
Matrices 

Are grids of numbers…they are really, really useful to computer scientists…at the end of the 

day, an image in its raw representation, is usually just a grid of numbers, where those numbers 

specify colors. 

A matrix has some number rows and columns. Here is a 2 by 3 matrix: 

 

[
2 −1 3
4 2 9

] 

Add Matrices 

Dimensions have to be identical: 

[
2 −1 3
4 2 9

] + [
6 8 2
−5 1 7

] = [
8 7 5
−1 3 16

] 

Just add corresponding terms to get the resultant term 

Subtraction is the same subtract first term minus second term for each slot: 

[
2 −1 3
4 2 9

] − [
6 8 2
−5 1 7

] = [
−4 −9 1
9 1 2

] 

 

Multiplication of Matrices 

Let M1 have r1 rows, c1 cols 

Let M2 have r2 rows, c2 cols 

We can multiply M1 x M2, if and only if c1 = r2. (Note: it’s possible that we can multiply M1 

times M2, but NOT be allowed to multiply M2 times M1.) 

The result of the multiplication is always has r1 rows and c2 columns: 

[
1 2 3
−2 4 −1

] × [
−3 5
−4 6
0 −5

] = [
1(−3) + 2(−4) + 3(0) 1(5) + 2(6) + 3(−5)

−2(−3) + 4(−4) + (−1)(0) −2(5) + 4(6) + (−1)(−5)
] 

= [
−11 2
−10 19

] 

In general, to get the entry in row x, column y, we “multiply” row x by column y. What it means 

to multiply a row by a column, is roughly the definition of a dot product, if you happen to be 

familiar with that concept. If you are not, what we do is multiply each corresponding term and 

add those values. 

Result[x][y] =∑ 𝑀1[𝑥][𝑖] ∗ 𝑀2[𝑖][𝑦]𝑐1
𝑖=1  



Matrix Multiplication in code: 

 

public static int[][] mult(int[][] m1, int[][] m2) { 

    int[][] res = new int[m1.length][m2[0].length]; 

    for (int i=0; i<m1.length; i++)  

       for (int j=0; j<m2[0].length; j++) 

           for (int k=0; k<m1[0].length; k++) 

               res[i][j] += (m1[i][k]*m2[k][j]); 

    return res; 

} 

 

Recursively Defined Sequences 

Fibonacci – wondered… 

 

Month 1 – 1 pair of rabbits (new) 

Month 2 – 1 pair of rabbits (mature) 

Month 3 – 2 pairs of rabbits (1 mature, 1 new) 

Month 4 – 3 pairs of rabbits (2 mature, 1 new) 

Month 5 – 5 pairs of rabbies (3 mature, 2 new) 

 

Not too hard to see…all rabbits in month k-1 become mature in month k. All rabbits alive in 

month k-2 give birth to new rabbits in month k. 

 

Let Fk = # of pairs of rabbits alive at month k. 

Then for k >= 3, by the definition of the story, we have 

 

F1 = 1, F2 = 1, for all k > 2, we have Fk = Fk-1 + Fk-2 

 

There is a magazine called the Fibonacci Quarterly…if you can believe that… 

 

Hallmarks of a recursively defined sequence: 

 

Some initial terms are given. 

To generate the rest of the terms, a formula is given to find the kth term in terms of previous 

terms of the sequence. 

 

Here is a recursive definition of factorials: 

 

0! = 1 

for all k > 0, k! = k * (k-1)! 

 

Here is a recursive definition of the combination function: 

 

C(n, 0) = C(n, n) = 1, for all non-negative integers n. 

C(n, k) = C(n-1, k-1) + C(n-1, k) for all n > 1 and 0 < k < n. 



The most simple way to list a particular term in a recursively defined sequence is to build it up… 

 

What is F10? 

1,1,2,3,5,8,13,21,34,55 

 

Answer is 55… 

 

 

Mathematical Induction 

f(n) is an open statement where n can be any non-negative integer. 

 

Let’s pretend we proved the following two things: 

 

f(0) and 

f(0) → f(1) 

 

Using the rules of inference, what could we deduce? 

 

f(0)  Premise 

f(0) → f(1) Premise 

f(1)  Modus Ponens 

 

Now, imagine that the implication that we proved wasn’t just about f(0), but about f(k) for all 

non-negative integers k: 

 

Given 

------- 

f(0) 

f(k) → f(k+1), for all non-negative integers k…expand out a bit… 

f(0) → f(1) 

f(1) → f(2) 

f(2) → f(3) 

f(3) → f(4), … on forever 

 

Proof 

------- 

f(0)    Premise 

f(0) → f(1)  Premise 

f(1)   Modus Ponens 

f(1) → f(2)  Premise 

f(2)   Modus Ponens 

f(2) → f(3)  Premise 

f(3)   Modus Ponens 

f(3) → f(4)  Premise 

… 

This will go forever, and it will prove the statement for any arbitrary positive integer… 



So, to prove any arbitrary statement, f(n), true for all non-negative integers n, it suffices to prove 

the two following things: 

 

f(0) 

f(k) → f(k+1) for all non-negative integers k 

 

More generally, to prove any arbitrary statement, f(n), true for all integers n >= c, for some fixed 

integer c, it suffices to prove the two following things: 

 

f(c) 

f(k) → f(k+1) for all integers k >= c. 

 

Normally, we break this up into three steps in mathematical induction: 

 

1. Base case – this is where we prove f(c) 

2. Inductive Hypothesis: This is were we assume f(k) for an arbitrary integers n=k, where 

k>=c. 

3. Inductive Step: We must prove f(k+1). 

Essentially, we are using direct proof to prove the if-then statement which is the second 

requirement I had previously written down. 

 

Example #1 

Prove for all positive integers n, that ∑ 𝑖𝑛
𝑖=1 =

𝑛(𝑛+1)

2
. 

Base case: n = 1, LHS = ∑ 𝑖 = 11
𝑖=1 , RHS = 

1(1+1)

2
=

2

2
= 1 , the statement is true for n=1, thus 

the base case is proven. 

 

Inductive hypothesis: Assume for an arbitrarily chosen positive integer n = k that∑ 𝑖𝑘
𝑖=1 =

𝑘(𝑘+1)

2
. 

 

Inductive Step: Prove for n=k+1 that ∑ 𝑖𝑘+1
𝑖=1 =

(𝑘+1)((𝑘+1)+1)

2
=

(𝑘+1)(𝑘+2)

2
 

 

Quick Side Note: When proving A = B, NEVER manipulate both sides of the equation. 

Instead, start with one expression, and do algebra on it until you get to the other: 

 

A = A1 

    = A2 



     = A 3 

     = … 

     = B 

 

1+2+3+…+k+(k+1) = [1 + 2 + 3 +…+k] + (k+1) 
∑ 𝑖𝑘+1
𝑖=1 = (∑ 𝑖𝑘

𝑖=1 ) + (𝑘 + 1), note, I just split off the last term of the sum 

           =
𝑘(𝑘+1)

2
+ (𝑘 + 1), using the inductive hypothesis (IH) 

            =
𝑘(𝑘+1)

2
+

2(𝑘+1)

2
 

            =
(𝑘+1)(𝑘+2)

2
 

This proves the inductive step. It follows that for all positive integers n, ∑ 𝑖𝑛
𝑖=1 =

𝑛(𝑛+1)

2
, 

as desired. 

 

Many teachers just use induction to prove summation formulas, but it’s really 

important for me to prove to you that induction is a general proof technique 

that can be used to prove assertions about positive integers in almost any 

mathematical realm!!! 

 

Divisibility Proof 

Prove for all non-negative integer n that 5 | (32n + 4n+1). 

 

 Base case: n = 0,  plug in 0 for n in the expression: 32(0) + 40+1 = 1 + 4 = 5. Since 5 

= 5(1), it is true that 5 | 5, thus the base case is true. 

 

Inductive hypothesis: Assume for an arbitrarily chosen integer n = k that 5 | (32k + 

4k+1). By definition of divisibility this means there exists some integer c such that 32k 

+ 4k+1 = 5c. 

 

Inductive step: Prove that for n = k+1, that 5 | (32(k+1) + 4(k+1)+1). 

 

32(k+1) + 4(k+1)+1 = 32k+2 + 4k+2 

                         = 32k32 + 4k+141 

                         = 9(32k) + 4(4k+1) 

                         = 5(32k) + 4(32k) + 4(4k+1) 

                         = 5(32k) + 4[32k + 4k+1] 

                         = 5(32k) + 4(5c) 

                         = 5(32k + 4c) 

Since k is a non-neg integer and c is an integer, it follows that (32k + 4c) is an integer. 

Thus, we can conclude as desired, that 5 | (32(k+1) + 4(k+1)+1) 
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