Matrices

Are grids of numbers...they are really, really useful to computer scientists...at the end of the
day, an image in its raw representation, is usually just a grid of numbers, where those humbers
specify colors.

A matrix has some number rows and columns. Here is a 2 by 3 matrix:

[—13
4

Add Matrices
Dimensions have to be identical:

[4 5 3 [65 81; gz[—81 3 16

Just add corresponding terms to get the resultant term
Subtraction is the same subtract first term minus second term for each slot:

PR B PR bl P

Multiplication of Matrices

Let M1 have rl rows, c1 cols
Let M2 have r2 rows, c2 cols

We can multiply M1 x M2, if and only if c1 =r2. (Note: it’s possible that we can multiply M1
times M2, but NOT be allowed to multiply M2 times M1.)

The result of the multiplication is always has rl rows and c2 columns:

EEEA ‘i g _[1(=3) + 2(~4) + 3(0) 1(5) + 2(6) + 3(=5)
_ 1kl iy = |22(=3) + 4(=4) + (=1)(0) —2(5) + 4(6) + (—=1)(=5)

[—10 19

In general, to get the entry in row X, column y, we “multiply”” row x by column y. What it means
to multiply a row by a column, is roughly the definition of a dot product, if you happen to be
familiar with that concept. If you are not, what we do is multiply each corresponding term and
add those values.

Result[x][y] =X¢1, M1[x][i] * M2[i][y]

Matrix Multiplication in code:

public static int[][] mult(int[][] ml, int[][] m2) {
int[][] res = new int[ml.length] [m2[0].length];
for (int i=0; i<ml.length; i++)
for (int j=0; j<m2[0].length; j++)
for (int k=0; k<ml[O0].length; k++)
res[i][J] += (ml[i][k]*m2[k][]]);
return res;

}

Recursively Defined Sequences
Fibonacci — wondered. ..

Month 1 — 1 pair of rabbits (new)

Month 2 — 1 pair of rabbits (mature)

Month 3 — 2 pairs of rabbits (1 mature, 1 new)
Month 4 — 3 pairs of rabbits (2 mature, 1 new)
Month 5 — 5 pairs of rabbies (3 mature, 2 new)

Not too hard to see...all rabbits in month k-1 become mature in month k. All rabbits alive in
month k-2 give birth to new rabbits in month k.

Let Fx = # of pairs of rabbits alive at month k.
Then for k >= 3, by the definition of the story, we have

Fi=1,F, =1, forall k> 2, we have Fk = Fx1 + Fk2

There is a magazine called the Fibonacci Quarterly...if you can believe that...

Hallmarks of a recursively defined sequence:

Some initial terms are given.

To generate the rest of the terms, a formula is given to find the kth term in terms of previous
terms of the sequence.

Here is a recursive definition of factorials:

or=1
forall k >0, k! =k * (k-1)!

Here is a recursive definition of the combination function:

C(n, 0) = C(n, n) = 1, for all non-negative integers n.
C(n, k) =C(n-1, k-1) + C(n-1, k) foralln>1and 0 <k <n.

The most simple way to list a particular term in a recursively defined sequence is to build it up...

What is F10?
1,1,2,3,5,8,13,21,34,55

Answer is 55...

Mathematical Induction
f(n) is an open statement where n can be any non-negative integer.

Let’s pretend we proved the following two things:

f(0) and
f(0) - f(2)

Using the rules of inference, what could we deduce?

f(0) Premise
f(0) -» f(1) Premise
f(1) Modus Ponens

Now, imagine that the implication that we proved wasn’t just about f(0), but about f(k) for all
non-negative integers k:

Given

(0)

f(k) — f(k+1), for all non-negative integers k...expand out a bit...
f(0) - (1)

f(1) - f(2)

f(2) - (3)

f(3) — f(4), ... on forever

Proof

f(0) Premise

f(0) — f(1) Premise

f(2) Modus Ponens
f(1) - f(2) Premise

f(2) Modus Ponens
f(2) - f(3) Premise

f(3) Modus Ponens
f(3) — f(4) Premise

This will go forever, and it will prove the statement for any arbitrary positive integer...

So, to prove any arbitrary statement, f(n), true for all non-negative integers n, it suffices to prove
the two following things:

f(0)
f(k) — f(k+1) for all non-negative integers k

More generally, to prove any arbitrary statement, f(n), true for all integers n >= ¢, for some fixed
integer c, it suffices to prove the two following things:

f(c)
f(k) — f(k+1) for all integers k >=c.

Normally, we break this up into three steps in mathematical induction:

1. Base case — this is where we prove f(c)

2. Inductive Hypothesis: This is were we assume f(k) for an arbitrary integers n=k, where
k>=c.

3. Inductive Step: We must prove f(k+1).

Essentially, we are using direct proof to prove the if-then statement which is the second
requirement | had previously written down.

Example #1

Prove for all positive integers n, that Y7, i = nnt1)

Base case:n=1,LHS=Y! ,i =1, RHS = @ = % = 1, the statement is true for n=1, thus

the base case is proven.

Inductive hypothesis: Assume for an arbitrarily chosen positive integer n = k thaty¥_, i = ker1)

(kD) ((k+1)+1) (k+1)(k+2)

Inductive Step: Prove for n=k+1 that ¥**1 i
2 2

Quick Side Note: When proving A = B, NEVER manipulate both sides of the equation.
Instead, start with one expression, and do algebra on it until you get to the other:

A=Al
= A2

o
>
w

@

1+2+3+. . +k+(k+1) = [1 + 2 + 3 +...+k] + (k+1)

li= (T i) + (k+ 1), note, I just split off the last term of the sum
= KD (k + 1), using the inductive hypothesis (IH)

_ k(i+1) 2(k+1)

2
_ (k+1)(k+2)

2
This proves the inductive step. It follows that for all positive integers n, Y7L, i = "(n;l)

as desired.

Many teachers just use induction to prove summation formulas, but it’s really
important for me to prove to you that induction is a general proof technique
that can be used to prove assertions about positive integers in almost any
mathematical realm!!!

Divisibility Proof
Prove for all non-negative integer n that 5 | (32" + 4™1).

Base case: n =0, plug in 0 for n in the expression: 32 + 4% =1 + 4 =5, Since 5
= 5(1), itis true that 5 | 5, thus the base case is true.

Inductive hypothesis: Assume for an arbitrarily chosen integer n = k that 5 | (3% +
4%+1), By definition of divisibility this means there exists some integer ¢ such that 3%
+ 4%+ = b,

Inductive step: Prove that for n = k+1, that 5 | (32**D) + 4k+D+1),

32(k+1) + 4(k+1)+1 - 32k+2 + 4k+2

o 32k32 + 4k+141

= 9(3%) + 4(4%*Y)

- 5(32k) + 4(32k) + 4(4k+1)

- 5(32k) + 4[32k + 4k+1]

= 5(3%) + 4(5c)

= 5(3% + 4c)
Since k is a non-neg integer and c is an integer, it follows that (3% + 4c) is an integer.
Thus, we can conclude as desired, that 5 | (321 + 4k+1)+1)

Induction Proof - n squares

Thursday, October 8, 2020 2:44 PM

Use induction to prove that we can partition any square into n
squares for all n >= 6.

Base case n = 6...this can be used to build 6, 9,12,...

)

NeRER%
Base case n = 7, this can be used to build 7,10,13,.
7
[/
| /2

This one can be used to build 8,11,14, ...
Base case n =8

b4 Wy

Inductive hypothesis: Assume for n=k-2, n=k-1 and n=k that we can
partition a square into n squares, where k-2>=6, so k>=8.

Inductive step: Prove for n=k+1 that we can partition a square into n
squares.

Take the IH, it gives you some arbitrary partition of a square into k-2

squarces:

ow can | use this picture to partition it into k+1 squares?

Answer: Take any square in the picture and split into 4 squares with half
the side length of the square being split.

And we're done! We have proven that we can partition a square into k+1
squares!

Why did I need multiple base cases? I didn't build off the result of k, but
I built off the result of k-2, so I needed three cases in a row.

