
The nth Harmonic number is 1 + 1/2 + 1/3 + … +1/n, in summation, 

we have 𝑯𝒏 = ∑
𝟏
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1) Prove 
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= (n+1)Hn – n, using induction. Note that Hn = 
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this for all positive integers n. 

 

 Use induction on n>0. 

 

Base case: n=1. LHS = 1/1 = 1 

    RHS = (1+1)(1/1) – 1 = 1 

                                    Thus, the assertion holds for n=1 and the base 

                                    case is true. 

 

Inductive hypothesis: Assume for an arbitrarily chosen positive 

integer n = k that 
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= (k+1)Hk – k 

 

Inductive step: Under this assumption, we must prove the formula 

for n = k+1: 
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 = (k+1)Hk – k + Hk+1, using inductive hypothesis. 

 

This is a mismatch!!! Nothing to factor out. 

We would really love for that Hk to be an Hk+1. 

But…we can't just randomly change stuff… 

Instead, we must investigate the relationship between Hk and 

Hk+1… 



Hk = 1 + 1/2 + 1/3 + … + 1/k 

Hk+1 = 1 + 1/2 + 1/3 + …  1/k + 1/(k+1) 

Hk+1 = Hk + 1/(k+1) 

Hk = Hk+1 - 1/(k+1) 

 

 

 

 = (k+1)(Hk+1 – 1/(k+1)) – k + Hk+1 

 = (k+1)Hk+1 – 1 – k + Hk+1 

 = (k+2) Hk+1 – (1+k), which completes the induction. 

 

Thus, we have shown 
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= (n+1)Hn – n, for all positive integers 

n. 

 

Inequalities (and sums not to n) 

 

Prove using induction on n, for all positive integers n,  

 

   ∑ 𝑙𝑜𝑔2𝑖
2𝑛

𝑖=1 ≤ (𝑛 − 1)2𝑛 + 1. 

 

Base case n=1: LHS = ∑ 𝑙𝑜𝑔2𝑖
21

𝑖=1 = 𝑙𝑜𝑔21 + 𝑙𝑜𝑔22 = 0 + 1 = 1 

                                 RHS = (1 − 1)21 + 1 = 0 + 1 = 1. 

 

Inductive hypothesis: assume for an arbitrarily chosen positive  integer n 

= k that 

 

    ∑ 𝑙𝑜𝑔2𝑖
2𝑘

𝑖=1 ≤ (𝑘 − 1)2𝑘 + 1. 

 

Inductive step: Prove for n = k+1 that 

 

  ∑ 𝑙𝑜𝑔2𝑖
2𝑘+1

𝑖=1 ≤ ((𝑘 + 1) − 1)2𝑘+1 + 1 = 𝑘2𝑘+1 + 1. 

 

 



Couple observations: IS sum has lots more terms than the IH sum…in 

fact, twice as many…also, the sum on the left is irrational. 
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≤ (𝑘 − 1)2𝑘 + 1 + ∑ 𝑙𝑜𝑔2𝑖

2𝑘+1

𝑖=2𝑘+1

 

≤ (𝑘 − 1)2𝑘 + 1 + ∑ 𝑙𝑜𝑔22
𝑘+1

2𝑘+1

𝑖=2𝑘+1

 

 

Why can I do this?  

Answer for any set of n numbers S, the sum of those numbers is less 

than or equal to n*max(S). {3, 2, 7, 9, 1} 3+2+7+9+1 <= 9+9+9+9+9 = 

5*9. 3+2+7+9+1 <= 1+1+1+1+1, sum(S) >= n*min(S) 

 

So, since log is an increasing function, if I take the log of a list of 

consecutive numbers, the log of the last number will be the largest. 

 

= (𝑘 − 1)2𝑘 + 1 + ∑ (𝑘 + 1)

2𝑘+1

𝑖=2𝑘+1

 

 

= (𝑘 − 1)2𝑘 + 1 + (𝑘 + 1)2𝑘 

 

The number of integers from a to b is equal to b - a + 1. For this case, we 

have 2k+1 - (2k+1) + 1 = 2k+1 - 2k -1 + 1 = 2k+1 - 2k = 2(2k) - 2k = 2k(2-1) = 

2k. 

 

= (2𝑘)2𝑘 + 1 

= (𝑘)2𝑘+1 + 1 



This completes the inductive step. Thus, we can conclude for all positive 

integers n that ∑ 𝑙𝑜𝑔2𝑖
2𝑛

𝑖=1 ≤ (𝑛 − 1)2𝑛 + 1. 

 

Inequalities (and sums not to n) - Example 2 

 

Use induction on n to prove the following inequality for all positive 

integers n: 
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Base Case: n=1. LHS =∑ √𝒊𝟏𝟐
=𝟏 = (1) = 1 

      RHS = 1(1+1)(4(1) – 1)/6 = 1  

                   So the assertion is true for n = 1 and the base case holds. 

 

Inductive hypothesis: Assume for an arbitrary positive integer n=k 

that 
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Inductive Step: Under this assumption, prove for n=k+1 that 
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Note: it's very important to plug in the k+1 in parentheses, as this 

example shows. 
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We stop the sum at k2 because that is what your IH applies to. But, 

this means there are quite a few terms leftover that we didn't express, 

so we have to put those in a second sum. The next integer after k2 is 

k2+1, so this is where that second sum must start. 
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, using the inductive hypothesis.  
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because each term in the summation is less than or equal to that last 

term when i = (k+1)2.  
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because the first summation from the IH contains k2 terms while the 

summation from the IS contains (k+1)2, leaving the  

difference for this summation. 
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Divisibility 

 

Prove using induction on n, for all non-negative integers n, that  

 

    9 | (22n + 6n - 1). 

 

Base case: n=0, 22(0) + 6(0) - 1 = 1 + 0 - 1 = 0, 0 = 9 x 0, so 9 | 0 and the 

base case is proven. Thus the assertion holds for n = 0. 

 

Inductive hypothesis: assume for an arbitrarily chosen non-negative 

integer n = k that 

 

    9 | (22k + 6k - 1) 

 

This means we are assuming that there is an integer c such that  

 

     22k + 6k - 1 = 9c 

 

Inductive step: Prove for n = k+1 that 

 

    9 | (22(k+1) + 6(k+1) - 1) 

 

We must prove there exists some integer d such that 

 

    22(k+1) + 6(k+1) - 1 = 9d 



22(k+1) + 6(k+1) - 1 = 22k+2 + 6k + 6 - 1 

 

                               = 2222k + 6k + 6 - 1 

 

                               = 4(22k) + 6k + 6 - 1 

 

                               = 4(22k) + 6k + 6 - 1 + 18k - 18k 

 

                               = 4(22k) + 24k + 6 - 1  - 18k - 4 + 4 

 

                               = 4(22k) + 24k - 4 + (6 - 1  - 18k + 4) 

 

                               = 4[(22k) + 6k - 1] + (9  - 18k) 

 

                               = 4[9c] + (9  - 18k), using the IH 

 

                               = 9[4c + 1 - 2k], 

 

Since c and k are integers, it follows that 4c + 1 - 2k is an integer as 

well, so we've proven that 9 | 22(k+1) + 6(k+1) - 1, proving the inductive 

step. It follows that the given assertion is true for all non-negative 

integers n. 

 

Random Problem 

Prove for all positive integers n, that a 2n x 2n region with one unit square 

removed can be tiled with trominos. (A tromino is an L shaped tile of three 

unit squares.) 

 

Base case: n = 1: Consider tiling a 21 x 21 region with one unit square 

remove. This will always have 3 squares (4 - 1) that are in an L shape, so 

we can fit exactly one tromino into the design. 

 

Inductive hypothesis: Assume for an arbitrary positive integer n=k that 

we can tile a 2k x 2k region with one unit square missing with trominos. 

 



Inductive step: Prove for n = k+1 that we can tile a 2k+1
 x 2k+1 region 

with one square missing. 

 

So, we can always split our picture into four squares of size 2k x 2k. 

One of these four quadrants will have a hole in it. So, we use the inductive 

hypothesis to tile that quadrant. 

 

BUT WE HAVE A PROBLEM! WE HAVE THREE UNTILED 

QUADRANTS, NONE OF WHICH HAVE HOLES! 

 

So, what we'll do is place a single tromino in the center, which is 

guaranteed to have one "covered" square and 3 that haven't been taken 

care of! 

 

So now, all of the other three quadrants have a "hole" (a tile), so we can 

apply the inductive hypothesis to tile all three of those quadrants and we're 

done! 

 

Here are two examples of tilings using this proof, the hole is the single 

black square in each example: 

 

    
 

 

 

 

 



    
Strong Induction 

Key differences: 

 

1) We usually have more than 1 base case. 

 

2) Instead of assuming that the formula is true for an arbitrary integer n 

= k, we assume that the formula is true FOR ALL integers n <= k, 

where k is an arbitrarily chosen integer. 

 

We try to prove the following: 

 

𝑓(1) ∧ 𝑓(2) ∧ 𝑓(3) ∧ 𝑓(4) ∧ …∧ 𝑓(𝑘) → 𝑓(𝑘 + 1) 
 

It turns out that strong induction is logically equivalent to regular 

induction… The reason we usually need to use strong induction is that 

when we prove the IS, we end up having to assume that the statement is 

true for a few previous cases, not just one. 

 



Chicken Nugget Problem - Strong Induction 

Prove for all integers n ≥ 12, using strong induction with 4 base cases, that 

if you can buy 4 packs of chicken nuggets and 5 packs of chicken nuggets 

that you can buy exactly n chicken nuggets. 

 

Base case(s): 

 

n = 12, buy three 4 packs 

 

n = 13, buy two 4 packs, one 5 pack 

 

n = 14, buy one 4 pack, two 5 packs 

 

n = 15, buy three 5 packs 

 

So, the statement is true for n = 12, 13, 14, 15 

 

Inductive hypothesis: Assume for all n, 12 ≤  n ≤ k, where k is an 

arbitrarily chosen integer that is at least 15, that you can always buy 

exactly n chicken nuggets using 4 and 5 packs. 

 

Inductive step: Prove, for n = k+1 that you can buy exactly n chicken 

nuggets. 

 

We are trying to buy k+1 nuggets, go ahead and buy one four pack, now 

we need k-3 nuggets. Since k >= 15, k-3 >= 12, and we can apply the 

inductive hypothesis and buy exactly k-3 nuggets and we have proven the 

inductive step. 

 


