
1

A comparison of two
distributed systems

Finny Varghese

Topics

Design Philosophies
Application environment
Processor allocation

Design Consequences
Kernal Architecture
Communication Mechanism
File system
Process Management

2

Amoeba vs. Sprite

2 philosophical grounds
Distributed computing model vs. Unix-style
applications
Workstation-centered model vs. combination
of terminal with a shared processor pool

Amoeba vs. Sprite

Amoeba

user level IPC
mechanism

Caches files only on
servers

Centralized server – to
allocate processors

Sprite

RPC model – Kernal use

Client-level caching

Process migration model

3

Amoeba System

Sprite System

4

Design Philosophies

1. How to design a distributed file system
with secondary storage shared?

2. How to allow collection of processors to
be exploited by individual users

Application Environment
Amoeba

Process or file = obj
Capability

Port – hides the server
from objects

Uniform communication
model
Easier - writing distributed
application
Orca – programming
language

Sprite

Eases – transition from
time-sharing to networked
workstations

Caching file data – on
workstations

Little or no IPC

5

Processor Allocation

Pure “workstation” – execute tasks on one
machine
Pure “processor pool” – equal access to all
processors

Amoeba – closer to processor pool
Sprite – closer to workstation model

Processor Allocation - Amoeba

“pool processor” – network interface and RAM
Unlike pure – processors allocation outside pool
processors for system services
Terminals – only display server

3 reasons for this choice
1. Assumption that processor & memory price decrease
2. Assumption that the cost of adding new processor would be

less than adding workstation
3. Entire distributed system – as a time sharing system

6

Processor Allocation - Sprite
Priority, processing power of a workstation
Unlike pure workstations – uses processing power of
idle hosts
Dedicated file servers – not for applications

3 reasons for this choice
1. Isolate system load
2. Power of new machine – better interface
3. No difference between graphic terminal and diskless

workstation, except for memory in workstations

Design Consequences

Amoeba

Dynamic load
balancing
No client file caching

Sprite

Caches files on
workstation
Process migration

7

Design Consequences
Kernal Architectures

Amoeba – microkernel
Ex. Time of day clock – provided
by network wide server

Uniformity, modularity,
extensibility
Dis. - services from processes
slower than if kernel
Dis. – no file caching
Adv. – swapping and paging
increases performance
If good for trivial problems and as
good as monolithic for
complicated problems, then it
outweighs any disadvantages.

Sprite – UNIX monolithic model
Ex. time of day clock – provided
by workstation

2 reasons
Implications of microkernel
unclear
Cooperation of kernel facilities

Design consequence
Communication Mechanism

Whole system –
collection of objects –
uses RPC
Explicit
acknowledgement in
RPC
Lower latency
Lower bandwidth

814 Kbytes/sec

Kernel to kernel
communication –
RPC
Implicit
acknowledgement in
RPC
Higher latency
Higher bandwidth

Blast protocol for large
RPCs
820 Kbytes/sec

8

Design consequence
Communication Mechanism

Design Consequences
File Systems

Amoeba – single
globally shared,
location-transparent
file system
No caching

Allows transparency &
fault tolerance

Sprite – single
globally shared,
location-transparent
file system
Caches data on both
client and server

9

Design Consequences
File Systems
1. Transparent

replication of files
and directory entries

2. Bullet server -
simpler, but includes
some restrictions

3. No caching on client
4. Less memory to

maintain open files

1. No replication

2. Files are immutable

3. Allows client caching
4. More memory to

maintain open files

Design Consequences
File Systems

10

Design Consequences
Process Model

Amoeba – simple and efficient
process model
Virtual memory
No demand-paging or
swapping

Better performance of user-
level RPC

Threads for structuring server
New process on new
processor

exec_file
Avoids need to copy state of
creating process

Sprite – identical to BSD Unix
Supports demand paging
New process execution – fork

Copy of file

Design Consequences
Process Model

11

Design Consequences
Processor Allocation

Amoeba – assign
processes to many
processors transparently

Run server – selects
processor

Process starts in a
different processor

Sprite – gives priority to
user over one workstation
and runs all processes
there
Use of idle hosts –
migration
Migd – keeps track of idle
hosts
Process starts in local
hosts

Design Consequences
Processor Allocation

12

Design Consequences
Processor Allocation Drawbacks

No multiple parallel
applications to
cooperate

Time-share each
process among
processors

Default to local
execution

Overload a
workstation

Use another host only
if idle

Amoeba Evolution

Parallel application
Group communication
Distributed Shared memory
Wide area transparent systems

13

Sprite Evolution

Log-structured file systems
Striping files
Buffering techniques
Reliability
Mach interoperability

Conclusion

1. Microkernals are not inferior to monolithic
kernels

2. Desirability of uniform communication
model – via RPC interface

3. Sprite benefits from client caching
4. Shows the need for hybrid systems
5. Compatibility with Unix – better for Sprite

14

Amoeba/Sprite Comparison

Thank you!

Questions?

