A comparison of two
distributed systems

Finny Varghese

" JE
Topics

m Design Philosophies
Application environment
Processor allocation

m Design Consequences
Kernal Architecture
Communication Mechanism
File system
Process Management

Amoeba vs. Sprite

m 2 philosophical grounds

Distributed computing model vs. Unix-style
applications

Workstation-centered model vs. combination
of terminal with a shared processor pool

Amoeba vs. Sprite

Amoeba Sprite
m user level IPC m RPC model — Kernal use
mechanism
m Caches files only on = Client-level caching
servers

m Centralized server —to

m Process migration model
allocate processors

Amoeba System

S=D B e

L . o [
Processor pool | Graphics terminals

Time server File server Directory server
Specialized servers

Sprite System

0PER =
= = =
Workstations File server

Figure 2: A Sprite system consists of workstations and file servers.

Design Philosophies

1. How to design a distributed file system
with secondary storage shared?

2. How to allow collection of processors to
be exploited by individual users

Application Environment

Amoeba Sprite
m Process or file = obj m Eases - transition from
Capability time-sharing to networked
= Port — hides the server workstations

from objects
m Uniform communication
model
m Easier - writing distributed
application
m Orca — programming
language

m Caching file data — on
workstations

m Little or no IPC

"
Processor Allocation

m Pure “workstation” — execute tasks on one
machine

m Pure “processor pool” — equal access to all
processors

m Amoeba — closer to processor pool
m Sprite — closer to workstation model

"
Processor Allocation - Amoeba

m “pool processor” — network interface and RAM

Unlike pure — processors allocation outside pool
processors for system services

m Terminals — only display server

3 reasons for this choice
Assumption that processor & memory price decrease

Assumption that the cost of adding new processor would be
less than adding workstation

Entire distributed system — as a time sharing system

" JE
Processor Allocation - Sprite

m Priority, processing power of a workstation

m Unlike pure workstations — uses processing power of
idle hosts

m Dedicated file servers — not for applications

3 reasons for this choice
Isolate system load
Power of new machine — better interface

No difference between graphic terminal and diskless
workstation, except for memory in workstations

Design Conseguences

Amoeba Sprite
m Dynamic load m Caches files on
balancing workstation

m No client file caching = Process migration

Design Consequences

Kernal Architectures

m Amoeba — microkernel

Ex. Time of day clock — provided

by network wide server

= Uniformity, modularity,
extensibility

m Dis. - services from processes

slower than if kernel
m Dis. — no file caching

m Adv. — swapping and paging

increases performance

m If good for trivial problems and as

good as monolithic for

complicated problems, then it
outweighs any disadvantages.

Sprite — UNIX monolithic model

Ex. time of day clock — provided
by workstation

2 reasons

Implications of microkernel
unclear

Cooperation of kernel facilities

Design consequence
Communication Mechanism

m Whole system —

collection of objects —

uses RPC
m Explicit

acknowledgement in

RPC
m Lower latency

m Lower bandwidth
814 Kbytes/sec

Kernel to kernel
communication —
RPC

Implicit
acknowledgement in
RPC

Higher latency

Higher bandwidth

Blast protocol for large
RPCs

820 Kbytes/sec

"
DeS|gn consequence
Communication Mechanism

Kernel-level Latency

Size (msec)
(Bytes) Amoeba Sprite
0 1.1 1.9
16384 20.0 19.5
30000 36.0 -
(a)
Size User—lsivel Ijatency
msec
(Bytes) Amoeba | Sprite
0 1.2 7.9
16384 21.0 33.5
30000 36.0 62.8

(b)

Design Consequences

File Systems

m Amoeba - single
globally shared,
location-transpar
file system

m No caching

Allows transparency &

fault tolerance

m Sprite — single
globally shared,
location-transparent
file system

m Caches data on both
client and server

ent

" JE
Design Consequences
File Systems

1. Transparent 1. No replication
replication of files
and directory entries

2. Bullet server -
simpler, but includes
some restrictions

No caching on client

4. Less memory to
maintain open files

2. Files are immutable

Allows client caching

4. More memory to
maintain open files

" JE
Design Consequences
File Systems

Amoeba/Sprite Comparison

. Delay (msec)
Operation Amoeba I Sprite
open-close foo 7.2 9.7
P a/b,/c/foo 78 10.4
CACHE | NOCACHE
read 10 Kbytes 14.0 2.8 18.6
100 Kbytes 123.0 21.7 167.4
BULLET | BULLET/DIR || CACHE | NOCACHE
create-delete | *° data 33.0 288.0 50.9 50.9
10 Kbytes 86.0 312.0 67.1 84.9
100 Kbytes 367.0 617.0 101.4 411.1

" JEE
Design Consequences
Process Model

Amoeba — simple and efficient ~ m Sprite — identical to BSD Unix

process model = Supports demand paging
Virtual memory m New process execution — fork
No demand-paging or Copy of file
swapping

Better performance of user-

level RPC

Threads for structuring server
New process on new
processor

exec_file

Avoids need to copy state of
creating process

" JEE
Design Conseguences
Process Model

. Time (msec
Sl Amoeba(Spl;]ite
Context switch 0.5 1.6
Thread creation 2.4 (12.5)
fork (169.5) 13.6
Program invocation 58.0 71.6

10

Design Consequences

Processor Allocation

m Amoeba — assign]

processes to many
processors transparently

m Run server — selects u
processor

m Process starts in a
different processor u

Sprite — gives priority to
user over one workstation
and runs all processes
there

Use of idle hosts —
migration

Migd — keeps track of idle
hosts

Process starts in local
hosts

Design Conseguences

Processor Allocation

Time (msec)

Operation Amoeba | Sprite
Local 58 72
Remote (specified) 84 116
Remote (unspecified) 95 131

11

"
Design Consequences
Processor Allocation Drawbacks

m No multiple parallel m Default to local
applications to execution
cooperate Overload a

Time-share each workstation
process among
processors

m Use another host only
if idle

= JEE
Amoeba Evolution

m Parallel application

m Group communication

m Distributed Shared memory

m Wide area transparent systems

12

Sprite Evolution

m Log-structured file systems
m Striping files

m Buffering techniques

m Reliability

m Mach interoperability

"
Conclusion

1. Microkernals are not inferior to monolithic
kernels

2. Desirability of uniform communication
model — via RPC interface

Sprite benefits from client caching
Shows the need for hybrid systems
Compatibility with Unix — better for Sprite

13

Amoeba/Sprite Comparison

Thank you!

Questions?

14

