Written Notes from 9/1/2020 COT 3100 Lecture

I mostly went over the .pdf file with the notes on bitwise operators first and explained a few pieces of base conversion typing things below:

 $2 \times 2 \times 2 \times 2 \times 0 = 2 \times (2 \times 2 \times 2 \times 0)$

Taking any number, dividing 2 and looking at the remainder isolates the last bit of that number (this is how we get the last bit of the binary.

Then, dividing by 2 gets rid of the last bit, so now, we can repeat the process with this new number, until we peel off all the bits.

Now, converting from base b to base 10 3ac in base $16 = 3 \times 16^2 + 10 \times 16^1 + 12 \times 16^0$

Now, to convert back from base 10 to base b:

Divide by b and keep track of the remainder, repeat over and over again until the quotient is 0. Then read the remainders in opposite order.

```
940 in base 10 → base 16

16 | 940

16 | 58 R 12 (c)

16 | 3 R 10 (a)

16 | 0 R 3 base 16 value is 3ac.
```

78 & 63(bitwise and)78 in the computer is really1001110630111111

0001110 = 14

Bitwise and looks at the b its in the two numbers and puts 1 in the corresponding place if the inputs are both 1s, then we reinterpret the result as a number.

45 27	(bitwise or)
45	= 101101
27	= 011011
	111111
17 39	
	010001
	100111
	110111 = 55
45 ^ 27	(bitwise xor)
45	= 101101
27	= 011011
	110110 = 54

I typed all of these in IDLE so students could see these operators being used in a programming language (Python)

Proof problem using the rules of inference

```
(\neg p \lor q) \rightarrow rr \rightarrow (s \lor t)\neg s \land \neg u\neg u \rightarrow \neg t
```

•		n
•	•	p

1. $\bar{s} \wedge \bar{u}$	Premise
2. <i>ū</i>	Rule of Conjunctive Simplification with #1
3. $\bar{u} \rightarrow \bar{t}$	Premise
4. <i>t</i>	Modus Ponens with #2 and #3
5. <i>s</i>	Rule of Conjunctive Simplification with #1
6. $\bar{s} \wedge \bar{t}$	Rule of Conjunction with #4 and #5
7. $\overline{s \lor t}$	DeMorgan's Law with #6
8. $r \rightarrow (s \lor t)$	Premise
9. <i>r</i>	Modus Tollens with #7 and #8
10. $(\bar{p} \lor q) \rightarrow r$	Premise
11. $\overline{\overline{p} \lor q}$	Modus Tollens with #9 and #10
12. $\bar{\bar{p}} \wedge \bar{q}$	De Morgan's Law with #11
13. $ar{ar{p}}$	Conjunctive Simplification with #12
14. <i>p</i>	Double Negation with #13

How can I derive the rules of inference?

(1) Truth Table(2) Laws of Logic

 $[p \land (p \rightarrow q)] \rightarrow q$

Р	q	p →q	p∧(p →q)	$[p \land (p \rightarrow q)] \rightarrow q$
F	F	Т	F	Т
F	Т	Т	F	Т
Т	F	F	F	Т
Т	Т	Т	Т	Т

Use the laws of logic to show that the expression is a tautology, which is a statement that is always true.

 $p \rightarrow q$ is the same as $\bar{p} \lor q$

Show that $[p \land (p \rightarrow q)] \rightarrow q$ is a tautology.

$[p \land (p \rightarrow q)] \rightarrow q$	
$[p \land (\bar{p} \lor q)] \rightarrow q$	Definition of Implication
$\overline{p \land (\bar{p} \lor q)} \lor q$	Definition of Implication
$(\bar{p} \lor \overline{\bar{p} \lor q}) \lor q$	<u>Demorgan's</u>
$(\bar{p} \lor (\bar{\bar{p}} \land \bar{q})) \lor q$	Demorgan's

$(\bar{p} \lor (p \land \bar{q})) \lor q$	Double Negation
$((\bar{p} \lor p) \land (\bar{p} \lor \bar{q})) \lor q$	Distributive Law
$(T \land (\bar{p} \lor \bar{q})) \lor q$	Inverse Law
$(\bar{p} \lor \bar{q}) \lor q$	Identity Law
$\overline{p} \lor (\overline{q} \lor q)$	Associative Law
$\overline{p} \lor T$	Inverse Law
Т	Domination law