Summation

Prove for all positive integers n, that $\sum_{i=1}^{n} (-1)^{i-1} i^2 = \frac{n(n+1)(-1)^{n-1}}{2}$.

Base case: n = 1, LHS = $\sum_{i=1}^{1} (-1)^{i-1} i^2 = (-1)^0 1^2 = 1$, RHS = $\frac{1(1+1)(-1)^{1-1}}{2} = 1$

The formula holds for n=1.

Inductive Hypothesis: Assume for an arbitrary positive integer n = k, where k is an arbitrarily chosen positive integer 2 or greater, that $\sum_{i=1}^{k} (-1)^{i-1} i^2 = \frac{k(k+1)(-1)^{k-1}}{2}$.

Inductive Step: Prove for n = k+1 that $\sum_{i=1}^{k+1} (-1)^{i-1} i^2 = \frac{(k+1)(k+2)(-1)^k}{2}$.

$$\sum_{i=1}^{k+1} (-1)^{i-1} i^2 = \left(\sum_{i=1}^k (-1)^{i-1} i^2\right) + (-1)^k (k+1)^2$$

$$= \frac{k(k+1)(-1)^{k-1}}{2} + (-1)^k (k+1)^2, \text{ using IH}$$

$$= \frac{k(k+1)(-1)^{k-1}}{2} + \frac{2}{2} (-1)^k (k+1)^2$$

$$= \left(\frac{k+1}{2}\right) \left[\frac{k(-1)^{k-1}}{1} + \frac{2}{1} (-1)^k (k+1)\right]$$

$$= \left(\frac{k+1}{2}\right) (-1)^{k-1} [k-2(k+1)]$$

$$= \left(\frac{k+1}{2}\right) (-1)^{k-1} [-k-2]$$

$$= \left(\frac{k+1}{2}\right) (-1)^{k-1} (-1) [k+2]$$

$$= \left(\frac{(k+1)(k+2)}{2}\right) (-1)^k$$

Inequality – emphasis on the freedom in inequality steps and the need to use it

Prove using induction on n that for all positive integers n, $\sum_{i=1}^{n} \frac{i}{i+1} \le \frac{n^2}{n+1}$. Base case: n = 1, LHS = $\sum_{i=1}^{1} \frac{i}{i+1} = \frac{1}{2}$, RHS = $\frac{1^2}{1+1} = \frac{1}{2}$, thus the inequality holds for n=1.

Inductive hypothesis: Assume for an arbitrarily chosen positive integer n = k that

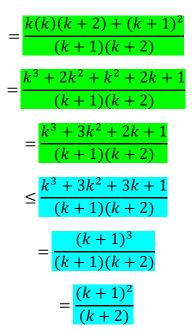
$$\sum_{i=1}^k \frac{i}{i+1} \le \frac{k^2}{k+1}.$$

Inductive Step: Prove for n = k+1 that

$$\sum_{i=1}^{k+1} \frac{i}{i+1} \le \frac{(k+1)^2}{k+2}$$

$$\sum_{i=1}^{k+1} \frac{i}{i+1} = \left(\sum_{i=1}^{k} \frac{i}{i+1}\right) + \frac{k+1}{k+2}$$

$$\leq \frac{k^2}{k+1} + \frac{k+1}{k+2}$$
, using the IH.



Strong Induction Example

Prove, using strong induction on n with 3 base cases that if and only if 3 | n, then $2 | F_n$, where F_n denotes the nth Fibonacci Number. (F₀=0, F₁=1, F_n = F_{n-1} + F_{n-2}, for all ints n >= 2) Prove for all non-negative integers n.

Base cases: n=0,1, $F_0=0$ and is divisible by 3, but $F_1 = 1$, and isn't divisible by 3 so the base case holds for n=0 and 1.

Inductive hypothesis: Assume all non-negative integers $n \le k$, where k is an arbitrarily selected positive integer 1 or greater that if and only if 3 | n, then $2 | F_n$.

Inductive Step: Prove for n = k+1 that if 3 | (k+1), then $2 | F_{k+1}$, otherwise if 3 | (k+1) is false, then $2 | F_{k+1}$ is false.

 $F_{k+1}=F_k+F_{k\text{-}1}$

Cases: (1) k+1 is divisible by 3	(2), $k+1 = 1 \mod 3$	(3) $k+1 = 2 \mod 3$		
This means k, k-1 are	$k = 0 \mod 3$	$k = 1 \mod 3$		
Not divisible by 3	$k-1 = 2 \mod 3$	$k-1 = 0 \mod 3$		
By the IH, F_k is NOT even	F_k = even, using IH	F _k odd using IH		
F _{k-1} is also not even.	$F_{k-1} = odd$, using IH	F _{k-1} even using IH		
Since both are odd	$F_k = 2a, F_{k-1} = 2b+1$	$F_k = 2a+1, F_{k-1} = 2b$		
Let $F_k = 2a+1$,	for ints a, b	for ints a,b		
$F_{k-1} = 2b+1$ for some				
Integers a and b				
=(2a+1)+(2b+1)	= 2a + 2b + 1	= 2a + 1 + 2b		
= 2(a+b+1)	= 2(a+b) + 1	= 2(a+b) + 1		
Since a,b are ints, a+b+1 is	Since a,b are ints	Since a and b are ints		
An int and F_{k+1} is even	F_{k+1} is odd as desired	F_{k+1} is odd as desired.		
Note: Steps in blue are why strong induction with 2 base cases is necessary.				

Strong Induction Example: NIM

2 players, 2 piles of stones. On a single turn a player picks one pile and takes 1 or more stones from that pile. The winner is the last person to take a stone.

А	В	
3	2	Player Melia takes 2 stones from pile A
1	2	Player Sandra takes 1 stone from pile B
1	1	Player Melia takes 1 stone from pile B
1	0	Player Sandra takes 1 stone from pile A
0	0	Melia can't play, so Sandra wins!

Using strong induction on n, prove that if 2 players play NIM with two piles initially with n stones each and both players play optimally, player 2 will win.

Base case: n=1, Player 1 is forced to take 1 stone from either pile, so player 2 can respond by taking 1 stone from the other pile for the win.

Inductive hypothesis: Assume for all integers $n \le k$, where k is an arbitrarily chosen positive integer, that if 2 players play NIM with n stones in each pile, player 2 will win.

Inductive step: Prove for n=k+1 that if 2 players play NIM with k+1 stones in each pile, player 2 will win.

Player 1 goes and there are k+1 stones in both piles. No matter which pile she takes stones from, one pile will remain with k+1 stones and the other pile will have k+1-a stones, where a is in between 1 and k+1, inclusive. Now, player 2 will just take a stones from the larger pile, leaving the game with k+1-a stones in both piles. This is now a game of NIM for which the inductive hypothesis applies, and Player 2 wins this game according to the hypothesis. This means that the inductive step is proven!

- 11 11
- 5 11
- 5 5 (Player 2 can always mirror the move!!!)

Who wins if the piles are unequal at the beginning? Player $1 \rightarrow$ they will just get the piles to be equal and Player 2 will be forced to go next!

<u>Incidentally, if there are more than 2 piles, the second player wins if and only if the bitwise</u> <u>XOR of the number of stones in each pile is 0.</u>

Last Problem – Binary Billy

Binary Billy's punishment is to write all the binary numbers upto n bits. So if n = 3, he has to write: 0, 1, 10, 11, 100, 101, 110, 111.

Let B(n) represent the number of bits he has to write if he writes all the numbers upto a full n bit representation. Using induction on n, prove that $B(n) = (n-1)2^n + 2$ for all positive integers n.

Base case: n = 1, When n=1, binary billy writes 0, 1, which is 2 bits. So B(1) = 2

 $RHS = (1-1)2^1 + 2 = 2$

Inductive Hypothesis: Assume for an arbitrarily chosen integer n = k that

```
B(k) = (k-1)2^k + 2
```

Inductive step: Prove for n = k+1 that $B(k+1) = ((k+1)-1)2^{k+1} + 2 = k2^{k+1} + 2$

Try calculating B(k+1)...

Step 1: first Binary billy writes all the numbers upto k bits.

Step 2:

Then he writes

100000000 (1 followed by k 0s)

10000001, etc.

111111111 (last number being k+1 1s)

In all, he writes 2^k numbers, each of which have k+1 bits in them.

By the inductive hypothesis, he writes $(k-1)2^k + 2$ bits in step 1. And we know he writes $2^k(k+1)$ bits in step 2.

In total he writes $(k-1)2^k + 2 + 2^k(k+1) = 2^k(k-1+k+1) + 2 = 2^k(2k) + 2 = 2^{k+1}k + 2$. This is what we were trying to prove, so the inductive step is finished.

 $B(k+1) = B(k) + 2^{k}(k+1)$ = (k-1)2^k + 2 + 2^k(k+1), using IH = 2^k(k-1+k+1) + 2 = 2^k(2k) + 2 = 2^{k+1}k + 2