
Modular Exponentiation via the cycle method 

 

If a ≡ b (mod n), then ca ≡ cb (mod n) 

If a ≡ b (mod n), then a + c ≡ b + c (mod n) 

If a ≡ b (mod n), then ak ≡ bk (mod n) 

 

Find the remainder when 21003 is divided by 11 

 

Pow 0 1 2 3 4 5 6 7 8 9 10 

Val 1 2 4 8 5 10 9 7 3 6 1 

 

When calculating 16 x 2 = x mod 11 the answer is the same as 

calculating             5 x 2 = x mod 11 

 

This repeats every 10. For 21003 ≡ 23 ≡ 8 (mod 11) 

 

Since it repeats every 10, adding multiples of 10 to the exponent don't 

change the mod value. 

 

Imagine the chart going to 1003…it just repeats, so 0 says 1, 10 says 1, 

20 says 1…1000 will say 1, 1001 will say 2, 1002 will say 4 and 1003 

will say 8 

 

210 ≡ 1 (mod 11) 

 

21003 ≡ 2100023 ≡ (210)10023 ≡(1)10023 ≡ 8 (mod 11) 

 

This is good if the cycle is small (which will be the case if the mod value 

is small) 

 

 

 

 

 

 



Fast Modular Exponentiation (bottom up iterative way) 

355 mod 19 

 

355 = 332316343231 ≡ 4(-2)(5)(9)(3) ≡ (-8)(45)(3) ≡ (-24)7 ≡ (-5)7 ≡ -35 ≡ 

3 (mod 19) 

 

Pow 1 2 4 8 16 32 

Value 3 9 815 25  6 36  17 4 

 

 

34 = (32 )2 = 9 x 9 ≡ 5 (mod 19) 

 

38 = (34)2 = 812 ≡ 52  ≡  25 ≡  6(mod 19) 

316 = (38)2 ≡ 62  ≡  26 ≡  17 (mod 19) 

332 = (316)2 ≡ 172  ≡  (-2)2 ≡  4 (mod 19), because 17≡ -2 (mod 19) 

 

Fast Modular Exponentiation (top down recursive way) 

255 = (227)2 x 2 = ((213)2 x 2)2 x 2  

 

By Hand… 

255 = (210)525  fundamentally, by hand, you can break this down any 

which way you want, such that the exponents add up to the proper value. 

 

Division 

 

Input two positive integers a and b. 

Output two integers q and r such that 

a = bq + r, and 0 <= r < b 

 

There is precisely one ordered pair (q, r) which satisfies these 

requirements for any positive integer (a, b). 

q is defined as the quotient. 

r is defined as the remainder. 

You probably learned this in 4th grade, but without the fancy names or 

the formal stuff above. 



Our goal: to prove that there is exactly one answer to division!!! 

 

81 divided by 11 

 

81 = 7 x 11 + 4, q = 7,  r = 4 

 

81 = 6 x 11 + 15, problem my supposed remainder is greater than 10. 

 

We can think about division like subtracting out 11s until we can't do it 

any more. And if we can't do it, what we're left with is less than 11. 

 

 

Proof by contradiction to prove it! 

Assume to the contrary, for some positive integers a and b, that there are 

two distinct ordered pairs (q, r) and (q', r') (either q != q' or r != r') such 

that 

 

a = bq + r, 0 <= r < b AND 

a = bq' + r', 0 <= r' < b 

 

bq + r = bq' + r' 

bq - bq' = r' - r 

b(q - q') = r' - r 

 

 

Two cases: 

 

q-q' = 0   OR     q-q' != 0 

r' - r = 0      | b(q - q') | >= b 

Contradicts      But | r' - r| < b 

(q,r) and (q',r') are     This is impossible! 

Distinct. 

 

To prove there is at least one answer. We first get a base answer: 

 



A = 0b + a, so set q = 0, r = a, this proves there is one solution without a 

restriction on r. 

 

Now, assume to the contrary that there is no solution with 0 <= r < b. 

Then that means that the solution with the minimum positive value for r 

has a value for r >= b. 

 

A = bq + r, where r >= b 

A = (q+1)b + (r - b), so new solution is q' = q+1, r' = r-b >= 0, this 

contradicts the assumption that the minimal value of a positive 

remainder was r. 

 

Euclid's Algorithm and the greatest common divisor 
 

Greatest Common Divisor of two integers is the largest integer that 

divides evenly into both integers: 

 

gcd(18, 6) = 6 

gcd(35, 14) = 7 

gcd(123, 77) = 1 

 

In middle school, you learned to calculate these using a factor tree. 

 

   18    6 

 /     \      /     \ 

6      3     2         3 

| \ 

2 3 

 

It's hard to make factor trees for very large integers… 

 

It's easier to solve this gcd problem (faster computationally), if we 

utilize division. 

 

 



Euclid's algorithm to determine gcd(123, 77): 

 

123 = 1 x 77 + 46 

77   = 1 x 46 + 31 

46   = 1 x 31 + 15 

31   = 2 x 15 + 1 , the last non-zero remainder is the gcd. 

15   = 15 x 1  + 0 

 

If gcd(a,b) = 1, we say that a and b are "relatively prime", or that a and b 

are "co-prime" 

 

Gcd(198, 78) = 6 

 

198 = 2 x 78 + 42, here we factor 6 out from 42, 78, so 6 | 198 

78   = 1 x 42 + 36, here we can factor 6 out of 36 and 42, so 6 | 78. 

42   = 1 x 36  + 6, we can factor 6 out of both terms so 6 | 42 

36   = 6 x 6 + 0 

 

Prove that the value Euclid's Algorithm produces is the GCD. We need 

to prove two things: 

 

1) Euclid's generates a value d such that d | a and d | b. Thus, it generates 

a common divisor. 

 

2) For all common divisors d', d' | d, where d is the value produced by 

Euclid's Algorithm. 

 

a = bq1 + r1 

b = r1q2 + r2 

r1 = r2q3 + r3 

r2 = r3q4 + r4 

… 

rk-2 = rk-1qk + rk 

rk-1 = rkqk+1, and no remainder! Euclid's answer is rk. 

 



Goal for step 1, prove that rk | a and rk | b. 

 

a = bq1 + r1 

b = r1q2 + r2 

r1 = r2q3 + r3 

r2 = r3q4 + r4 

… 

rk-2 = rk-1qk + rk    

rk-1 = rkqk+1, thus rk | rk-1, so I can rewrite rk-1 = rkc, for some int c 

 

rk-2 = rk-1qk + rk  

rk-2 = crkqk + rk  

rk-2 = rk (cqk + 1), so this means that rk | rk-2 

 

At each step of the proof, we show that rk | ri, for each value of i starting 

at k-1, and continuing to r1, and finally ending with b and a. 

 

Now, we want to prove that for any arbitrary common divisor d' of a and 

b, that d' | d.  

 

a = bq1 + r1, so d' | a and d' | b, so a - bq1 = r1, so we can factor out d' 

from both a and bq1, so this shows that d' | r1 

 

b = r1q2 + r2, d' | b and d' | r1, b - r1q2 = r2, thus d' | r2 

 

and so on… 

 

198 = 2 x 78 + 42, 3 divides into 198 and 3 divides 78, so 3 must 

                                  Divide into 42, since 198 - 2 x 78 = 42 

             3(66 - 2x26) = 42, so 3 | 42. 

78   = 1 x 42 + 36, 78 - 42 = 3(26 - 14) = 36, so 3 | 36 

42   = 1 x 36  + 6, since 42 - 36 = 3(14 - 12) = 6, 3 | 6. 

 
int gcd(int a, int b) { 

     return b == 0 ? a : gcd(b, a%b); 

} 



Two more examples of the Euclidean algorithm. 

 

Gcd(75, 49) 

 

75 = 1 x 49 + 26 

49 = 1 x 26 + 23 

26 = 1 x 23 + 3 

23 = 7 x 3 + 2 

3   = 1 x 2 + 1 

 

Gcd(728, 206) 

 

728 = 3 x 206 + 110 

206 = 1 x 110 + 96 

110 = 1 x 96 + 14 

96   = 6 x 14 + 12 

14   = 1 x 12 + 2 

12   = 6 x 2 

 

What is the run-time of Euclid's algorithm? 

 

How many steps in the worst case (how many divisions) will it take for 

the algorithm to terminate? 

 

a = bq1 + r1 

b = r1q2 + r2 

r1 = r2q3 + r3 

 

We will prove that 2r1 < a. We assume a > b, since this is the natural 

way to start the algorithm. 

 

Since a > b, q1 >= 1 

 

a = bq1 + r1 >= b + r1 

                              > r1 + r1 = 2r1 ,because by def b > r1. 



A > 2r1 

 

In every two steps of Euclid's Algorithm, the number on the LHS at least 

gets divided by 2. 

 

Thus, the max number of steps = 2k, where k is the number of times we 

have to divide a by 2, to get it down to 1. 

 
𝑎

2𝑘
= 1 

 

𝑎 = 2𝑘 

 

𝑘 = 𝑙𝑜𝑔2𝑎 
 

Max # of steps is 2log2a. (Upper bound not actually perfectly 

achievable…) 

 

Worst case for Euclid's is the Fibonacci numbers… 

 

Gcd(144, 89) 

 

144 = 1 x 89 + 55 

89 = 1 x 55 + 34 

55 = 1 x 34 + 21 

34 = 1 x 21 + 13 

21 = 1 x 13 + 8 

13 = 1 x 8  + 5 

8 = 1 x 5 + 3 

5 = 1 x 3 + 2 

3 = 1 x 2 + 1 

 

# of steps for gcd(Fn, Fn-1) = n-3, depending not counting the 0 

remainder step. (If you count that step it's n-2.) 


