Summation

n(n+1)(—1)"_1

Prove for all positive integers n, that ¥, (—1)""1i% = .

1(1+1) (-1

Base case:n=1,LHS =Y (-1 12 = (-1)°12 = 1,RHS = =1

The formula holds for n=1.

Inductive Hypothesis: Assume for an arbitrary positive integer n = k, where k is an arbitrarily
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chosen positive integer 2 or greater, that ¥¥_, (—1)71i% = >
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Inductive Step: Prove for n = k+1 that ¥¥*1(—=1)71i? = .
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Inequality — emphasis on the freedom in inequality steps and the need to use it

Prove using induction on n that for all positive integers n, Y./, — S
i 2
Base case: n = 1, LHS =YL, — = =, RHS = — = =, thus the inequality holds for n=1.
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Inductive hypothesis: Assume for an arbitrarily chosen positive integer n = k that
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Strong Induction Example

Prove, using strong induction on n with 3 base cases that if and only if 3 | n, then 2 | Fn, where Fp
denotes the nth Fibonacci Number. (Fo=0, F1=1, Fn= Fn.1 + Fn-2, for all ints n >= 2) Prove for all

non-negative integers n.

Base cases: n=0,1, Fo=0 and is divisible by 3, but F1 = 1, and isn’t divisible by 3 so the base case

holds for n=0 and 1.

Inductive hypothesis: Assume all non-negative integers n <= k, where k is an arbitrarily selected
positive integer 1 or greater that if and only if 3| n, then 2 | F,.

Inductive Step: Prove for n = k+1 that if 3 | (k+1), then 2 | Fk+1, otherwise if 3 | (k+1) is false,

then 2 | Fk+1 is false.
Fre1r = Fe + Fra
Cases: (1) k+1 is divisible by 3
This means k, k-1 are
Not divisible by 3
By the IH, Fx is NOT even
Fk-1 is also not even.
Since both are odd
Let Fk = 2a+1,
Fk1 = 2b+1 for some
Integers aand b
= (2a+1)+(2b+1)
=2(atb+1)
Since a,b are ints, a+b+1 is

An int and Fy+1 iS even

(2),k+t1=1mod3 (3)k+l=2mod3
k=0mod 3 k=1mod 3
k-1=2mod 3 k-1=0mod 3

Fx =even, using IH Fx odd using IH
Fk-1 = odd, using IH  Fk.1 even using IH

Fk=2a, Fka=2b+1 Fx=2a+l, Fka=2b

forintsa, b forints a,b
=2a+2b+1 =2a+1+2b
=2(ath) +1 =2(ath) +1

Since a,b are ints Since a and b are ints

Fk+1 is odd as desired Fk+1 is odd as desired.

Note: Steps in blue are why strong induction with 2 base cases is necessary.



Strong Induction Example: NIM

2 players, 2 piles of stones. On a single turn a player picks one pile and takes 1 or more stones
from that pile. The winner is the last person to take a stone.

B

Player Melia takes 2 stones from pile A
Player Sandra takes 1 stone from pile B
Player Melia takes 1 stone from pile B

Player Sandra takes 1 stone from pile A
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0 Melia can’t play, so Sandra wins!

Using strong induction on n, prove that if 2 players play NIM with two piles initially with n
stones each and both players play optimally, player 2 will win.

Base case: n=1, Player 1 is forced to take 1 stone from either pile, so player 2 can respond by
taking 1 stone from the other pile for the win.

Inductive hypothesis: Assume for all integers n <=k, where K is an arbitrarily chosen positive
integer, that if 2 players play NIM with n stones in each pile, player 2 will win.

Inductive step: Prove for n=k+1 that if 2 players play NIM with k+1 stones in each pile, player 2
will win.

Player 1 goes and there are k+1 stones in both piles. No matter which pile she takes stones from,
one pile will remain with k+1 stones and the other pile will have k+1-a stones, where a is in
between 1 and k+1, inclusive. Now, player 2 will just take a stones from the larger pile, leaving
the game with k+1-a stones in both piles. This is now a game of NIM for which the inductive
hypothesis applies, and Player 2 wins this game according to the hypothesis. This means that the
inductive step is proven!

11 11
5 11
5 5 (Player 2 can always mirror the move!!l)

Who wins if the piles are unequal at the beginning? Player 1-> they will just get the piles to be
equal and Player 2 will be forced to go next!

Incidentally, if there are more than 2 piles, the second player wins if and only if the bitwise
XOR of the number of stones in each pile is 0.




Last Problem — Binary Billy

Binary Billy’s punishment is to write all the binary numbers upto n bits. So if n = 3, he has to

write: 0, 1, 10, 11, 100, 101, 110, 111.

Let B(n) represent the number of bits he has to write if he writes all the numbers upto a full n bit
representation. Using induction on n, prove that B(n) = (n-1)2" + 2 for all positive integers n.

Base case: n = 1, When n=1, binary billy writes 0, 1, which is 2 bits. So B(1) =2

RHS = (1-1)2t +2 =2

Inductive Hypothesis: Assume for an arbitrarily chosen integer n = k that
B(k) = (k-1)2k + 2

Inductive step: Prove for n = k+1 that B(k+1) = ((k+1)-1)2k*1 + 2 = k2K + 2

Try calculating B(k+1)...

Step 1: first Binary billy writes all the numbers upto k bits.
Step 2:

Then he writes

100000000 (1 followed by k 0s)

100000001, etc.

111111111 (last number being k+1 1s)

In all, he writes 2 numbers, each of which have k+1 bits in them.

By the inductive hypothesis, he writes (k-1)2 + 2 bits in step 1. And we know he writes 2¥(k+1)

bits in step 2.

In total he writes (k-1)2% + 2 + 2X(k+1) = 2(k-1+k+1) + 2 = 2¥(2k) + 2 = 2¥*k + 2. This is what

we were trying to prove, so the inductive step is finished.

B(k+1) = B(K) + 2X(k+1)
= (k-1)2% + 2 + 2X(k+1), using IH
= 2X(k-1+k+1) + 2
= 2K(2K) + 2
= 2k+1k +2



