
University of Central Florida 10/11/2004

1

10/11/2004 COP 6614 Operating Systems 1

Communicating Sequential Communicating Sequential
ProcessesProcesses
-- C.A.R. HoareC.A.R. Hoare

Radhey ShahRadhey Shah

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 22

OutlineOutline

IntroductionIntroduction
What is CSP?What is CSP?
Syntax used for CSPSyntax used for CSP
NonNon--determinismdeterminism
ExamplesExamples
ProducerProducer--Consumer ProblemConsumer Problem
ConclusionConclusion

University of Central Florida 10/11/2004

2

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 33

IntroductionIntroduction

Traditional model Traditional model
-- MonoprocessorMonoprocessor
-- deterministic executiondeterministic execution
-- processes communicate via processes communicate via
READ : Receive WRITE : SENDREAD : Receive WRITE : SEND

Process
P1

Process
P2

Processor

Memory

I/O

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 44

IntroductionIntroduction

MultiMulti--processor machine:processor machine:
-- collection of similar collection of similar monoprocessorsmonoprocessors
-- each one has its own memoryeach one has its own memory
-- powerful, reliable, economicalpowerful, reliable, economical

Processor 1 Processor 3

Processor 2

University of Central Florida 10/11/2004

3

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 55

What is CSP?What is CSP?
Communicating Sequential ProcessesCommunicating Sequential Processes
A programming language model to A programming language model to
describe parallel programs for describe parallel programs for
communication & synchronization between communication & synchronization between
processes in multiprocessor systemprocesses in multiprocessor system
Program : a network of processes, which Program : a network of processes, which
are connected using channels are connected using channels
A channel is a pointA channel is a point--toto--point, point, uniuni--
directional, synchronous directional, synchronous unbufferedunbuffered
communications link communications link
occamoccam supports the rules of CSP supports the rules of CSP

1 0 / 1 1 / 2 0 0 41 0 / 1 1 / 2 0 0 4

COP 6614.Operatin g SystemsCOP 6614.Operatin g Systems66

C S P� ‹ Guarded commandsGuarded commands

� ‹� ‹ Assignment commandsAssignment commands

� ‹� ‹ Parallel commands Parallel commands

� ‹� ‹ Input/ Output commandsInput/ Output commands

� ‹� ‹ Alternative/ Repetitive commandsAlternative/ Repetitive commands

� ‹� ‹Co - routines/ sub routines/ sub -- routines routines � ‹Recursions � ‹Monitors/Semaphores

University of Central Florida 10/11/2004

4

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 77

Basic constructsBasic constructs

A repetitive construct <while loop>A repetitive construct <while loop>
An alternative construct An alternative construct
<<if..then..elseif..then..else>>
Normal sequential program Normal sequential program
composition<denoted by semicolon>composition<denoted by semicolon>

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 88

CSP NotationsCSP Notations

repetitive commandrepetitive command**bracket program bracket program
structurestructure

[][]

Separate sequenceSeparate sequence;;

thenthenMutual separatorMutual separator⁪⁪

OutputOutput!!InputInput??

Parallel processesParallel processes||||AssignmentAssignment:=:=

repetitionrepetition{ }{ }category namescategory names< >< >

oror||is defined asis defined as::=::=

meaningmeaningNotationNotationmeaningmeaningNotationNotation

University of Central Florida 10/11/2004

5

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 99

OccamOccam SyntaxSyntax
Sequential execution:Sequential execution:
SEQSEQ

P1P1
P2P2
P3P3

Parallel (Concurrent) executionParallel (Concurrent) execution
PARPAR

P1P1
P2P2
P3P3

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 1010

OccamOccam SyntaxSyntax

InputInput
Chan1 ? XChan1 ? X

OutputOutput
Chan2 ! [y FROM 0 FOR 100]Chan2 ! [y FROM 0 FOR 100]

University of Central Florida 10/11/2004

6

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 1111

OccamOccam SyntaxSyntax
Selection:Selection:
ALTALT

chan1?xchan1?x
P1P1

(y>z) & chan3 ? R(y>z) & chan3 ? R
P2P2

ALTALT
chan1?xchan1?x

P1P1
Clock ? AFTER (Now PLUS Clock ? AFTER (Now PLUS TenSecondsTenSeconds))

P2P2

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 1212

Guarded commandsGuarded commands
A Boolean expression followed by a statement list. A Boolean expression followed by a statement list.
The statement list is executed only when the The statement list is executed only when the Boolean Boolean
expression is true. expression is true.
<guarded command> ::= <guard> <guarded command> ::= <guard> <guarded list><guarded list>
<guard> ::= <Boolean expression><guard> ::= <Boolean expression>
<guarded list> :: = <statement> { ; <statement> }<guarded list> :: = <statement> { ; <statement> }
<guarded command set> ::= <guarded command> { <guarded command set> ::= <guarded command> {
⁪⁪<guarded command> }<guarded command> }
<alternative construct> :: = <alternative construct> :: =

ifif <guarded command set> <guarded command set> fifi
<repetitive construct> :: =<repetitive construct> :: =

dodo <guarded command set> <guarded command set> odod
<statement> ::= <alternative construct> | <statement> ::= <alternative construct> |
<repetitive construct> | "other statements"<repetitive construct> | "other statements"

University of Central Florida 10/11/2004

7

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 1313

NonNon--determinismdeterminism
guarded commands: Introduce & control guarded commands: Introduce & control
nonnon--determinism determinism
Constructs for which at least the activity Constructs for which at least the activity
evoked, but possibly even the final state, evoked, but possibly even the final state,
is not necessarily uniquely determined by is not necessarily uniquely determined by
the initial state.the initial state.
allows to map otherwise different allows to map otherwise different
programs on the same program textprograms on the same program text
If..fiIf..fi & & do..oddo..od statements support nonstatements support non--
determinacy determinacy

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 1414

NondeterminacyNondeterminacy
ifif x>=y x>=y m := xm := x
⁪⁪ y >=x y >=x m := ym := y
fifi
q1,q2,q3,q4 := Q1,Q2,Q3,Q4;q1,q2,q3,q4 := Q1,Q2,Q3,Q4;
dodo q1>q2 q1>q2 q1,q2:=q2,q1q1,q2:=q2,q1

q2>q3 q2>q3 q2,q3:=q3,q2q2,q3:=q3,q2
q3>q4 q3>q4 q3,q4:=q4,q3q3,q4:=q4,q3

odod

University of Central Florida 10/11/2004

8

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 1515

Parallel commandsParallel commands
<command> ::= <simple <command> ::= <simple
command>|<structured command>command>|<structured command>
<parallel command> ::= <parallel command> ::=

[[<process> <process> {{||||<process><process>}}]]
<process> ::= <process> ::=

<process label> <command list><process label> <command list>
Each process of a parallel command must Each process of a parallel command must
be disjoint from every other process of be disjoint from every other process of
commandcommand
[west :: DISASSEMBLE || X :: SQUASH][west :: DISASSEMBLE || X :: SQUASH]

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 1616

Assignment Command1 6

University of Central Florida 10/11/2004

9

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 1717

Input CommandInput Command

<input command> ::= <input command> ::=
<source><source>??<target variable><target variable>
<source>::=<process name><source>::=<process name>

cardreadercardreader??cardimagecardimage
XX??(x,y(x,y))
console(i)console(i)??cc
X(i)X(i)??VV()()

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 1818

Output CommandOutput Command

<output<output command> ::= command> ::=
<destination><destination>!!<expression><expression>
<destination>::=<process name><destination>::=<process name>

lineprinterlineprinter!!lineimagelineimage
DIVDIV!!(3*a+b,13)(3*a+b,13)
console(jconsole(j--1)1)!!””AA””
semsem!!PP()()

University of Central Florida 10/11/2004

10

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 1919

Alternative commandAlternative command

<alternative command> ::= <alternative command> ::=
[[<guarded command>{<guarded command>{⁪⁪<guarded <guarded
command>} command>}]]
Specifies execution of exactly one Specifies execution of exactly one
commandcommand
If all guards fail, alternative If all guards fail, alternative
command failscommand fails
[x>=y [x>=y m:=x m:=x ⁪⁪ y>=x y>=x m:=y]m:=y]

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 2020

Repetitive CommandRepetitive Command

<repetitive command> <repetitive command>
::=::=**<alternative command><alternative command>
Specifies as many iterations as Specifies as many iterations as
possible of its constituent alternative possible of its constituent alternative
command.command.
When all guard fail, terminate with When all guard fail, terminate with
no effectno effect
i:=0; i:=0;
**[i<[i<size;content(isize;content(i)!=)!=nn ii:=i+1]:=i+1]

University of Central Florida 10/11/2004

11

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 2121

Combination of commandsCombination of commands

*[X?V() *[X?V() valval:=val+1:=val+1
⁪⁪ valval>0; Y?P() >0; Y?P() valval :=val:=val--1]1]

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 2222

CoCo--routinesroutines
COPYCOPY

X:: *[X:: *[c:characterc:character; ; west?cwest?c east!ceast!c]]
SQUASHSQUASH
X::*[X::*[c:character;west?cc:character;west?c

[c!=[c!=asteriskasterisk east!ceast!c
⁪⁪ c=c=asteriskasterisk west?cwest?c

[[c!=c!=asteriskasterisk east!asterisk;east!ceast!asterisk;east!c
⁪⁪ c=asterisk c=asterisk east!upwardeast!upward arrowarrow
]]]]]]

University of Central Florida 10/11/2004

12

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 2323

CoCo--routinesroutines

DISASSEMBLEDISASSEMBLE
[cardimage[cardimage:(1..80)character; :(1..80)character;

cardfile?cardimagecardfile?cardimage i:integer;ii:integer;i:=1;:=1;
[i<=80[i<=80 X!cardimage(i); i:=i+1]X!cardimage(i); i:=i+1]
X!spaceX!space]]

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 2424

CoCo--routinesroutines
ASSEMBLEASSEMBLE

lineimage:(1..125)character;lineimage:(1..125)character;
i:integer;ii:integer;i:=1;:=1;
[[c:characterc:character; ; X?cX?c

lineimage(ilineimage(i):=c;):=c;
[i<=124[i<=124 i:=i+1i:=i+1

⁪⁪ i=125i=125 lineprinter!lineimage;i:=1lineprinter!lineimage;i:=1
]];]];

[i=1[i=1 skip skip ⁪⁪ i>1i>1 *[i<=125*[i<=125 lineimage(i):=space; lineimage(i):=space;
i:=i+1]; i:=i+1]; lineprinter!lineimagelineprinter!lineimage]]

University of Central Florida 10/11/2004

13

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 2525

ReformatReformat

[[west::DISASSEMBLEwest::DISASSEMBLE || X::COPY || X::COPY
||east :: ASSEMBLE]||east :: ASSEMBLE]

[[west::DISASSEMBLEwest::DISASSEMBLE || X::SQUASH || X::SQUASH
|| east:: ASSEMBLE]|| east:: ASSEMBLE]

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 2626

RecursionRecursion-- FactorialFactorial

[fac(i:1..limit)::[fac(i:1..limit)::
[n:integer;fac(i[n:integer;fac(i--1)?n1)?n

[n=0[n=0 fac(ifac(i--1)!]1)!]
⁪⁪ n>0n>0 fac(i+1)!nfac(i+1)!n--1;1;

r:integer;fac(i+1)?r;r:integer;fac(i+1)?r;
fac(ifac(i--1)!(n*r)1)!(n*r)

]]]]
|| fac(0) :: :USER]|| fac(0) :: :USER]

University of Central Florida 10/11/2004

14

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 2727

Producer Consumer ProblemProducer Consumer Problem

Needs bounded bufferNeeds bounded buffer
In CSP, channel is an unIn CSP, channel is an un--buffered buffered
communication linkcommunication link
Create a Create a ““buffering processbuffering process””

Producer
process

Bounded
Buffer

process

Consumer
process

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 2828

ProducerProducer--Consumer problemConsumer problem

X : A boundedX : A bounded--buffer process buffer process
Producer produces : Producer produces : X!pX!p
Consumer contains two commands:Consumer contains two commands:
•• X!moreX!more() () Consumer is readyConsumer is ready
•• X?pX?p ConsumeConsume

University of Central Florida 10/11/2004

15

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 2929

ProducerProducer--Consumer problemConsumer problem
X::X::
buffer:(0..9) portion;buffer:(0..9) portion;
in,out:integerin,out:integer; in:=0;out:=0;; in:=0;out:=0;

Comment Comment 0<=out<=in<=(out+10);0<=out<=in<=(out+10);
* [in<out+10; * [in<out+10; producer?buffer(inproducer?buffer(in mod 10) mod 10)

in :=in +1;in :=in +1;
⁪⁪ out<in; out<in; consumer?moreconsumer?more() ()

consumer!buffer(outconsumer!buffer(out mod 10);mod 10);
out:=out+1;out:=out+1;

]]

10/11/200410/11/2004

COP 6614 Operating SystemsCOP 6614 Operating Systems

3030

䑩獴物扵瑥搠䍯浰畴楮最

䑩獴物扵瑥搠䍯浰畴楮最

The producer

The producer

-

-

consumer problem

consumer problem
gives an introduction to distributed

gives an introduction to distributed
computing

computing

Three different processes on three

Three different processes on three
different machines communicating

different machines communicating
with each other

with each other

They are synchronized

They are synchronized

University of Central Florida 10/11/2004

16

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 3131

ConclusionConclusion

CSP gives a language structure to CSP gives a language structure to
achieve concurrency & achieve concurrency &
synchronization in multisynchronization in multi--processor processor
systemsystem
input, output and concurrency input, output and concurrency
constructs are as important as basic constructs are as important as basic
constructsconstructs
Introduces distributed computingIntroduces distributed computing

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 3232

ReferencesReferences
Hoare, C.A.R., J. Hoare, C.A.R., J. ””Communicating Communicating
Sequential ProcessesSequential Processes””, , Communications of Communications of
the ACM, August 1978, pp. 666the ACM, August 1978, pp. 666--677 677
DijkstraDijkstra, E.W. , E.W. ““Guarded commands, Guarded commands,
nondeterminacynondeterminacy, and formal derivation of , and formal derivation of
programs.programs.”” Comm. A CM 18, Comm. A CM 18, 8 (Aug. 8 (Aug.
1975), 4531975), 453--457.457.
http://frmb.org/occtutor.htmlhttp://frmb.org/occtutor.html
http://cui.unige.ch/dbhttp://cui.unige.ch/db--
research/Enseignement/analyseinfo/Aboutresearch/Enseignement/analyseinfo/About
BNF.htmlBNF.html

University of Central Florida 10/11/2004

17

10/11/200410/11/2004 COP 6614 Operating SystemsCOP 6614 Operating Systems 3333

Thank You !Thank You !

Q & A Q & A

