
1

A Hardware Architecture for
Implementing Protection Rings

Michael D Schroeder, Jerome H Saltzer

Presented by: Sheetal Shankaregowda

Why Protection?

• To guarantee total user separation
• To protect unauthorised use of resources and data, to

prevent data, system alteration
• To protect against malicious actions from users
• Only authorised users with the appropriate read,

write, execute rights will be able to access/ change the
data.

• To maintain system stability, reliability.
• Allowing unrestricted user co-operation when desired

2

Protection Ring
• Fixed number of domains for each

process.
• Rings numbered from 0 to r-1.
• Access capabilities of ring n is subset of m

if n>m.
• Multi-layer protection.
• Calling segment in another ring trap
• Multics has 7 rings/ domains.

R W E BASE LIMIT RING NUMBER GATE

Segment descriptor

Protection rings (cont..)

• If an application calls segments which are in different rings,
then it generates lot of traps.

• Need a way to minimise the traps and allow inter-ring access.

Ring 0 Ring 1

Ring 2

Ring r-1

S2

S1 S6

S3

No Trap

Trap!!

3

Access Brackets

Ring 0 Ring 1

Ring 2

Ring r-1

S2

S1 S6

S3

S4

S5 Read Bracket

Write
Bracket

Writeoperand

Execute Bracket

Call
Read Operand

No Trap,
within the read
bracket

Trap!! Not in the
write bracket

No Trap. Within
the execute bracket

Access Brackets
• Allocate each segment to a set of consecutive rings.
• Any segment within access bracket ‘N’ will not

generate trap.
• N1 Λ N2 : execution bracket

• N2 Λ N3 : call bracket
• A call by a process executing in ring i to procedure in

a segment with execution bracket N1, N2 does not
generate trap if N1 ≤i ≤N2.

• Process executing in ring ‘i’ can access segment in
ring ‘k’ with i ≤k, the access is governed by the access
indicators of segment addressed.

R W E BASE LIMIT N1 N2 N3 GATE

Segment descriptor

4

Example
• PS={p1,p2,p3}- program segment
• DS={d1,d2} - Data segment
p1 may call p2
p2 may call p3 and read d1, d2
p3 may read d2 and (read & write) d1.

p1
p2
p3
d1

d2

0 1 2 3 4 5 76

READ
WRITE

READ
WRITE

E C

E C

E C

P1

P2

D2 D1

P3

E

R

R

R

E

R,W

Gates

• Range of rings over which the access write
applies – access bracket , Ex: write bracket.
0 1 2 3 4 5 6 7

• Downward ring switch from ring m to ring n
where m >n, happens through ‘Gate’.

0 1 2 3 4 5 6 7

5

Gates

Ring 0 Ring 1

Ring 2

Ring r-1

S2

S1 S6S3

S4

S5

S7

S1

Read Bracket

Write
Bracket

Execute Bracket

Call

Write Operand

No access bracket!!
Has to go through
Gate. If gate
location in SDW,
transfer of control
takes place, else
access violation.

If gate location defined
then operand can be
written. Transfer of
control takes place
through the gate, else
results in trap.

Access Violation!!
Call to an upward
ring. Cannot transfer
control though gate.

Gates (Cont…)
• Downward ring switching capability must be coupled

to transfer of control to a gate into the lower
numbered ring

• Specified by associating list of gate locations with
each segment in the virtual memory of a process

• If execution point of process is transferred to segment
while ring of execution is above the top of execute
bracket for the segment, then transfer must be
directed to one of the gate locations in the segment

• Transfer not allowed if not directed to gate location
• If transfer is to a gate, then the ring of execution of

the process will switch down to the top of bracket of
segment as the transfer occurs

6

Multics

• Mainframe Timesharing OS
• Used from 1965 to 2000
• Segmented memory
• Multi User
• Shared memory multiprocessor
• Virtual memory
• High-level language implementation
• Multi-language support
• Relational database
• Security
• On-line reconfiguration

Hardware Implementation
ADDRESS LENGTH

ADDRESS LENGTH R1 R2 R3 R W E GATE

DBR

SDW

RING SEGNO WORDNO

PRNUM OFFSET OPCODE I

RING SEGNO WORDNO I

RING SEGNO WORDNO

IPR

INST

PR0
PR1

IND

TPR

7

Hardware Implementation (cont..)

• Write bracket : ring 0 to SDW.R1.
• Read bracket : ring 0 to SDW.R2
• Execute bracket: SDW.R1 to SDW.R2
• Gate extension: SDW.R2+1 to SDW.R3.

Provided SDW.R1≤SDW.R2 ≤SDW.R3.
• IPR- current ring of execution and two part address

of next instruction.
• Program accessible pointers(PR0, PR1..) contains two

part address and ring number.
• TPR : internal processor register not accessible by

program.

TPR <-- IPR

Begin Instruction
Cycle

Fetch SDW for segment
containing next instruction.

 (Segment number is
TPR.SEGNO)

Yes

Access Violation
Not in execu te

bracket

Yes

Access Violation
Execute flag not on

Finish instruction f etch .
(Word number is

TPR.WORDNO)

Goto Fig 2

SDW.R1<=TPR.RING
<=SDW.R2 No

SDW.E = on No

8

From fig 1

(n = INST,PRNUM)
TPR .SEGNO<= PRn. SEG NO

TPR. WORDNO<= PRn.WORDNO + INST. OFFSET
TPR. RING< = max (TPR,RING, PRn, RING)

No

Yes

Fetch SDW for segment containing indirect
word. (Segment number is TPR.SEGNO)

Yes

NO

YES

Finish indirect word fetch
(word number is TPR.WORDNO)

TPR.SEGNO<= IND.SEGNO
TPR.WORDNO <= IND. WORDNO

TPR.RING<= max(TPR.RING,SDW.RI,IND.RlNG)

NO

Goto Fig 3

YES
No

Access violation
Effective ring not

within read bracket
of segment containing

indirect word

Access violation
Read flag off and indirect

word not in same
segment as instruction

Does instruction specify
operand address indirectly?

TPR.RING<=SDW.R2No

SDW.R = on

TRP.SEGNO=IPR.SEGNO

Yes

Further
Direction?

(At this point TPR contains
effective address of
instruction operand)

Fig 1 & 2

• Retrieve next instruction to execute
• TPR.RING matched against execute bracket defined

in SDW
• If instruction can be executed in current ring,

instruction fetch complete.
• Calculates TPR effective address of instruction

operand
• Occurs if instruction operand in memory
• Change in TPR.RING – during effective address

calculation, or during processing of indirect words
involved in effective address caluclation

9

10

Fig 3 & 4

• Perform the instruction
• Read and write instructions reference their operands
• EAP type instructions load the ring, segno and

wordno of PRn to TPR
• No access validation required for EAP type
• For instructions which do not reference their

operands, access violation is checked for reloading
IPR from TPR

• Call and return can change the ring of execution
• Call can automatically switch to lower number and

return to higher number, if other way then results in
traps which requires software intervention

11

Fig 5 & 6

• Call must be directed to gate loc even if procedure
called in same ring, can use simple transfer
instruction instead of call

• SDW execute flag is checked
• SDW.R1 ≤ TPR.RING ≤SDW.R3
• Calculate the new ring of execution
• Creates stack base pointer
• Return, TPR.RING < IPR.RING results in

downward return– trap
• TPR.RING >IPR.RING, PRn. RING is set to max of

PRn.RING and TPR.RING

12

Rings in Multics
• Ring 0 –supervisor procedures like primitive operations of

access control, I/O memory multiplexing and processor
multiplexing.

• Remaning supervisor procedures in ring 1, like
accounting, file system search direction, I/O stream
management

• Implicit invocation of certain ring 0 supervisor procedures
result in traps

• Explicit invocation of selected ring 0, 1 supervisor
procedures executing in ring 2-5 of a process – subroutine
call to gates

• Ring 6, 7 – no access to ring 0,1
• Separate access control list for each segment and segment

descriptor segments for each process

Conclusion
• Generalised hardware mechanism of supervisor/user

protection scheme that is compatible with shared
memory based on segmentation

• Multilayer supervisor limits the propagation of
errors, easier to modify the supervisor, confidence
that supervisor will function correctly

• Multics has 7 ring layers
• Process executing in ring ‘i’ can access segment in

ring ‘k’ with i ≤k, the access is governed by the access
indicators of segment addressed

• Transfer from one ring to other must be directed to a
gate

• Access brackets decrease the number of traps

13

References

• A hardware architecure for implementing protection rings
Michael D schroder and Jerome H Saltzer

• Protection in an information processing utility
Robert M Graham

• Dynamic Protection structures procedure
B.W. Lampson

• www.multicians.org

Questions?

