
Bowling problem visualization 

 

 

 

 

Combos w/ Repetition Alternative Restrictions 

a + b + c + d = n 

a must be odd, b, c, d can be anything 

a = 2a' + 1 

2a' + 1 + b + c + d = n 

2a' + b + c + d = n-1 

Kinda of get stuck…might be a fix, but I can't think of it, so we'll 

leave this and come back to it, if my other ideas fail. 



All my solutions have either a even or a odd…how can I decide the 

relative # number of these solutions… 

Summation way would be to sum over all possible values of a. (Ugly 

doesn't give us a closed form…) 

# of solutions to a + b + c + d = n with a being odd equals the 

number of solutions to a + b + c + d = n-1 with a being even. 

Define g(n, even) = # of solutions where a is even 

Define g(n, odd) = # of solutions where a is odd. 

g(n, odd) = g(n-1, even) 

Define f(n) = g(n, even) + g(n, odd) = g(n, even) + g(n-1, even) 

f(n) = (
𝒏 + 𝟑
𝟑

). 

If I were to write a program, I would solve g(0, even), g(0, odd), etc. 

the first few base cases cases, and then I'd write a for loop to build 

up the answer. 

g(0, odd) = 0, g(0, even) = 1, f(0) = 1 

g(1, odd) = 1, g(1, even) = 3, f(1) = 4 

g(2, odd) = 3, g(2, even) = 7, f(2) = 10 

g(3, odd) = 7, g(3, even) = 13, f(3) = 20 

g(4, odd) = 13, g(4, even) = 22, f(4) = 35 

 

 

 

 

 

 



Here is some python code: 

def combo(n,k): 

    res = 1 

    for i in range(k): 

        res = res*(n-i) 

        res = res//(i+1) 

    return res 

 

odd = [0] 

even = [1] 

f = [1] 

for i in range(1, n+1): 

    odd.append(even[-1]) 

    f.append(combo(i+3,3)) 

    even.append(f[-1]-odd[-1]) 

print("Num solutions with a odd =",odd[-1]) 

 

 

Generating Functions Solution 

(1 + x2 + x4 + …)(1 + x + …)3 = (
𝟏

𝟏−𝒙𝟐
) (

𝟏

𝟏−𝒙
)
𝟑
= (

𝟏

𝟏+𝒙
) (

𝟏

𝟏−𝒙
)
𝟒
 

= (1 - x + x2 - x3…)(1 + 4x + 10x2 + 20x3 + …) 

The coefficient to xn in this expansion is 

∑
𝒊(𝒊 + 𝟏)(𝒊 + 𝟐)

𝟔
(−𝟏)𝒏+𝟏−𝒊

𝒏+𝟏

𝒊=𝟏

 

This doesn't look like a really fun sum  

If the sum has an even # of terms, it's not so bad, since we can split 

the sum into pairs of terms and then factor out stuff. 

If you look at the table my program prints, you can see that the terms 

in both columns come from an alternating sum of the items in the 

total column. 

 



Divisibility Counting Problem 

 

1  2 3 4 5 6 7 8 9  10 

 

Problem: 6 was canceled twice!!! So, every 6th number is double 

counted… 

Fully, we use the Inclusion-Exclusion Principle for 3 sets in this 

problem, using 2, 3 and 5. 

 

 


