
Summation 

Prove for all positive integers n, that ∑ (−1)𝑖−1𝑖2 =
𝑛(𝑛+1)(−1)𝑛−1

2

𝑛
𝑖=1 . 

Base case: n = 1, LHS = ∑ (−1)𝑖−1𝑖2 = (−1)012 = 11
𝑖=1 , RHS = 

1(1+1)(−1)1−1

2
= 1 

                      The formula holds for n=1. 

 

Inductive Hypothesis: Assume for an arbitrary positive integer n = k, where k is an arbitrarily 

chosen positive integer 2 or greater, that ∑ (−1)𝑖−1𝑖2 =
𝑘(𝑘+1)(−1)𝑘−1

2

𝑘
𝑖=1 . 

 

Inductive Step: Prove for n = k+1 that ∑ (−1)𝑖−1𝑖2 =
(𝑘+1)(𝑘+2)(−1)𝑘

2

𝑘+1
𝑖=1 . 

 

∑(−1)𝑖−1𝑖2 = (∑(−1)𝑖−1𝑖2

𝑘

𝑖=1

𝑘+1

𝑖=1

) + (−1)𝑘(𝑘 + 1)2 

=
𝑘(𝑘+1)(−1)𝑘−1

2
+ (−1)𝑘(𝑘 + 1)2, using IH 

=
𝑘(𝑘 + 1)(−1)𝑘−1

2
+

2

2
(−1)𝑘(𝑘 + 1)2 

= (
𝑘 + 1

2
) [

𝑘(−1)𝑘−1

1
+

2

1
(−1)𝑘(𝑘 + 1) ] 

= (
𝑘 + 1

2
) (−1)𝑘−1[𝑘 − 2(𝑘 + 1)] 

= (
𝑘 + 1

2
) (−1)𝑘−1[−𝑘 − 2] 

= (
𝑘 + 1

2
) (−1)𝑘−1(−1)[𝑘 + 2] 

= (
(𝑘 + 1)(𝑘 + 2)

2
) (−1)𝑘 

 

 

 

 



Inequality – emphasis on the freedom in inequality steps and the need to use it 

Prove using induction on n that for all positive integers n, ∑
𝑖

𝑖+1
≤

𝑛2

𝑛+1

𝑛
𝑖=1 . 

Base case: n = 1, LHS =∑
𝑖

𝑖+1
=

1

2

1
𝑖=1 , RHS = 

12

1+1
=

1

2
, thus the inequality holds for n=1. 

 

Inductive hypothesis: Assume for an arbitrarily chosen positive integer n = k that  

∑
𝑖

𝑖+1
≤

𝑘2

𝑘+1

𝑘
𝑖=1 . 

 

Inductive Step: Prove for n = k+1 that 

∑
𝑖

𝑖 + 1
≤

(𝑘 + 1)2

𝑘 + 2

𝑘+1

𝑖=1

 

 

∑
𝑖

𝑖 + 1
= (∑

𝑖

𝑖 + 1

𝑘

𝑖=1

) +
𝑘 + 1

𝑘 + 2

𝑘+1

𝑖=1

 

 

                                                                           ≤
𝑘2

𝑘+1
+

𝑘+1

𝑘+2
, using the IH. 

 

=
𝑘(𝑘)(𝑘 + 2) + (𝑘 + 1)2

(𝑘 + 1)(𝑘 + 2)
 

=
𝑘3 + 2𝑘2 + 𝑘2 + 2𝑘 + 1

(𝑘 + 1)(𝑘 + 2)
 

=
𝑘3 + 3𝑘2 + 2𝑘 + 1

(𝑘 + 1)(𝑘 + 2)
 

≤
𝑘3 + 3𝑘2 + 3𝑘 + 1

(𝑘 + 1)(𝑘 + 2)
 

=
(𝑘 + 1)3

(𝑘 + 1)(𝑘 + 2)
 

=
(𝑘 + 1)2

(𝑘 + 2)
 



Strong Induction Example 

Prove, using strong induction on n with 3 base cases that if and only if 3 | n, then 2 | Fn, where Fn 

denotes the nth Fibonacci Number. (F0=0, F1=1, Fn = Fn-1 + Fn-2, for all ints n >= 2) Prove for all 

non-negative integers n. 

Base cases: n=0,1, F0=0 and is divisible by 3, but F1 = 1, and isn’t divisible by 3 so the base case 

holds for n=0 and 1. 

Inductive hypothesis: Assume all non-negative integers n <= k, where k is an arbitrarily selected 

positive integer 1 or greater that if and only if 3 | n, then 2 | Fn.  

 

Inductive Step: Prove for n = k+1 that if 3 | (k+1), then 2 | Fk+1, otherwise if 3 | (k+1) is false, 

then 2 | Fk+1 is false. 

Fk+1 = Fk + Fk-1 

Cases: (1) k+1 is divisible by 3 (2), k+1 = 1 mod 3 (3) k+1 = 2 mod 3 

            This means k, k-1 are  k = 0 mod 3  k = 1 mod 3 

 Not divisible by 3  k-1 = 2 mod 3  k-1 = 0 mod 3 

 By the IH, Fk is NOT even Fk  = even, using IH Fk odd using IH 

            Fk-1 is also not even.  Fk-1 = odd, using IH Fk-1 even using IH 

            Since both are odd  Fk = 2a, Fk-1 = 2b+1  Fk = 2a+1, Fk-1 = 2b 

 Let Fk = 2a+1,   for ints a, b  for ints a,b 

                  Fk-1 = 2b+1 for some 

           Integers a and b 

      = (2a+1)+(2b+1)   = 2a + 2b + 1  = 2a + 1 + 2b 

       = 2(a+b+1)   = 2(a+b) + 1  = 2(a+b) + 1 

Since a,b are ints, a+b+1 is  Since a,b are ints Since a and b are ints 

An int and Fk+1 is even  Fk+1 is odd as desired Fk+1 is odd as desired. 

Note: Steps in blue are why strong induction with 2 base cases is necessary. 

 

 

 

 



Strong Induction Example: NIM 

2 players, 2 piles of stones. On a single turn a player picks one pile and takes 1 or more stones 

from that pile. The winner is the last person to take a stone. 

A B 

3 2 Player Melia takes 2 stones from pile A 

1 2  Player Sandra takes 1 stone from pile B 

1 1 Player Melia takes 1 stone from pile B 

1 0 Player Sandra takes 1 stone from pile A 

0  0 Melia can’t play, so Sandra wins! 

Using strong induction on n, prove that if 2 players play NIM with two piles initially with n 

stones each and both players play optimally, player 2 will win. 

Base case: n=1, Player 1 is forced to take 1 stone from either pile, so player 2 can respond by 

taking 1 stone from the other pile for the win. 

Inductive hypothesis: Assume for all integers n <= k, where k is an arbitrarily chosen positive 

integer, that if 2 players play NIM with n stones in each pile, player 2 will win. 

Inductive step: Prove for n=k+1 that if 2 players play NIM with k+1 stones in each pile, player 2 

will win. 

Player 1 goes and there are k+1 stones in both piles. No matter which pile she takes stones from, 

one pile will remain with k+1 stones and the other pile will have k+1-a stones, where a is in 

between 1 and k+1, inclusive. Now, player 2 will just take a stones from the larger pile, leaving 

the game with k+1-a stones in both piles. This is now a game of NIM for which the inductive 

hypothesis applies, and Player 2 wins this game according to the hypothesis. This means that the 

inductive step is proven! 

 

11  11 

5  11 

5 5 (Player 2 can always mirror the move!!!) 

Who wins if the piles are unequal at the beginning? Player 1→ they will just get the piles to be 

equal and Player 2 will be forced to go next! 

Incidentally, if there are more than 2 piles, the second player wins if and only if the bitwise 

XOR of the number of stones in each pile is 0. 

 



Last Problem – Binary Billy 

Binary Billy’s punishment is to write all the binary numbers upto n bits. So if n = 3, he has to 

write: 0, 1, 10, 11, 100, 101, 110, 111. 

Let B(n) represent the number of bits he has to write if he writes all the numbers upto a full n bit 

representation. Using induction on n, prove that B(n) = (n-1)2n + 2 for all positive integers n. 

Base case: n = 1, When n=1, binary billy writes 0, 1, which is 2 bits. So B(1) = 2 

                  RHS = (1-1)21 + 2 = 2 

 

Inductive Hypothesis: Assume for an arbitrarily chosen integer n = k that  

   B(k) = (k-1)2k + 2 

 

Inductive step: Prove for n = k+1 that B(k+1) = ((k+1)-1)2k+1 + 2 = k2k+1 + 2 

 

Try calculating B(k+1)… 

Step 1: first Binary billy writes all the numbers upto k bits.  

Step 2: 

Then he writes 

100000000 (1 followed by k 0s) 

100000001, etc. 

111111111 (last number being k+1 1s) 

In all, he writes 2k numbers, each of which have k+1 bits in them. 

          

By the inductive hypothesis, he writes (k-1)2k + 2 bits in step 1. And we know he writes 2k(k+1) 

bits in step 2. 

In total he writes (k-1)2k + 2 + 2k(k+1) = 2k(k-1+k+1) + 2 = 2k(2k) + 2 = 2k+1k + 2. This is what 

we were trying to prove, so the inductive step is finished. 

B(k+1) = B(k) + 2k(k+1) 

             = (k-1)2k + 2 + 2k(k+1), using IH 

             = 2k(k-1+k+1) + 2  

             = 2k(2k) + 2  

              = 2k+1k + 2 

           


