Since nis an integer, n is either even or odd.

« (Case 1) nis even, thatis, n =2 m for some integer m. Thus, n(n +
1N=2m)(2m+1)=2(m (2 m+1)), by associative law. Thus, it is
even by definition.

« (Case 2) nis odd, thatis, n=2 m + 1 for some integer m. Thus, n (n
+1)=2m+1)2m+2)=2(m+1)(2m + 1), by distributive and
commutative laws. Thus, it is even by definition.
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